
International Journal of Engineering Trends and Technology Volume 73 Issue 2, 224-229, February 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I2P119 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Key Generation Algorithm based on Array Element

Substitution

Juraev G.U1, Bozorov Asqar2, Sindorov Davlatbek3, Salimov Sirojiddin4

1National Universitet of Uzbekistan, Tashkent, Uzbekistan.
2,3Tashkent State University of Economics, Tashkent, Uzbekistan.

4Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan.

2Corresponding Author : asqarbozorov1990@gmail.com

Received: 13 November 2024 Revised: 16 January 2025 Accepted: 04 February 2025 Published: 21 February 2025

Abstract - In this article, using a 128-bit key, 264 A stream coding algorithm has been developed that is easy to implement in

software, allowing random bit sequences to be generated up to the bit length, i.e. the key stream. This algorithm is similar to and

simpler than the RC4 algorithm, which retains its security, speed, and flexibility features without using an initialization vector.

The pseudorandom sequences generated by this algorithm meet National Institute of Standards and Technology (NIST)

requirements for randomness.

Keywords - Stream cipher, RC4, Spritz, Array, NIST, Randomness, KSA, PRNG, Key generation.

1. Introduction
A pseudorandom number generator based on the

permutation of array elements is widely used in constructing

continuous encryption algorithms. For example, popular

continuous coding methods RC4 and Spritz are based on

permutation of array elements [1]. RC4 algorithm is a basic

variable-length key stream generator specifically developed

by R. Rivest [2]. Pseudorandom number generators using

algorithms such as RC 4 generally run significantly faster than

block code-based generators.

The RC4 algorithm is widely used in various information

security systems and computer networks (for example, in the

protocol). SSL for password encryption Windows NT, etc.).

Spritz is a lightweight stream cipher developed by Bruce

Schneier and Daniel Whiting. It is known for its simplicity,

speed, and security. Spritz is particularly suitable for resource-

constrained devices such as microcontrollers and smart cards.

Spritz is essentially an improved version of the RC4

algorithm, considering modern cryptographic tools and

algorithms. It also uses a 256-element byte array. Spritz uses

an archaic alphabet and the concept of a spinning wheel to

generate pseudorandom sequences that are used to encrypt

data. The algorithm has a small internal state, which allows it

to be implemented efficiently on devices with limited

memory.

2. Literature Review
RC4 is a byte stream cipher that uses a permutation mode

to generate permutations using a table of numbers from 0 to

255 and two-byte index pointers [4]. RC4 keys typically range

in length from 40 to 128 bits, and modern stream encryption

does not require a separate key. The table is initialized with a

key combination. Then, in the keystream generation stage, the

table is modified and outputs one key byte at each iteration.

Its speed and simplicity allow for efficient software

implementation and easy hardware development. In 2001,

Fluhrer, Mantin, and Shamir published a paper on a

vulnerability in the RC4 key table [2]. They showed that the

first few bytes of the keystream are not random among all

possible keys. From these bytes, information about the

encryption key used can be inferred with high probability.

If the long-term and short-term keys are simply

concatenated to create an RC4 encryption key, then this long-

term key can be obtained by analyzing a large number of

messages encrypted with that key. This vulnerability and some

of its associated effects were used to break WEP encryption in

IEEE 802.11 wireless networks. This marked the need for a

quick replacement of WEP, which led to the development of

a new wireless security standard, WPA, and many of its flaws

were mysteriously fixed. The RC4 algorithm worked in a wide

range of applications until it was deprecated for all versions of

TLS in 2015. Although the initialization phase of RC4 and the

statistical properties of its first few bytes have been seriously

questioned, the key generation phase is still considered secure,

especially due to the provision of enough keystream bytes for

128-bit security. In this work, based on the Sponge design, a

stream data encryption algorithm has been developed that is

sufficiently resistant to the most well-known cryptanalysis

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:asqarbozorov1990@gmail.com

Bozorov Asqar et al. / IJETT, 73(2), 224-229, 2025

225

attacks. Due to the shortcomings mentioned above, the

developer updated the algorithm called Spritz [5], which still

uses a similar structure to RC4, but the state update function

is more complex in order to achieve better randomness.

