
International Journal of Engineering Trends and Technology Volume 73 Issue 2, 9-21, February 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I2P102 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Origin Aware Dynamic Load Balancing Algorithm for

Performance Enhancement of NUMA Multiprocessor

Systems

D. A. Mehta1, Priyesh Kanungo2

1Shri G. S. Institute of Technology & Sc., Indore, India.
2School of Computer Science, Devi Ahilya Vishwavidyalaya, Indore, India.

1Corresponding Author : mehta_da@hotmail.com

Received: 02 August 2024 Revised: 11 December 2024 Accepted: 17 December 2024 Published: 21 February 2025

Abstract - The process selection policy of the linux load balancer pays no attention to the origin of the processes while selecting

them for migration in NUMA Multiprocessor Systems. Consequently, the migrated processes may experience large memory

latencies, and the load balancer may degrade the system performance, particularly when the number of memory access levels is

large. This paper proposes a novel load balancing algorithm for NUMA Multiprocessors that attempts to keep the processes on

or near their originating nodes and thereby reduces the memory access overheads to zero or minimum, resulting in significant

performance gain (ranging from 7 to 23% for various NUMA systems) over the existing load balancer.

Keywords - Dynamic load balancing, Load balancer, NUMA, Scheduling domain, Process migration, Memory Access Level,

Memory access overhead.

1. Introduction
Non Uniform Memory Access (NUMA) architecture is

commonly used for designing modern multiprocessor and

multicore systems. A NUMA Multiprocessor/ Multicore

system is designed in terms of Nodes. Each node contains a

set of processors and a portion of the main memory placed on

a common bus. A high-speed interconnection network

connects the nodes with one another. Memory in a specific

node is at a distance (referred to as latency) from the

processors of other nodes, causing non-uniform access times

of on-Node and off-Node memories [1, 13]. Figure 1

represents a NUMA multiprocessor system with two Memory

Access Levels (MALs). It is said to have two MALs because

of two different memory latencies: When an access of memory

is made by a processor in its own node and when an access is

made in a different node [3].

1.1. Dynamic Load Balancing

Linux incorporates a Dynamic Load Balancer in its

scheduler to keep the load of the processors balanced in

NUMA Multiprocessors. This load balancer uses a data

structure called ‘sched domain’ to organize the processors in

a hierarchy that imitates the physical hardware. It consists of

a group of processors sharing the properties and scheduling

policies [16]. Figure 2 shows the scheduling domain hierarchy

for the NUMA system depicted in Figure 1. The lowest level

scheduling domains are named CPU/Core domains, each of

which comprises all the processors of a specific node and

points to a higher domain, the node domain, comprising of

this node and all the nodes that are located at some distance

from it [3]. The scheduling domain hierarchy defines the

scope/extent of load balancing for each processor. The Load

balancer performs the load balancing when triggered in the

following conditions [11, 15]:

• Periodically at regular time intervals: The complete

scheduling domain hierarchy is periodically traversed,

beginning at the scheduling domain of the current

processor, and a balancing operation is initiated. At each

level, the most loaded processor of the most loaded

scheduling group is looked for, and migration of tasks

takes place from that processor to the current processor if

the busiest processor’s load is greater than the current

processor’s load according to the load threshold, which is

normally 25%.

• When a new task is created or a task wakes- up: This task

is allocated the least loaded processor of the least loaded

scheduling group (node) in its current domain.

• Whenever a processor goes idle, idle load balancing is

carried out by the idle processor, and tasks are migrated

from the busiest processor of the busiest scheduling group

in its current domain to this processor.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

10

Fig. 1 NUMA multiprocessor system having two memory access levels (P1, P2… are CPUs)

Fig. 2 Scheduling domain hierarchy for NUMA multiprocessor system having two memory access levels

Fig. 3 NUMA multiprocessor system with six memory access levels

P1

Cache

P2

Cache

Memory

Node1

P3

Cache

P4

Cache

Memory

Node2

P5

Cache

P6

Cache

Memory

Node3

P7

Cache

P8

Cache

Memory

Node4

High Speed Interconnect

Node Domain

CPU Domain1 CPU Domain2 CPU Domain3 CPU Domain4

 P8 P7 P6 P5 P4 P3 P2 P1

 CPU 7,8 CPU 5,6 CPU 3,4 CPU 1,2

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

11

The preceding description makes it clear that dynamic

load balancing involves a large number of process migrations,

resulting in significant memory access overheads due to the

penalty incurred when data is accessed from a remote memory

instead of local memory. However, the process selection

policy of the load balancer does not keep the origin of the

processes in view while selecting them for migration.

Consequently, the linux load balancer results in large memory

latencies, especially when the number of memory access

levels are higher.

2. Process Migration in Linux: An Analysis
In order to understand the process migration policy of the

linux load balancer and to explore the possibility of its

improvement, the load balancing operation for a NUMA

system with an architecture similar to the system shown in

Figure 3, with 6 Memory Access Levels, 16 Nodes and 2

Processors per Node [3], is explained here.

For this example system, Table 1 shows (partially for a

few Nodes) the relative distance (memory latency) between

the nodes. In the table, the value of a position Pi,j denotes the

distance from node i to node j. The distance from a node to

itself is called SMP distance, and its default value is 1x. All

other distance values are relative to SMP distances.

For instance, the distance from node N0 to node N1 is 2x,

meaning that a processor in N0 accesses a memory area in N1

two times slower as compared to the memory area in N0 [3].

