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Abstract - In this article, using a 128-bit key, 264 A stream coding algorithm has been developed that is easy to implement in 

software, allowing random bit sequences to be generated up to the bit length, i.e. the key stream. This algorithm is similar to and 

simpler than the RC4 algorithm, which retains its security, speed, and flexibility features without using an initialization vector. 

The pseudorandom sequences generated by this algorithm meet National Institute of Standards and Technology (NIST) 

requirements for randomness.   
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1. Introduction  
A pseudorandom number generator based on the 

permutation of array elements is widely used in constructing 

continuous encryption algorithms. For example, popular 

continuous coding methods RC4 and Spritz are based on 

permutation of array elements [1]. RC4 algorithm is a basic 

variable-length key stream generator specifically developed 

by R. Rivest [2]. Pseudorandom number generators using 

algorithms such as RC 4 generally run significantly faster than 

block code-based generators.  

The RC4 algorithm is widely used in various information 

security systems and computer networks (for example, in the 

protocol). SSL for password encryption Windows NT, etc.). 

Spritz is a lightweight stream cipher developed by Bruce 

Schneier and Daniel Whiting. It is known for its simplicity, 

speed, and security. Spritz is particularly suitable for resource-

constrained devices such as microcontrollers and smart cards. 

Spritz is essentially an improved version of the RC4 

algorithm, considering modern cryptographic tools and 

algorithms. It also uses a 256-element byte array. Spritz uses 

an archaic alphabet and the concept of a spinning wheel to 

generate pseudorandom sequences that are used to encrypt 

data. The algorithm has a small internal state, which allows it 

to be implemented efficiently on devices with limited 

memory. 

2. Literature Review 
RC4 is a byte stream cipher that uses a permutation mode 

to generate permutations using a table of numbers from 0 to 

255 and two-byte index pointers [4]. RC4 keys typically range 

in length from 40 to 128 bits, and modern stream encryption 

does not require a separate key. The table is initialized with a 

key combination. Then, in the keystream generation stage, the 

table is modified and outputs one key byte at each iteration. 

Its speed and simplicity allow for efficient software 

implementation and easy hardware development. In 2001, 

Fluhrer, Mantin, and Shamir published a paper on a 

vulnerability in the RC4 key table [2]. They showed that the 

first few bytes of the keystream are not random among all 

possible keys. From these bytes, information about the 

encryption key used can be inferred with high probability.  

If the long-term and short-term keys are simply 

concatenated to create an RC4 encryption key, then this long-

term key can be obtained by analyzing a large number of 

messages encrypted with that key. This vulnerability and some 

of its associated effects were used to break WEP encryption in 

IEEE 802.11 wireless networks. This marked the need for a 

quick replacement of WEP, which led to the development of 

a new wireless security standard, WPA, and many of its flaws 

were mysteriously fixed. The RC4 algorithm worked in a wide 

range of applications until it was deprecated for all versions of 

TLS in 2015. Although the initialization phase of RC4 and the 

statistical properties of its first few bytes have been seriously 

questioned, the key generation phase is still considered secure, 

especially due to the provision of enough keystream bytes for 

128-bit security. In this work, based on the Sponge design, a 

stream data encryption algorithm has been developed that is 

sufficiently resistant to the most well-known cryptanalysis 
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attacks. Due to the shortcomings mentioned above, the 

developer updated the algorithm called Spritz [5], which still 

uses a similar structure to RC4, but the state update function 

is more complex in order to achieve better randomness. 

3. Materials and Methods  
Most stream encoding algorithms are based on a Linear 

Feedback Shift Register (LFSR). This allows high-speed 

encryption to work in the IP format. However, LFSRs make it 

difficult to implement codes in software. Since RC4 is based 

on byte operations instead of the LFSRs in Spritz encoding 

algorithms, it is easy to implement in software. In RC4, a 

simple program executes 8 to 16 machine instructions for each 

byte of text, so encryption software must be very fast. The 

basic RC4 algorithm is shown below. The next step of the RC4 

algorithm is called the Pseudorandom Generation Algorithm 

(PRGA). This step generates pseudorandom values, which are 

then XORed with the plaintext for the encryption process or 

the ciphertext for the decryption process). The first step is to 

initialize the values i and j to zero. For k = 0,  k = message 

length –1, the new values i and j are calculated as follows: i = 

(i + 1) mod 256 j = (j + S[i]) mod 256The value of S[i] and 

S[j] are swapped. Then t = (S[i] + S[j]) is the value of S with 

index mod256. The value s[t] is finally XORed with the 

plaintext or ciphertext with index k. Here is an arrowhead 

view of the kernel, where each step defines the step-by-step 

process of the algorithm: 

1. i=i+1  

2. j=j+S[i] 

3. SWAP ( S [ i ],S [j])  

4. z=S[S[i]+S[j]] 

5. return z 

RC4 has several well-documented vulnerabilities. The 

initial bytes of its keys are inconsistent, and it is vulnerable to 

the Fleurer-Mantin-Shamir (FMS) attack making it vulnerable 

to attack. Over time, many RC4-based protocols (such as WEP 

and TLS) were abandoned due to these vulnerabilities [1]. 