3. Materials and Methods
Most stream encoding algorithms are based on a Linear

Feedback Shift Register (LFSR). This allows high-speed

encryption to work in the IP format. However, LFSRs make it

difficult to implement codes in software. Since RC4 is based

on byte operations instead of the LFSRs in Spritz encoding

algorithms, it is easy to implement in software. In RC4, a

simple program executes 8 to 16 machine instructions for each

byte of text, so encryption software must be very fast. The

basic RC4 algorithm is shown below. The next step of the RC4

algorithm is called the Pseudorandom Generation Algorithm

(PRGA). This step generates pseudorandom values, which are

then XORed with the plaintext for the encryption process or

the ciphertext for the decryption process). The first step is to

initialize the values i and j to zero. For k = 0, k = message

length –1, the new values i and j are calculated as follows: i =

(i + 1) mod 256 j = (j + S[i]) mod 256The value of S[i] and

S[j] are swapped. Then t = (S[i] + S[j]) is the value of S with

index mod256. The value s[t] is finally XORed with the

plaintext or ciphertext with index k. Here is an arrowhead

view of the kernel, where each step defines the step-by-step

process of the algorithm:

1. i=i+1

2. j=j+S[i]

3. SWAP (S [i],S [j])

4. z=S[S[i]+S[j]]

5. return z

RC4 has several well-documented vulnerabilities. The

initial bytes of its keys are inconsistent, and it is vulnerable to

the Fleurer-Mantin-Shamir (FMS) attack making it vulnerable

to attack. Over time, many RC4-based protocols (such as WEP

and TLS) were abandoned due to these vulnerabilities [1].

3.1. Application of the Spritz Algorithm

The Spritz algorithm, developed by Schneier and

Whiting, is improved in RC4 by using a more complex

conditional array processing process to overcome its

shortcomings. Spritz is lightweight, secure, and optimized for

use in constrained environments such as smart cards and IoT

devices. It generates a pseudorandom sequence by

continuously permuting a 256-element byte array, similar to

RC4 but with random bases. The famous Spritz RC4 weakness

removal does achieve For Job development He made it more

complicated task keys planning and keys create processes that

found in RC4 were error thoughts No does in the meantime

What she is on the attack relatively more stable Spritz Same

So does Available in RC4 version is was key from flow

elementary from incline runs away. A graphical representation

of the Spritz stream encoding algorithm.

Fig. 1 Block diagram of the SPRITZ algorithm

This diagram shows the main steps: state initialization,

key derivation, a mixing step, and key stream generation yield

do it This). Below is a view of the kernel with an arrow, where

each step defines the step-by-step process of the algorithm:

1. i=i+1

2. j=k+S[j+S[i]]
3. k=i+k+S[j]
4. SWAP(S[i],S[j])
5. z=S[j+S[i+S[z+k]]]
6. return z

However, in FSE 2016, Banik and Isobe found that the

randomness of the first two bytes of Spritz was still

insufficient to resist attacks [5]. For this reason, the

pseudorandom number generator was replaced by array

elements.

4. Results and Discussion
The proposed algorithm follows the structure of

traditional stream coding but with nonlinear transformations.

It improves the basic planning process by replacing array

elements. In this paper, we focus on the description of the

State Initialization (256-element Array)

Absorb Phase (key Absorption)

Swap State[i] with State[j]

Update Indices (i, j)

Shuffle Phase (Enhanced Security)

Multiple Swaps

Update Indices (i. j)

Drip Phase (Keystream Generation)

Swap State[i] with State[j]

Detailed Spritz Stream Cipher Algorithm (Flow

Diagram)

Bozorov Asqar et al. / IJETT, 73(2), 224-229, 2025

226

algorithm oriented to the creation stage. The key generation

mechanism in the proposed Measuring Array Element

Generator (MEAG) algorithm is based on array element

permutation. This process involves repeated permutation of

the state array based on the key and two auxiliary variables, as

well as the variables i, j, r, rr, which complicates the main

planning process. The key generation process in this algorithm

is similar to RC4 but with the added complexity of auxiliary

variables based on the constant change of array elements. Key

generation is performed in two stages: the basic scheduling

algorithm (KSA) and the Pseudorandom Generation

Algorithm (PRGA). This coding algorithm is based mainly on

stream coding algorithms and is used to generate a stream of

random bits by continuously permuting the elements of an

array. The sequence of steps of the algorithm is presented

below.