(N0, N1, N2 … N15 are Nodes; P0, P1 … P31 are Processors)

Figure 4 depicts the nodes at various sched domain hierarchy

levels for a particular node N0.

As shown, for node N0, nodes N1, N6, N11 are II-level

nodes; N2, N7, and N12 are III-level nodes, and so on. The

above information is used by a load balancer while selecting

the processes for migration.

Table 1. Memory latencies of different nodes from a particular node

 N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15

N0 1x 2x 3x 4x 5x 6x 2x 3x 4x 5x 6x 2x 3x 4x 5x 6x

N1 2x 1x 2x 3x 4x 5x 6x 2x 3x 4x 5x 6x 2x 3x 4x 5x

N2 3x 2x 1x 6x 2x 3x 4x 5x 6x 2x 3x 4x 5x 6x 2x 3x

N3 4x 3x 6x 1x 4x 5x 6x 2x 3x 4x 5x 6x 2x 3x 4x 5x

VI

N5 N10 N15

P10 P11 P20 P21 P30 P31

V

N4 N9 N14

P8 P9 P18 P19 P28 P29

IV

N3 N8 N13

P6 P7 P16 P17 P26 P27

III

N2 N7 N12

P4 P5 P14 P15 P24 P25

II

N1 N6 N11

P2 P3 P12 P13 P22 P23

I

N0

P0 P1
Fig. 4 Nodes at different sched domain hierarchy levels for node N0

(N0, N1 … are Nodes and P0, P1 …. are Processors in the different Nodes)

P12:

p37(N1) p21(N5) p9(N8) p45(N0) p131(N7) p17(N6) p88(N3) … …

P1: Fig. 5 Depiction of process migration in linux load balancing

(P1, P12 are runqueues of Processors P1 & P12; pi (Nj) is the process having pid=i and parent Node Ni)

p7(N9) p99(N3) p90(N14) p266(N0) … … …

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

12

For a load balancing cycle, the load balancer executing on

a processor (say P1, in Node N0) performs the load balancing

in N0, then finds the busiest processor in the next level Nodes

N1, N6, N11 (suppose it is P12, in N6), and finding the load

imbalance between P1 and P12, pulls the processes p21, p9,

and p88 which originally belong to distant nodes with

reference to current node, even though processes p37, p45 and

p17 belonging to N0 or the nearby nodes, are present. Figure

5 depicts the runqueues of processors P1 and P12 and the

process migration done to balance the load between these two

processors.

In order to analyze the Linux load balancer’s functioning,

load balancing was performed for the NUMA system, for

example, with various workloads consisting of different

numbers of CPU-bound processes having varying execution

times and random arrival. As per the simulation results given

in Table 2, a large % of processes remained away from their

originating Nodes/processors throughout their lifespan. In

general, a large number of processes are migrated away, and

no attempt has been made to send them back to their parent

nodes. This policy of migration results in large overheads

related to memory access and, consequently, in the degraded

or non-optimum performance of the system. In a load-

balancing scenario, the total memory access time of all the

processes can be computed as:

Total Memory Access Time (TMAT) =

n L

∑ ∑ Pi_nmaMAL * TmaMAL

 i=1 MAL=1

Where, n = No. of processes (P1 to Pn)

 L = No. of Memory Access Levels

(MAL=1 to L)

 Pi_nmaMAL = No. of memory accesses done by

process Pi at a particular Memory

Access Level MAL

 TmaMAL = Time required for one memory access

at Memory Access Level MAL

Table 2. No. of processes executed on the nodes distant from their

parent nodes (for example, NUMA system and workload)

Total No.

of

Processes

Processes Executed on the Nodes

Distant from Respective Parent Nodes

No. of such

processes
% of such processes

100 46 46 %

200 96 48 %

300 129 43 %

It is clear from the above expression that to reduce the

TMAT and thus the Av. TAT of the processes and number of

accesses done by any process to remote memories should be

minimized. The foregoing analysis of linux load balancing

reveals the key point for performance enhancement; that is,

attention should be paid to the originating Node of any process

while balancing the load of the processors. The load balancer

proposed in this paper considers this point to reduce memory

access time.

3. Related Work
The key to performance enhancement of load balancing

techniques is to avoid unnecessary process migrations and to

minimize the memory access overheads if all the migrations

are necessary. This section presents the work done by the

researchers in order to minimize the memory and cache access

overheads. Focht et al. [5] discuss measures for performance

improvement, such as localizing the memory references and

input/output, executing the processes on their originating

nodes, etc. Khawatreh in [18] discuss the methods of reducing

the process migrations to make the load balancer efficient.

Kermia et al. [12], Pusukuri et al. [14] and Khawatreh et al.

[17] have also made significant contributions in this direction.

In a multithreaded environment, a load balancer should either

avoid migration of threads among nodes or select the threads

for migration so that memory access overheads are minimal.

A technique to avoid the migration of threads to remote

nodes by limiting their movement within smaller zones is

proposed by authors in [9]. Diener et al. propose in [10] a
Kernel-based mechanism for thread and data mapping for improving

memory affinity. Chiang et al. have also discussed the locality

issue and designed the appropriate policies for selecting the

threads for migration. Proper mapping of threads to cores and

data access to their nodes significantly enhance the system

performance; on the contrary, migration of inappropriate

threads degrades it. Considering this important aspect related

to selecting appropriate threads for migration, the authors

presented two important policies. In the first one, a memory‐

aware kernel mechanism and inter-node thread migration

policies are proposed to reduce remote memory accesses.