3.1. Application of the Spritz Algorithm 

The Spritz algorithm, developed by Schneier and 

Whiting, is improved in RC4 by using a more complex 

conditional array processing process to overcome its 

shortcomings. Spritz is lightweight, secure, and optimized for 

use in constrained environments such as smart cards and IoT 

devices. It generates a pseudorandom sequence by 

continuously permuting a 256-element byte array, similar to 

RC4 but with random bases. The famous Spritz RC4 weakness 

removal does achieve For Job development He made it more 

complicated task keys planning and keys create processes that 

found in RC4 were error thoughts No does in the meantime 

What she is on the attack relatively more stable Spritz Same 

So does Available in RC4 version is was key from flow 

elementary from incline runs away. A graphical representation 

of the Spritz stream encoding algorithm. 

 

Fig. 1 Block diagram of the SPRITZ algorithm 

This diagram shows the main steps: state initialization, 

key derivation, a mixing step, and key stream generation yield 

do it This). Below is a view of the kernel with an arrow, where 

each step defines the step-by-step process of the algorithm: 

1. i=i+1  

2. j=k+S[j+S[i]] 
3. k=i+k+S[j]  
4. SWAP(S[i],S[j]) 
5. z=S[j+S[i+S[z+k]]]   
6. return z  

However, in FSE 2016, Banik and Isobe found that the 

randomness of the first two bytes of Spritz was still 

insufficient to resist attacks [5]. For this reason, the 

pseudorandom number generator was replaced by array 

elements. 

4. Results and Discussion  
The proposed algorithm follows the structure of 

traditional stream coding but with nonlinear transformations. 

It improves the basic planning process by replacing array 

elements. In this paper, we focus on the description of the 

State Initialization (256-element Array) 

Absorb Phase (key Absorption) 

Swap State[i] with State[j] 

Update Indices (i, j) 

Shuffle Phase (Enhanced Security) 

Multiple Swaps 

Update Indices (i. j) 

Drip Phase (Keystream Generation) 

Swap State[i] with State[j] 

Detailed Spritz Stream Cipher Algorithm (Flow 

Diagram) 
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algorithm oriented to the creation stage. The key generation 

mechanism in the proposed Measuring Array Element 

Generator (MEAG) algorithm is based on array element 

permutation. This process involves repeated permutation of 

the state array based on the key and two auxiliary variables, as 

well as the variables i, j, r, rr, which complicates the main 

planning process. The key generation process in this algorithm 

is similar to RC4 but with the added complexity of auxiliary 

variables based on the constant change of array elements. Key 

generation is performed in two stages: the basic scheduling 

algorithm (KSA) and the Pseudorandom Generation 

Algorithm (PRGA). This coding algorithm is based mainly on 

stream coding algorithms and is used to generate a stream of 

random bits by continuously permuting the elements of an 

array. The sequence of steps of the algorithm is presented 

below. 

4.1. Initialization of S-Array 

The first part of the algorithm is based on the initialization 

of the array (array S). The size of this array is initially 256: 𝑆 

[ ] = 𝑖 for 0 ≤ 𝑖 < 256, i.e. initially, each index has its own 

value. The array of keys is initialized using the key bytes 𝐾 []. 

Key Scheduling Algorithm (KSA)The key scheduling 

algorithm "rotates" the array. Here, the position of the array 

elements is changed using a switch. At each stage: 

r  =S[(r+S[i]+K[imodc]+S[rr])mod256]; 
rr=S[(r+i+j) mod256]⊕rr;  S[i], S[i]=S[r], S[r] therein: 

r -  an auxiliary variable that updates the index;  

K[i]=key[i mod key length]  - each key element; 

rr - a parameter that further improves the randomization 

process. 

At every step Sr=Si, values to be replaced: 

This process is repeated 256 times, completely shuffling 

the array. At each step of the replacement, the elements of the 

array are randomly changed, creating a random stream of 

bytes. 