4.1. Initialization of S-Array

The first part of the algorithm is based on the initialization

of the array (array S). The size of this array is initially 256: 𝑆

[] = 𝑖 for 0 ≤ 𝑖 < 256, i.e. initially, each index has its own

value. The array of keys is initialized using the key bytes 𝐾 [].

Key Scheduling Algorithm (KSA)The key scheduling

algorithm "rotates" the array. Here, the position of the array

elements is changed using a switch. At each stage:

r =S[(r+S[i]+K[imodc]+S[rr])mod256];
rr=S[(r+i+j) mod256]⊕rr; S[i], S[i]=S[r], S[r] therein:

r - an auxiliary variable that updates the index;

K[i]=key[i mod key length] - each key element;

rr - a parameter that further improves the randomization

process.

At every step Sr=Si, values to be replaced:

This process is repeated 256 times, completely shuffling

the array. At each step of the replacement, the elements of the

array are randomly changed, creating a random stream of

bytes.

4.2. Generating A Pseudo-random Byte Stream (PRGA)

During encryption, a stream of random bytes is generated

from the array. At this stage, a sequence of encoded bytes is

generated for each message. Mathematical representation of

the algorithm steps: A PRGA algorithm step consists of

generating a sequence of bytes during the encryption process.

The basic mathematical process here is

as: B=S[(b+S[(i+j)mod255])mod255]

Where: i- is the index that updates the position in the

array;

j - random byte control index;

b is the byte value calculated in the previous steps.

After this, a new value is generated at each step:

v[i1]=S[(S[S[b]]+1)mod 256].

Fig. 2 Generator replacing array keys

S[S[b]] represents the internal value of the array, i.e. this

value depends on another value inside it. Internal indices are

used to increase randomness. When creating an encrypted

message, each byte is randomly replaced with a key stream

using the XOR operation: j=v[i1] ⊕ j; after this, the array

values are replaced as follows:

S[i], S[b] = S[b], S[i]

During this process, each byte is randomized, and the

array is updated at each step. Thus, the array elements are

swapped at each iteration, resulting in a new random value

being generated at each step. In this study, we will use the

sample values shown in the binary_viewer file as part of the

sample. Before encryption, the plain cipher value is: Then the

algorithm key calculation is performed for the value j. The key

used to calculate j must be converted to ASCII code. Plain

ASCII for "market": 'B=66', 'o=79', 'z=90', '0=79', 'r=82',

'o=79', 'v=86'. ASCII value for the key "soldier": 'A'=65',

's=83', 'd=81', 'a=65', 'r=82'. Key steps of the Key Scheduling

Algorithm (KSA). The main scheduling step begins with

initializing the initial state as an array of 256 elements. The

initial state array looks like this:

First, we initialize array S with 256 elements. Each index

has its own value, i.e., S[i]=i for 0≤i<256.

Then the first value of σ with initial value r = 0 and rr =

0, j=0 is calculated as follows:

r=S[(r+S[i]+K[key_length]+S[rr])mod256]

r=(0+0+66)mod256=66

rr=(S[(r+i+j))mod 256] ⊕ rr; rr=[(66+1+1)mod 256] ⊕0=68

Replace the value of S[0] with S(68). This step is repeated

until the value of i reaches 255, i.e. the process is repeated 256

times until the array S is completely shuffled. The results of

the basic planning level can be seen in Table 2, where the

value of i is located on the blue line.