Modifications in the load balancing approach of Linux for

inter-node thread migration were made to track the memory

usage of each thread on each node. Based on this information,

the load balancer can select appropriate threads for the

migration [19].

 The second policy, the thread-aware selection policy,

considers the distribution of threads on nodes for every thread

group while migrating a thread for inter-node load balancing.

The migrated threads must be selected effectively since the

related operations run in the critical path of the scheduler. The

experimental results show a performance improvement of

approximately 11 % against the existing linux kernel [20]. The

author in [4] describes the work on optimization of thread

affinity and memory affinity for remote core locking

synchronization in multithreaded programs for multicore

systems. Another approach to minimize memory access

overheads in NUMA systems is to use operating system page

protection mechanisms to induce faults to find which thread

accesses which pages to migrate the thread and its working set

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

13

of pages to the same node. However, many existing

mechanisms do not fully fit the requirements of truly

multithreaded applications with non-partitioned access to

virtual pages. Thus, the fault of one thread may mask those of

other threads on the same page, resulting in inaccuracy in

estimating the working set of individual threads. To address

this problem, a lightweight O/S support for linux, named

‘multi-view address space’, is proposed in [7]. Transferring

the memory pages of the process to the same node to which

the process has been migrated can be an alternative solution to

bring down memory access overheads to zero. However, the

migration of memory pages is a resource-intensive operation

and has an impact on the system’s overall performance.

Therefore, an approach to migrate only the demanded pages,

and not all the pages, is proposed in previous study.

The decision to migrate a process’s memory is, therefore,

not trivial, and many factors need to be taken into account

before making a final decision [6]. In recent work, Chiang et

al. also reached a similar conclusion that memory page

migration, if not done very carefully, may degrade the

performance. In [2], the authors point out that, though the

current linux kernel transfers the referenced memory page of

a process to the node it is presently executing, on the

occurrence of a page fault, this migration incurs additional

memory access overheads because of the costly page fault

handling and page migration operations. In another work,

Barrera et al. suggested a method to reduce the memory page

migrations after a process migration by exploiting

computation dependencies. The objective was to minimize the

NUMA effects on performance in migrating threads, memory

pages, and both [8]. When a process gets migrated from one

node to another, its memory may get scattered on many nodes

due to load-balancing operations. To minimize contention for

remote memory access, Chiang et al. improve the kernel’s

inter-node load balancing by migrating appropriate processes/

threads to remote nodes.

Since the inter-node page migration is a costly affair, they

improved the inter-node load balancing mechanism of Linux

to minimize inter-node memory access. This is made possible

by selecting the processes for migration while keeping their

memory usage in view, such that the selected processes use

the minimal number of page frames and/or share the minimum

amount of memory with other processes [2]. Many other

researchers have also proposed and discussed the techniques

for enhancing the efficiency of the linux load balancing

technique and, consequently, the efficiency of NUMA

systems. However, in light of the intricacies of load-balancing

operations and ongoing advancements of NUMA machines,

effective and efficient load-balancing techniques need to be

developed to minimize the overheads of load-balancing. The

work presented in this paper focuses on performing the

process migration considering the originating nodes of the

processes. It will make a significant contribution towards the

performance improvement of NUMA Multiprocessor systems

by developing cutting-edge load balancers.

4. Origin Aware Load Balancing
The novel load balancing algorithm proposed herein

improves the performance of the existing load balancer by

reducing the memory access overheads. While executing on a

particular processor, the proposed load balancer prefers to pull

the processes belonging to that processor/ node OR pushes the

processes belonging to distant nodes (if present in the

runqueue of the current processor) back to their parent

processor/ node or a neighbour node. This approach reduces

the memory access overheads to zero or minimum and,

therefore, achieves significant performance gain. A load

balancer, therefore, should try to avoid migration of processes

to distant nodes in order to avoid indirect overheads of load

balancing, viz., the remote memory access and cache-miss

overheads (Liu, 2018).

 The Process Selection and Process Placement policy

incorporated in the Origin Aware Load Balancing Algorithm

attempts to ensure the execution of any process on a processor

in its parent node or nearby node for the maximum of its life

span. The Origin Aware Load Balancer is composed of two

components: the Receiver-Initiated Load Balancing (RI-LB)

component and the Sender-Initiated Load Balancing (SI-LB)

component. It performs the receiver-initiated load balancing

and sender-initiated load balancing in alternate cycles of

periodic load balancing. The proposed load balancer makes

use of the following process selection and placement policy.

4.1. Process Selection & Placement Policy

The Receiver-initiated load balancing is performed

similarly to linux load balancing but with a different process

selection policy used. In RI-LB, according to the process

selection policy, out of the processes eligible for migration

from the busiest processor at a particular sched domain level,

the processes that originated on the current processor/node are

first migrated, followed by the other processes. In the Sender-

initiated load balancing cycle, the load balancer attempts to

send the processes back to their parent nodes while performing

the load balancing. The load balancer checks the current

runqueue to find whether it contains the processes originating

on distant processors/nodes.