4.2. Generating A Pseudo-random Byte Stream (PRGA) 

During encryption, a stream of random bytes is generated 

from the array. At this stage, a sequence of encoded bytes is 

generated for each message. Mathematical representation of 

the algorithm steps: A PRGA algorithm step consists of 

generating a sequence of bytes during the encryption process. 

The basic mathematical process here is 

as:  B=S[(b+S[(i+j)mod255])mod255]  

Where: i- is the index that updates the position in the 

array; 

j - random byte control index; 

b is the byte value calculated in the previous steps. 

After this, a new value is generated at each step: 

v[i1]=S[(S[S[b]]+1)mod 256]. 

 
Fig. 2 Generator replacing array keys 

S[S[b]] represents the internal value of the array, i.e. this 

value depends on another value inside it. Internal indices are 

used to increase randomness. When creating an encrypted 

message, each byte is randomly replaced with a key stream 

using the XOR operation: j=v[i1] ⊕ j; after this, the array 

values are replaced as follows: 

S[i], S[b] = S[b], S[i] 

During this process, each byte is randomized, and the 

array is updated at each step. Thus, the array elements are 

swapped at each iteration, resulting in a new random value 

being generated at each step. In this study, we will use the 

sample values shown in the binary_viewer file as part of the 

sample. Before encryption, the plain cipher value is: Then the 

algorithm key calculation is performed for the value j. The key 

used to calculate j must be converted to ASCII code. Plain 

ASCII for "market": 'B=66', 'o=79', 'z=90', '0=79', 'r=82', 

'o=79', 'v=86'. ASCII value for the key "soldier": 'A'=65', 

's=83', 'd=81', 'a=65', 'r=82'. Key steps of the Key Scheduling 

Algorithm (KSA). The main scheduling step begins with 

initializing the initial state as an array of 256 elements. The 

initial state array looks like this: 

First, we initialize array S with 256 elements. Each index 

has its own value, i.e., S[i]=i for 0≤i<256. 

Then the first value of σ with initial value r = 0 and rr = 

0, j=0 is calculated as follows: 

r=S[(r+S[i]+K[key_length]+S[rr])mod256] 

r=(0+0+66)mod256=66 

rr=(S[(r+i+j))mod 256] ⊕ rr; rr=[(66+1+1)mod 256] ⊕0=68 

Replace the value of S[0] with S(68). This step is repeated 

until the value of i reaches 255, i.e. the process is repeated 256 

times until the array S is completely shuffled. The results of 

the basic planning level can be seen in Table 2, where the 

value of i is located on the blue line. 
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Table 1. Array table S 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 

Table 2. Results of the Key Scheduling Algorithm (KSA) 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

34 192 22 217 38 93 17 57 162 29 104 230 99 253 98 161 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

36 31 25 215 48 123 133 42 74 87 97 112 7 160 167 89 

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

54 108 182 100 116 125 51 146 224 124 122 147 0 174 80 240 

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

132 231 151 61 197 120 255 152 90 169 183 131 28 24 232 117 

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

19 148 1 46 58 105 27 92 96 168 35 47 45 109 158 159 

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

235 196 154 140 181 68 39 30 60 191 177 198 143 103 70 37 

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 

72 228 227 23 214 190 149 5 216 71 63 76 248 178 163 56 

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

26 83 212 59 32 186 145 170 75 220 14 86 249 106 139 157 

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 

200 82 165 107 129 4 43 180 156 150 155 238 194 171 6 130 

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 

102 65 179 110 184 113 172 94 202 62 135 16 164 50 173 219 

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 

188 52 250 141 66 78 193 199 142 121 204 229 206 136 222 252 

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 

33 137 41 64 15 251 85 21 205 205 101 237 201 67 55 208 

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 

84 95 81 243 254 226 241 91 77 10 127 246 18 9 225 187 

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 

166 44 185 40 13 118 223 247 2 115 213 114 207 134 175 11 

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 

210 8 138 245 20 3 211 195 244 218 49 126 239 128 242 144 

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 

221 12 209 153 233 53 119 69 203 176 88 73 236 111 189 234 
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This process randomly changes the elements of array S at 

each iteration and prepares it for encryption. Pseudorandom 

Generation Algorithm (PRGA) Encryption Step After the key 

planning step is performed, the "challenge" message 

encryption process is performed using each encryption 

process. Initialize i = 0, j = 0, r = 0, rr = 0, and w is a random 

number, GCD, or a relatively prime number of length S, i.e. 

256.  