Bozorov Asqar et al. / IJETT, 73(2), 224-229, 2025

227

Table 1. Array table S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Table 2. Results of the Key Scheduling Algorithm (KSA)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

34 192 22 217 38 93 17 57 162 29 104 230 99 253 98 161

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

36 31 25 215 48 123 133 42 74 87 97 112 7 160 167 89

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

54 108 182 100 116 125 51 146 224 124 122 147 0 174 80 240

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

132 231 151 61 197 120 255 152 90 169 183 131 28 24 232 117

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

19 148 1 46 58 105 27 92 96 168 35 47 45 109 158 159

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

235 196 154 140 181 68 39 30 60 191 177 198 143 103 70 37

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

72 228 227 23 214 190 149 5 216 71 63 76 248 178 163 56

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

26 83 212 59 32 186 145 170 75 220 14 86 249 106 139 157

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

200 82 165 107 129 4 43 180 156 150 155 238 194 171 6 130

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

102 65 179 110 184 113 172 94 202 62 135 16 164 50 173 219

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

188 52 250 141 66 78 193 199 142 121 204 229 206 136 222 252

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

33 137 41 64 15 251 85 21 205 205 101 237 201 67 55 208

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

84 95 81 243 254 226 241 91 77 10 127 246 18 9 225 187

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

166 44 185 40 13 118 223 247 2 115 213 114 207 134 175 11

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

210 8 138 245 20 3 211 195 244 218 49 126 239 128 242 144

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

221 12 209 153 233 53 119 69 203 176 88 73 236 111 189 234

Bozorov Asqar et al. / IJETT, 73(2), 224-229, 2025

228

This process randomly changes the elements of array S at

each iteration and prepares it for encryption. Pseudorandom

Generation Algorithm (PRGA) Encryption Step After the key

planning step is performed, the "challenge" message

encryption process is performed using each encryption

process. Initialize i = 0, j = 0, r = 0, rr = 0, and w is a random

number, GCD, or a relatively prime number of length S, i.e.

256.

Then, carry out the procedure as follows: The symbol "B"

is initialized with the values i = 0, j = 0, k = 0, and z = 0, and

each row is modulated with the value 256. Using PRGA, we

generate random bytes for encryption. At each stage, the

following processes are performed:

• For each iteration: b=S[(b+S[(i+j)mod 256])mod 256]

• Generate the following random value:

v[i1]=S[(S[S[b]]+1)mod 256]

• XOR operation: j=v[i1] ⊕ j

• Swap elements in array S: S[i],S[b]=S[b]

• Let's encode using the XOR operation

For example, Encrypted byte = Clear byte ⊕ K.

Plain text: ASCII values for 'Market' are [66, 79, 90, 79,

82, 79, 86]. After processing at each stage above, random

bytes (PRGA result) [120, 45, 63, 190, 152, 101, 202] are

generated, and each text byte is XORed with random bytes

generated by PRGA:

66 ⊕ 120 = 58, 79 ⊕ 45=9879, 90 ⊕ 63=10190, 79 ⊕

190=241, 82 ⊕ 152=202, 79 ⊕ 101=42, 86 ⊕ 202=148.

The resulting encrypted byte sequence looks like this. The text

code will be (58 , 98 , 101 , 241 , 202 , 42 , 148). In this

method, each text byte is XORed with random bytes generated

by PRGA to produce an encrypted result. Although the

proposed algorithm is similar to RC4 and Spritz algorithms,

the security and efficiency have been improved to serve as an

effective encryption solution.

4.3. Comparison with RC4 and Spritz

Has structural similarities with RC4 and Spritz, as all

three algorithms rely on permutation array elements to

generate a pseudorandom keystream. However, the proposed

algorithm offers several key improvements:

• Improved Security: Unlike RC4, which is vulnerable to

key recovery attacks due to inaccuracies in the

keystream, the proposed algorithm overcomes these

inaccuracies by introducing non-linear state updates.

• Simplified Implementation: The algorithm is simpler

than Spritz, while the level of security and randomness

is similar.

• No Initialization Vector (IV): The proposed algorithm

does not require IV, simplifying the encryption process

while maintaining security.

Based on the above comparative structures, we will

analyze them based on tables and graphs. When the

pseudorandom sequence generated by the algorithm is tested

with random conditions of 220 keys, we get the following

results.

We conduct statistical tests through National Institute of

Standards and Technology (NIST). Based on an Excel

spreadsheet, the proposed MEAG algorithm was compared

with RC4 and Spritz algorithms with similar parameters. The

comparison results can be seen in Figure 4.