For each of such processes, if found, the possibility of

sending it back to its parent processor /node is examined. If

the current processor is more loaded than the parent processor,

the selected process is migrated (pushed) to its parent

processor; otherwise, it is migrated to another processor of the

parent node, if possible. The operation is repeated for all

processors of the current node and then for each remaining

node. This policy balances the load as well as makes the

memory access time of the migrated process, a minimum. As

per the above load balancing methodology followed by the

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

14

proposed algorithm, a processor can offload its processes to

their respective parent nodes, thereby reducing the memory

access time of the migrated processes. However, sometimes,

the parent processor or the node, due to being overloaded, is

not able to accept the processes from the other processors. To

address this possibility, two variants of the SI-LB component

of the Origin Aware Algorithm have also been developed, as

described in the following sub-sections.

4.2. Origin Aware Load Balancing (SI-LB): Variant1

When it is not possible to migrate a process to its parent

processor/node, the parent processor or some other processor

of the parent node is checked to find the presence of a process

belonging to the current processor, and if found, the two

processes are exchanged, i.e., the two processes are migrated

to their respective parents.

4.3. Origin Aware Load Balancing (SI-LB): Variant2

If it is impossible to migrate a process of the current

processor to its parent processor or node even after performing

the load balancing through SI-LB variant1, loads of the nearest

neighbour nodes of the parent node are examined to find the

possibility of migration. If possible, the process will be

migrated. Otherwise, this procedure is repeated for the next

level of hierarchy (upto the sched_domain hierarchy, which is

one or two levels below the level to which the current Node

belongs relative to the parent Node of the process). In this

way, the Origin Aware Load Balancing algorithm makes all

possible attempts to minimize memory latencies of the

processes by making them execute on their parent or

neighbour nodes.

4.4. Functioning of the Origin Aware Load Balancer: An

Illustration

To illustrate the functioning of the Sender-initiated load

balancing component of the Origin Aware Load Balancer,we

consider a load balancing scenario shown in Figure 6 and the

load balancer executing on processor P0 belonging to Node

N0. When the sender-initiated load balancing cycle begins, the

load balancer executing on P0 finds few processes in its

runqueue, originating on distant nodes, as shown in Table 3.

As per the policy, the load balancer migrates the farthest

originated processes, p45 and p118, to the respective parent

processors (P10) in Node N5, the farthest node from the

current Node N0. Next, while attempting to migrate p31, it

was found that processor P11 was not underloaded, and P10

was not underloaded.

Thus, the two processes- p31 and p91are exchanged

between P0 and P11 as per variant 1 of the algorithm. Next in

sequence, an attempt is made to migrate p17 to P28 or P29,

but this attempt fails; the exchange of processes between any

of these processors and P0 could not be done, and therefore,

as per variant2 of the algorithm, process p17 is migrated to a

node (processor P24) nearer to its parent. Following this,

process p1 is considered for migration; however, it could not

be migrated, and therefore, it continues to execute on the

current processor only. The remaining two processes, p9 and

p37, are not migrated as p9 belongs to the next level node

only; p37 belongs to the current processor only.

4.5. Origin Aware Load Balancing Algorithm

The Receiver-initiated load balancing component of the

Origin Aware load balancer functions similarly to the linux

load balancer, except that it prefers the processes belonging to

the current processor or node for migration. The other

component of the algorithm- the Sender-initiated load

balancing component is described in this section.

The Origin Aware Load Balancer carries out the initial

load balancing in the same way as done by linux. Regarding

idle load balancing, when the load balancing operation is

triggered by a processor having zero load, processes are

pulled from heavily loaded processors, preferring the

processes that originated on the current processor.

Table 3. Processes originated on other nodes and currently present in

the runqueue of processor P0

Process
Node (and processor) on which the

process was originally created

p37 N0 (P0)

p1 N3 (P6)

p9 N1 (P2)

p45 N5 (P10)

p31 N5 (P11)

p17 N14 (P28)

p118 N5 (P10)

Algorithm 1: Origin Aware Load Balancing (Sender-Initiated Load Balancing)
// Periodic Load Balancing: The following steps (steps 1 to 42) are carried out when the load balancer is invoked during alternate

cycles of Periodic Load Balancing to perform Sender-initiated load balancing.

// For all the Nodes N=1 to n and processors P=1 to p of each Node, execute this code on each processor.

1. {

2. curr_node= N;

3. curr_processor= P;

4. For curr_processor, find all processes which are originated on other nodes

(off-node processes) and presently exist in its runqueue;

5. x= no. of all such processes;

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

15

6. if (x > 0)

7. {

8. For processes K=1 to x do //for all off-node processes in the runqueue of curr_processor

9. {

10. curr_process= process K;

11. target node=N’ ; // N’ is parent node of curr_process

12. curr_level_of_sched_domain= L //Relative to N’, curr_node is at Lth

level of sched_domain hierarchy

13. target_processor=P’ ; //parent processor of curr_process

14. check the load of target_processor;

15. if (load of curr_processor > load of target_processor)

16. {

17. obtain lock on target_processor;

18. obtain lock on curr_processor;

19. migrate process K from curr_processor to target_processor; //PUSH migration

20. migrated=TRUE;

21. release lock on curr_processor;

22. release lock on target_processor;

23. }

24. else //if curr_process can not be migrated to parent processor

25. { //Attempt to migrate the curr_process to some other processor, other than the parent processor, of the parent node

(which is N’)

26. target_node=N’ ;

27. For all processors of target_node do

28. {

29. target_processor = next processor of target_node;