Then, carry out the procedure as follows: The symbol "B" 

is initialized with the values i = 0, j = 0, k = 0, and z = 0, and 

each row is modulated with the value 256. Using PRGA, we 

generate random bytes for encryption. At each stage, the 

following processes are performed: 

• For each iteration: b=S[(b+S[(i+j)mod 256])mod 256] 

• Generate the following random value: 

v[i1]=S[(S[S[b]]+1)mod 256] 

• XOR operation: j=v[i1] ⊕ j 

• Swap elements in array S: S[i],S[b]=S[b] 

• Let's encode using the XOR operation 

For example, Encrypted byte = Clear byte ⊕ K. 

Plain text: ASCII values for 'Market' are [66, 79, 90, 79, 

82, 79, 86]. After processing at each stage above, random 

bytes (PRGA result) [120, 45, 63, 190, 152, 101, 202] are 

generated, and each text byte is XORed with random bytes 

generated by PRGA:  

66 ⊕ 120 = 58,  79 ⊕ 45=9879,  90 ⊕ 63=10190,  79 ⊕ 

190=241,  82 ⊕ 152=202,  79 ⊕ 101=42,  86 ⊕ 202=148.  

The resulting encrypted byte sequence looks like this. The text 

code will be (58 , 98 , 101 , 241 , 202 , 42 , 148).  In this 

method, each text byte is XORed with random bytes generated 

by PRGA to produce an encrypted result. Although the 

proposed algorithm is similar to RC4 and Spritz algorithms, 

the security and efficiency have been improved to serve as an 

effective encryption solution. 

4.3. Comparison with RC4 and Spritz 

Has structural similarities with RC4 and Spritz, as all 

three algorithms rely on permutation array elements to 

generate a pseudorandom keystream. However, the proposed 

algorithm offers several key improvements: 

• Improved Security: Unlike RC4, which is vulnerable to 

key recovery attacks due to inaccuracies in the 

keystream, the proposed algorithm overcomes these 

inaccuracies by introducing non-linear state updates. 

• Simplified Implementation: The algorithm is simpler 

than Spritz, while the level of security and randomness 

is similar. 

• No Initialization Vector (IV): The proposed algorithm 

does not require IV, simplifying the encryption process 

while maintaining security. 

Based on the above comparative structures, we will 

analyze them based on tables and graphs. When the 

pseudorandom sequence generated by the algorithm is tested 

with random conditions of 220  keys, we get the following 

results.  

We conduct statistical tests through National Institute of 

Standards and Technology (NIST). Based on an Excel 

spreadsheet, the proposed MEAG algorithm was compared 

with RC4 and Spritz algorithms with similar parameters. The 

comparison results can be seen in Figure 4. 

 
Fig. 3 Entopic test 
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 Fig. 4 Work development gave away algorithm volume building bar comparison 

Table 3. Extract brought was algorithms functions analysis 

Characteristics RC4 Spritz MEAG 

Key planning Simple, biased inclined Complex, powerful mix 
Compared to RC4 harder than Spritz 

easier 

Key flow create Simple, 1 index updates 
More difficult, one How many 

indices? updates 

Compared to RC4, more complex, based 

on XOR, is a mixture 

Efficiency High efficiency More difficult, one effective Almost as effective as RC4. 

Safety 
Against attacks Vulnerable 

(e.g. FMS) 
Famous resistance to attacks 

Improved over RC4, resistant to known 

attacks 

From memory Low (256 bytes) use Low (256 bytes) set Low (256 byte state array 

 

5. Conclusion  
The key generator algorithm presented in this paper 

provides a secure and efficient solution for stream ciphers 

based on the permutation of constant array elements. The 

algorithm in RC4 is improved by eliminating key scheduling 

errors and eliminating initial biases of the key stream. Using 

formal theorems and mathematical proofs, and we show that 

the algorithm exhibits desirable cryptographic properties such 

as nonlinearity, avalanche effect, and resistance to key 

recovery and differential cryptanalysis. Tests show that for the 

RC4 algorithm 241 , N! For the 264 algorithms, the Spritz 281 

algorithm requires samples to distinguish them from random 

ones. An algorithm for statistical attacks, basic reconstruction 

attacks, and Fleurer-Manten-Shamir (FMS) attacks has been 

developed. It resists some common types of cryptographic 

attacks, such as keystroke attacks. It offers a number of 

improvements over the RC4 algorithm. Thus, RC4 improves 

security by making key scheduling and keystream generation 

more difficult. Using multiple indices (r, rr, i, ) and XOR-

based hashing makes it difficult for an attacker j to predict the 

keystream. Structured The algorithm can handle big data 

efficiently in terms of performance and memory usage while 

maintaining security features verified by NIST tests. 
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