Fig. 3 Entopic test

Bozorov Asqar et al. / IJETT, 73(2), 224-229, 2025

229

 Fig. 4 Work development gave away algorithm volume building bar comparison

Table 3. Extract brought was algorithms functions analysis

Characteristics RC4 Spritz MEAG

Key planning Simple, biased inclined Complex, powerful mix
Compared to RC4 harder than Spritz

easier

Key flow create Simple, 1 index updates
More difficult, one How many

indices? updates

Compared to RC4, more complex, based

on XOR, is a mixture

Efficiency High efficiency More difficult, one effective Almost as effective as RC4.

Safety
Against attacks Vulnerable

(e.g. FMS)
Famous resistance to attacks

Improved over RC4, resistant to known

attacks

From memory Low (256 bytes) use Low (256 bytes) set Low (256 byte state array

5. Conclusion
The key generator algorithm presented in this paper

provides a secure and efficient solution for stream ciphers

based on the permutation of constant array elements. The

algorithm in RC4 is improved by eliminating key scheduling

errors and eliminating initial biases of the key stream. Using

formal theorems and mathematical proofs, and we show that

the algorithm exhibits desirable cryptographic properties such

as nonlinearity, avalanche effect, and resistance to key

recovery and differential cryptanalysis. Tests show that for the

RC4 algorithm 241 , N! For the 264 algorithms, the Spritz 281

algorithm requires samples to distinguish them from random

ones. An algorithm for statistical attacks, basic reconstruction

attacks, and Fleurer-Manten-Shamir (FMS) attacks has been

developed. It resists some common types of cryptographic

attacks, such as keystroke attacks. It offers a number of

improvements over the RC4 algorithm. Thus, RC4 improves

security by making key scheduling and keystream generation

more difficult. Using multiple indices (r, rr, i,) and XOR-

based hashing makes it difficult for an attacker j to predict the

keystream. Structured The algorithm can handle big data

efficiently in terms of performance and memory usage while

maintaining security features verified by NIST tests.

References
[1] Deni Anggara, “Design of Encryption Application on Sound Files Using Spritz Algorithm,” Journal of Information System Research

(JOSH), vol. 1, no. 3, pp. 103-108, 2020. [Google Scholar] [Publisher Link]

[2] Ronald L. Rivest, and Jacob C. N. Schuldt, Spritz---A Spongy RC4-Like Stream Cipher and Hash Function, Paper 2016/856: Cryptology

ePrint Archive, pp. 1-32, 2016. [Google Scholar] [Publisher Link]

[3] Pouyan Seperdad et al., “A Tornado Attack on RC4 with Applications to WEP and WPA,” Paper 2015/254: Cryptology ePrint Archive, pp.

1-65, 2015. [Google Scholar] [Publisher Link]

[4] P. Prasithsangaree, and P Krishnamurthy, “Analysis of Energy Consumption of RC4 and AES Algorithms in Wireless LANs,”

GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489), San Francisco, CA, USA, vol. 3, pp. 1445-

1449, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[5] Lin Jiao, Yonglin Hao, and Dengguo, “Stream Cipher Designs: A Review,” Science China Information Sciences, vol. 63, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

Comparing MEAG with RC4 and Spritz algorithms

RC4 Spritz MEAG

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Perancangan+Aplikasi+Enkripsi+Pada+File+Suara+Menggunakan+Algoritma+Spritz&btnG=
https://ejurnal.seminar-id.com/index.php/josh/article/view/122
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spritz---a+spongy+RC4-like+stream+cipher+and+hash+function.&btnG=
https://eprint.iacr.org/2016/856
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Tornado+Attack+on+RC4+with+Applications+to+WEP+and+WPA&btnG=
https://eprint.iacr.org/2015/254
https://doi.org/10.1109/GLOCOM.2003.1258477
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Analysis+of+energy+consumption+of+RC4+and+AES+algorithms+in+wireless+LANs&btnG=
https://ieeexplore.ieee.org/abstract/document/1258477
https://doi.org/10.1007/s11432-018-9929-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stream+cipher+designs%3A+a+review&btnG=
https://link.springer.com/article/10.1007/s11432-018-9929-x