30. execute steps 14 to 23;

31. if (migrated) //if curr_process is migrated to some processor of parent Node

32. go to step 39;

33. }

34. } //End of If statement at step no. 15 (and the Else part at step no. 24)

35. if (not migrated) //if curr_process could not be migrated to its parent Node

36. attempt migration of curr_process to parent Node by exchanging this process with some

process on the parent node, as per Variant1

37. if (not migrated) //still if curr_process could not be migrated to its parent Node

38. attempt migration of curr_process to nearest possible neighbor of its parent node, as per Variant2

39. K= K+1; //take up the next process

40. } // End of FOR loop at step no. 8

41. } // End of If statement at step no. 6

42. } //End of Algorithm (Sender-initiated component of the algorithm)

5. Simulation and Results
To assess the performance of the Origin Aware Load

Balancer, experimentation was carried out using a NUMA

Multiprocessor/Multicore system simulator for linux [19] for

three NUMA Systems M1 to M3, with number of Nodes (N),

number of processors per Node (P/N) and number of Memory

Access Levels (MAL) as following:

• M1: N=16, P/N=2, MAL=6

• M2: N=16, P/N=4, MAL=6

• M3: N=8, P/N=2, MAL=3

For each system, different workloads were generated with

combinations of,

• Number of processes,

• Process Execution time: Fixed average time or varying

time

• Process arrival: same time, periodic or random

• Process type: CPU bound or IO bound or a mix of CPU

and IO bound.

5.1. Turn Around Time and Performance Gain

The experimental results in terms of Turn Around Time

(in ms) and Performance Gain (improvement in TAT in %) are

presented in Tables 4 through 6 and also depicted in the graphs

given after the corresponding Tables; W1, W2, W3

characterize the workloads.

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

16

5.2. Information Obtained from Traces of the Processes

Information obtained from the traces of processes

regarding a number of processes migrated and executed on the

nodes distant from respective parent nodes is presented in

Table 7.

Traces of a few processes are also given in Table 8,

depicting how processes were migrated back to parent Node

or neighbour Node in Origin Aware Load Balancing.

5.3. Observations and Discussion

The experimentation results clearly show that the Origin

Aware Load Balancer outperforms the Linux Load Balancer.

For NUMA systems with varying configurations and different

workload characteristics, it demonstrated improved average

Turn Around Time ranging from 7 to 23 %.

The acquired performance gain can be attributed

primarily to the minimized memory access overheads.

A few points of observation are as follows:

• For NUMA systems having a large number of MALs, the

performance gain is higher for the obvious reason: in

such systems, the probability of processes being migrated

to far nodes is higher, and thus, more improvement is

achieved in Origin Aware Algorithm.

• As compared to linux load balancing, less number of

processes were migrated to far nodes; also, many of such

processes were migrated back to their parent nodes, as

shown in Table 8, resulting in improved TAT of the

processes, very significantly.

• For I/O bound processes performance gain is relatively

less as compared to CPU bound processes because of

relatively less number of memory accesses done by the

I/O bound processes.

• For workloads having a very small number of processes,

the performance gain is either –ve or very insignificant.

This is due to the algorithm’s overheads for smaller

workloads. Therefore, for very small workloads, variants

of the proposed algorithm should not be invoked.

P10:

P11:

P0:

P24:

Fig. 6 Depiction of process migration in origin aware load balancing

(P0, P10…. are runqueues of Processors P0, P10 … and pi(Nj) is the process with pid=i & parent Node Nj)

Table 4. Turn Around Time of processes and performance gain for origin aware load balancing vs linux load balancing for NUMA system M1

No. of

processes

W1- Process Type: CPU bound;

Execu Time: 200 ms;

Arrival- Same Time

W2- Process Type: CPU Bound;

Execu Time: 200 ms;

Arrival- Random

W3- Process Type: CPU Bound;

Execu Time: 300 ms;

Arrival- Random

TAT:

Linux

Algo.

Origin

Aware

Algo.

Perf.

Gain

(%)

TAT:

Linux

Algo.

Origin

Aware

 Algo.

Perf.

Gain

(%)

TAT:

Linux

Algo.

Origin

Aware

Algo.

Perf.

Gain

(%)

25 241 253 -4.98 322 338 -4.97 454 477 -5.07

50 367 359 2.18 409 387 5.38 684 601 12.13

100 613 573 6.53 610 491 19.51 1019 821 19.43

200 1257 1088 13.45 989 791 20.02 1720 1391 19.13

300 1834 1520 17.13 1399 1121 19.87 2451 1936 21.01

400 2380 2033 14.58 1804 1478 18.07 3142 2437 22.44

500 2751 2355 14.39 2199 1787 18.74 3847 2977 22.62

p7(N9)

 p99(N3) p90(N14) p166(N7) … …

p87(N3) p78(N9) p91(N0) p4(N6) p88(N3) … … …

p37(N0) p1(N3) p9(N1) p45(N5) p31(N5) p17(N14) p118(N5)

… …

p2(N9) p69(N3) p197(N14) … … …

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

17

Fig. 7 Turn Around Time of processes for origin aware load balancing vs Linux load balancing for NUMA system M1

 Fig. 8 Performance gain for origin aware load balancing over linux load balancing for NUMA system M1

0

500

1000

1500

2000

2500

3000

3500

4000

25 50 100 200 300 400 500

T
u

rn
 A

ro
u

n
d

 T
im

e
(m

s)

No. of processes

Linux Algo.(W1) Origin Aware Algo.(W1) Linux Algo.(W2)

Origin Aware Algo.(W2) Linux Algo.(W3) Origin Aware Algo.(W3)

-4.98

2.18

6.53

13.45

17.13

14.58

14.39

-4.97

5.38

19.51 20.02

19.87

18.07 18.74

-5.07

12.13

19.43 19.13

21.01
22.44 22.62

-10

-5

0

5

10

15

20

25

0 25 50 100 200 300 400 500 600

P
er

fo
rm

a
n

ce
 G

a
in

 (
%

)

No. of Processes

Perf. Gain (W1) Perf. Gain (W2) Perf. Gain (W3)

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

18

Table 5. Turn Around Time of processes and performance gain for origin aware load balancing vs Linux load balancing for NUMA system M2

No. of

processes

W1- Process type: CPU Bound; Execu

time: 200 ms; Arrival- Random

W2- Process Type: Mix of CPU & IO Bound; Execu

Time: Varying (50-400 ms); Arrival- random

TAT: Linux

Algo.

TAT: Origin

Aware Algo.

Perf. Gain

(%)

TAT: Linux

Algo.

TAT: Origin Aware

Algo.

Perf. Gain

(%)

25 441 442 -0.22 568 590 -3.87

50 515 517 -0.38 557 501 10.05

100 670 592 11.64 678 565 16.67

200 861 738 14.29 997 785 21.26

300 1085 889 18.06 1253 1003 19.95

400 1399 1123 19.73 1538 1238 19.51

 Fig. 9 Turn Around Time of processes for origin aware load balancing vs Linux load balancing for NUMA system M2

Fig. 10 Performance gain for origin aware load balancing over linux load balancing for NUMA system M2

441
515

670

861

1085

1399

442

517 592
738

889

1123

568

557
678

997

1253

1538

590
501

565

785

1003

1238

0

200

400

600

800

1000

1200

1400

1600

1800

0 25 50 100 200 300 400 500

A
v

.
T

u
rn

a
ro

u
n

d
 T

im
e

(m
s)

No. of Processes

Linux Algo. (W1) Origin Aware Algo. (W1)

Linux Algo. (W2) Origin Aware Algo. (W2)

-0.22 -0.38

11.64

14.29
18.06

19.73

-3.87

10.05

16.67

21.26
19.95

19.51

-10

-5

0

5

10

15

20

25

0 25 50 100 200 300 400 500

P
er

fo
rm

a
n

ce
 G

a
in

 (
%

)

No. of Processes

Perf. Gain (W1) Perf. Gain (W2)

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

19

Table 6. Turn around time of processes and performance gain for origin aware load balancing vs Linux load balancing for NUMA system M3

No. of

processes

W1- Process type: CPU bound;

Execu time: 200 ms; Arrival-

random

W2- Process type: CPU bound;

Execu time: 300 ms;

Arrival- random

W3- Process type: IO bound;

Execu time: 200 ms; Arrival-

random

TAT:

Linux

Algo.

TAT:

Origin

Aware

Algo.

Perf.

Gain

(%)

TAT:

Linux

Algo.

TAT:

Origin

Aware

Algo.

Perf.

Gain

(%)

TAT:

Linux

Algo.

TAT:

Origin

Aware

Algo.

Perf.

Gain

(%)

100 785 734 6.50 1430 1402 1.96 533 495 7.13

200 1498 1324 11.62 2764 2558 7.45 978 849 13.19

300 2240 1930 13.84 4058 3711 8.55 1320 1215 7.95

400 2880 2525 12.33 5441 4843 10.99 1726 1558 9.73

Fig. 11 Turn around time of processes for origin aware load balancing vs Linux load balancing for NUMA system M3

Fig. 12 Performance gain for origin aware load balancing over linux load balancing for NUMA system M3

785

1498

2240

2880

734

1324
1930

2525

1430

2764

4058

5441

1402

2558

3711

4843

533

978
1320

1726

495

849
1215

1558

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500

A
v

.
T

u
rn

a
ro

u
n

d

T
im

e
(m

s)

No. of Processes

Linux Algo. (W1) Origin Aware Algo. (W1) Linux Algo. (W2)

Origin Aware Algo. (W2) Linux Algo. (W3) Origin Aware Algo. (W3)

6.5

11.62

13.84

12.33

1.96

7.45
8.55

10.99

7.13

13.19

7.95

9.73

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500

P
er

fo
rm

a
n

ce
 G

a
in

 (
%

)

No. of Processes

Perf. Gain (W1) Perf. Gain (W2) Perf. Gain (W3)

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

20

Table 7. No. of processes executed on the processors distant from their respective parent nodes in origin aware load balancing as compared to linux

load balancing

Total No. of

Processes

Processes that Remained Far

from Parent Nodes

(in Linux Load Balancing)

Processes that Remained Far from Parent Nodes (in Origin

Aware Load Balancing)

No. of Such

Processes

% of Such

Processes
No. of

Such Processes
% of Such Processes

100 46 46 % 22 (of which 09 were at II level Node) 22 %

200 96 48 % 49 (of which 20 were at II level Node) 24.5 %

300 129 43 % 53 (of which 19 were at II level Node) 17.7 %

Table 8. Traces of few processes (obtained for a workload of 300 processes) showing the migration pattern in origin aware load balancing

Process-

id

Node (and Processor)

on Which the Process was

Originally Created

Migration Took Place from Which Processor

to Which Processor (and the Node on Which

the Process Executed Most of the Time)

Process Migrated Back

to Which Node, from

The Far Node

87 N1 (P2) P2-P17; P17-P24 (N12)
II level Node (Nearest

Neighbour Node)

184 N14 (P29) P29-P28; P28-P26; P26-P29 (N14) Parent Node

251 N12 (P24) P24-P12; P12-P24 (N12) Parent Node

183 N1 (P2) P2-P13; P13-P25 (N12)
II level Node (Nearest

Neighbour Node)

197 N7 (P15) P15-P19; P19-P14; P14-P15 (N7) Parent Node

240 N5 (P11) P11-P25; P25-P11(N5) Parent Node

241 N2 (P5) P5-P30; P30-P5 (N2) Parent Node

246 N6 (P12) P12-P9; P9-P13 (N6) Parent Node

281 N15 (P30) P30-P31; P31-P19; P19-P4 (N2)
II level Node (Nearest

Neighbour Node)

174 N7 (P15) P15-P14; P14-P8;P8-P14 (N7) Parent Node

6. Conclusion
In this paper, we investigated the process migration

mechanism of the linux load balancer and proposed an Origin

Aware Load Balancing Algorithm for NUMA Multiprocessor

Systems based on the modified process placement policy. It

ensures that the processes are either not migrated too far from

their originating nodes or are brought back to those nodes, if

they are migrated at all. The proposed algorithm greatly

decreases memory access overheads and thereby improves

performance significantly.

References
[1] Martin J. Bligh et al., “Linux on NUMA Systems,” Linux Symposium, vol. 1, pp. 89-102, 2004. [Google Scholar] [Publisher Link]

[2] Mei-Ling Chiang et al., “Enhancing Inter-Node Process Migration for Load Balancing on Linux-Based NUMA Multicore Systems,” 2018

IEEE 42nd Annual Computer Software and Applications Conference, Tokyo, Japan, pp. 394-399, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[3] M. Correa et al., “Multilevel Load Balancing in NUMA Computers,” Technical Report Series, PPGCC-FACIN-PUCRS, Brazil, no. 49,

pp.1-22, 2005. [Google Scholar] [Publisher Link]

[4] Alexey Paznikov, “Optimization of Thread Affinity and Memory Affinity for Remote Core Locking Synchronization in Multithreaded

Programs for Multicore Computer Systems,” Vibroengineering Procedia, vol. 12, pp. 213-218, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[5] Matthew Dobson et al., “Linux Support for NUMA Hardware,” Linux Symposium, pp. 169-184, 2003. [Google Scholar] [Publisher Link]

[6] Christoph Lameter, “Local and Remote Memory: Memory in a Linux/NUMA System,” Linux Symposium, pp. 1-25, 2006. [Google

Scholar] [Publisher Link]

[7] Ilaria Di Gennaro, Alessandro Pellegrini, and Francesco Quaglia, “OS-Based NUMA Optimization: Tackling the Case of Truly Multithread

Applications with Non-Partitioned Virtual Page Accesses,” 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), Cartagena, Colombia, pp. 291-300, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[8] Isaac Sánchez Barrera et al., “Reducing Data Movement on Large Shared Memory Systems by Exploiting Computation Dependencies,”

Proceedings of the 2018 International Conference on Supercomputing, Beijing, China, pp. 207-217, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Linux+on+NUMA+Systems%2C+Linux+Symposium+2004&btnG=
https://www.kernel.org/doc/ols/2004/ols2004v1-pages-89-102.pdf
https://doi.org/10.1109/COMPSAC.2018.10264
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Inter-Node+Process+Migration+for+Load+Balancing+on+Linux-Based+NUMA+Multicore+Systems&btnG=
https://ieeexplore.ieee.org/document/8377892
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M+Corr%C3%AAa%2C+Multilevel+Load+Balancing+in+NUMA+Computers&btnG=
https://www.pucrs.br/facin-prov/wp-content/uploads/sites/19/2016/03/tr049.pdf
https://doi.org/10.21595/vp.2017.18689
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimization+of+Thread+Affinity+and+Memory+Affinity+for+Remote+Core+Locking+Synchronization+in+Multithreaded+Programs+for+Multicore+Computer+Systems&btnG=
https://www.extrica.com/article/18689
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Linux+Support+for+NUMA+Hardware&btnG=
https://kernel.org/doc/ols/2003/ols2003-pages-169-184.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Local+and+Remote+Memory+in+a+Linux%2FNUMA+System&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Local+and+Remote+Memory+in+a+Linux%2FNUMA+System&btnG=
https://ilinuxkernel.com/files/Local.and.Remote.Memory.Memory.in.a.Linux.NUMA.System.pdf
https://doi.org/10.1109/CCGrid.2016.91
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=OS-based+NUMA+Optimization%3A+Tackling+the+Case+of+Truly+Multithread+Applications+with+Non-partitioned+Virtual+Page+Accesses&btnG=
https://ieeexplore.ieee.org/document/7515701
https://doi.org/10.1145/3205289.3205310
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reducing+Data+Movement+on+Large+Shared+Memory+Systems+by+Exploiting++Computation+Dependencies&btnG=
https://dl.acm.org/doi/abs/10.1145/3205289.3205310

D. A. Mehta & Priyesh Kanungo / IJETT, 73(2), 9-21, 2025

21

[9] Ye Liu, Shinpei Kato, and Masato Edahiro, “Optimization of the Load Balancing Policy for Tiled Many-Core Processors,” IEEE Access,

vol. 7, pp. 10176-10188, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[10] Matthias Diener et al., “Kernel-Based Thread and Data Mapping for Improved Memory Affinity,” IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 9, pp. 2653-2666, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[11] Jean-Pierre Lozi et al., “The Linux Scheduler: A Decade of Wasted Cores,” Proceedings of the Eleventh European Conference on

Computer Systems, London United Kingdom, pp. 1-16, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[12] Omar Kermia, and Yves Sorel, “Load Balancing and Efficient Memory Usage for Homogeneous Distributed Real-Time Embedded

Systems,” 2008 International Conference on Parallel Processing – Workshops, Portland, OR, USA, pp. 39-46, 2008. [CrossRef] [Google

Scholar] [Publisher Link]

[13] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova, “Thread and Memory Placement on NUMA Systems: Asymmetry Matters,”

2015 USENIX Annual Technical Conference (USENIC ATC ’15), Santa Clara, CA, USA, pp. 276-289, 2015. [Publisher Link]

[14] Laércio L. Pilla et al., “A Hierarchical Approach for Load Balancing on Parallel Multi-Core Systems,” 2012 41st International Conference

on Parallel Processing, Pittsburgh, PA, USA pp. 118-127, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[15] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan, “Tumbler: An Effective Load Balancing Technique for MultiCPU

Multicore Systems,” ACM Transactions on Architecture and Code Optimization, vol. 12, no. 4, pp. 1-24, 2015. [CrossRef] [Google

Scholar] [Publisher Link]

[16] Suresh B. Siddha, Sched: New Sched Domain for Representing Multicore, 2006. [Online]. Available: https://lwn.net/Articles/169277/

[17] Li Wang et al., “NUMA-Aware Scalable and Efficient In-Memory Aggregation on Large Domains,” IEEE-Transactions on Knowledge

and Data Engineering, vol. 27, no. 4, pp. 1071-1084, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[18] Saleh A. Khawatreh, “An Efficient Algorithm for Load Balancing in Multiprocessor Systems,” International Journal of Advanced

Computer Science and Applications, vol. 9, no. 3, pp. 160-164, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[19] Mei-Ling Chiang et al., “Memory-Aware Kernel Mechanism and Policies for Improving Inter-Node Load Balancing on NUMA Systems,”

Software: Practice and Experience, vol. 49, no. 10, pp. 1485-1508, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[20] Mei-Ling Chiang, and Wei-Lun Su, “Thread-Aware Mechanism to Enhance Inter-Node Load Balancing for Multithreaded Applications

on NUMA Systems,” Applied Sciences, vol. 11, no. 14, pp. 1-22, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ACCESS.2018.2883415
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimization+of+the+Load+Balancing+Policy+for+Tiled+Many-Core+Processors&btnG=
https://ieeexplore.ieee.org/abstract/document/8565841
https://doi.org/10.1109/TPDS.2015.2504985
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kernel-Based+Thread+and+Data+Mapping+for+Improved+Memory+Affinity&btnG=
https://ieeexplore.ieee.org/document/7345593
https://doi.org/10.1145/2901318.2901326
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Linux+Scheduler%3A+a+Decade+of+Wasted+Cores&btnG=
https://dl.acm.org/doi/abs/10.1145/2901318.2901326
https://doi.org/10.1109/ICPP-W.2008.20
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+Balancing+and+Efficient+Memory+Usage+for+Homogeneous+Distributed+Real-Time+Embedded+Systems&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+Balancing+and+Efficient+Memory+Usage+for+Homogeneous+Distributed+Real-Time+Embedded+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/4626778
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
https://doi.org/10.1109/ICPP.2012.9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Hierarchical+Approach+for+Load+Balancing+on+Parallel+Multi-Core+Systems&btnG=
https://ieeexplore.ieee.org/document/6337573
https://doi.org/10.1145/2827698
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tumbler%3A+An+Effective+Load+Balancing+Technique+for+MultiCPU+Multicore+Systems&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tumbler%3A+An+Effective+Load+Balancing+Technique+for+MultiCPU+Multicore+Systems&btnG=
https://dl.acm.org/doi/10.1145/2827698
https://doi.org/10.1109/TKDE.2014.2359675
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=NUMA-Aware+Scalable+and+Efficient+In-Memory+Aggregation+on+Large+Domains&btnG=
https://ieeexplore.ieee.org/document/6906264
https://dx.doi.org/10.14569/IJACSA.2018.090324
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Algorithm+for+Load+Balancing+in+Multiprocessor+Systems&btnG=
https://thesai.org/Publications/ViewPaper?Volume=9&Issue=3&Code=ijacsa&SerialNo=24
https://doi.org/10.1002/spe.2731
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Memory-Aware+Kernel+Mechanism+and+Policies+for++Improving+Inter-Node+Load+Balancing+on+NUMA+Systems&btnG=
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2731
https://doi.org/10.3390/app11146486
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Thread-Aware+Mechanism+to+Enhance+Inter-Node+Load+Balancing+for+Multithreaded+Applications+on+NUMA+Systems&btnG=
https://www.mdpi.com/2076-3417/11/14/6486

