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Abstract - Edge-cloud computing architecture has become appropriate and promising to satisfy the performance requirements 

of resource-intensive and latency-critical applications. Effective scheduling of workload serves the purpose of exploiting the 

distributed, heterogeneous, and dynamic characteristics of these environments. Among the developed approaches, heuristic-

based scheduling methods are important due to the low level of complexity and practical merit they present in real-time and 

resource-limited environments. Heuristic-based workload scheduling methods are the center of focus of this paper. Present 

methods are classified into simple heuristics, metaheuristics, and hybrid schemes, and surveyed on prominent examples of HEFT, 

ACO, PSO, Min-Min/Max-Min, and Greedy Resource-Aware algorithms. Each of these is put through the prism of the scheduling 

objectives, benefits, and their tradeoff on various executed metrics like latency, energy efficiency, and flexibility. Though these 

strategies are beneficial, the issues associated with their usability for dynamic applications and multi-objective scenarios are 

prominent. Important research gaps are listed along with proposed future works, including adaptations, energy-oriented, and 

lightweight scheduling models. Of even higher value, it is notable to recognize the growing interest in the application of AI-

based schemes, which have the potential to enhance heuristic-based scheduling once integrated into hybrid systems. This survey 

aspires to present the convenient go-to thesis of the researcher tackling the challenge of creating a productive workload 

scheduling design in the edge-cloud infrastructures. 

Keywords - Cloud computing, Edge computing, Workload scheduling, Heuristic Algorithms, Metaheuristic Algorithms.

1. Introduction 
Massive-scale deployments of Internet of Things (IoT) 

devices and emerging applications, which are latency-

sensitive and highly data-intensive, have given rise to the 

formation of edge-cloud computing paradigms. In this 

approach, computation occurs at the edge nodes, which are 

closer to data sources and remote cloud servers, resulting in 

greater responsiveness, reduced bandwidth costs, and 

improved scalability. Applications, such as real-time video 

analytics, self-driving cars, and intelligent health care 

systems, are increasingly including this hybrid infrastructure 

so as to satisfy excessive Quality of Service (QoS) and Quality 

of Experience (QoE) constraints [1]. Workload scheduling, 

which falls among the major issues in these environments, 

defies decisions on where, how, and when the computing tasks 

must be executed on the distributed and heterogeneous 

resources. Edge-cloud infrastructure is more challenging than 

the traditional cloud-based infrastructure due to the role of the 

more dynamic network scenarios, constrained edge resources, 

and the non-stationary end-users [2]. Smart scheduling must 

make the proper balance between the competing ends like 

latency, energy, resource, and SLA fulfillment. Poor 

scheduling in edge–cloud environments can have serious 

consequences in real-world systems. For example, in 

autonomous vehicles, inadequate scheduling (e.g., suboptimal 

offloading, task dropping) can lead to safety risks: a recent 

study in Vehicular MEC demonstrated that poor scheduling 

under fixed bandwidth leads to dropped tasks and elevated 

latency, whereas optimized scheduling avoids task drops and 

significantly lowers delay, improving system reliability [3]. In 

vehicular edge computing, schemes that neglect latency or 

privacy constraints often underperform: one approach that 

jointly considered these metrics improved QoS by about 55% 

relative to state-of-the-art baselines [4]. 

In healthcare systems, delays in task scheduling for 

wearable sensor data (such as monitoring and diagnostics) can 

lead to misdiagnoses, slower response times, or worse patient 

outcomes. The review Edge Computing in Healthcare: 

Innovations, Opportunities… shows that real-time decision-

making, offloading, and privacy are central issues, and that 

many healthcare IoT applications are currently constrained by 
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delays in processing or communication [5]. In another 

experiment on mobile edge computing in patient monitoring, 

it is illustrated how the combination of MEC + 5G decreases 

latency in the data flows of healthcare sensors but also reveals 

how inadequate bandwidth/resource scheduling continues as a 

bottleneck [6]. 

In the same way, for large-scale edge case deployments, 

studies of balancing latency and energy constraints for 

heterogeneous networks indicate that suboptimal scheduling 

could cause unacceptable latency or high waste of energy. On 

the positive side, optimized scheduling can decrease latency 

by tens of milliseconds as well as enhance energy efficiency 

to a significant extent [7]. Such cases highlight the urgent 

necessity for efficient as well as adaptive scheduling 

approaches in edge–cloud environments. 

There are numerous approaches to scheduling issues, but 

heuristic methods are very fashionable due to their simplicity 

of application, as well as processing, along with adaptability. 

Rather than exact optimization algorithms that can be costly 

in terms of time and processing, heuristics offer near-optimal 

answers with less time invested, which is suitable for many 

real-time applications where resources are scarce. For 

example, the Heterogeneous Earliest Finish Time (HEFT) 

algorithm has been extensively adopted for task scheduling in 

heterogeneous systems. In more recent publications, there are 

known efforts that use hybrid methods that involve combining 

neural network-based approaches and heuristic policies to 

enhance scheduling performance in edge-cloud environments 

[8]. 

However, despite the growing body of research, existing 

surveys and reviews often consider heuristics as part of a 

broader taxonomy that includes optimization and AI-driven 

approaches. As a result, there is no dedicated and systematic 

survey that thoroughly examines workload scheduling, which 

is based on heuristics in edge cloud systems. This gap renders 

it hard to compare algorithms reliably, detect their tradeoffs, 

and trace their adaptability to edge-specific challenges like 

workload dynamics, energy constraints, and heterogeneous 

resources. This survey intends to present a systematic and 

focused survey of heuristic-based workload scheduling 

strategies in edge-cloud infrastructure. The goal of this paper 

is to:  

• Categorize heuristic algorithms into three types: simple 

heuristics, metaheuristics, and hybrid heuristic 

approaches. 

• Analyse and compare representative schemes on various 

performance metrics, i.e., latency, energy efficiency, 

scalability, adaptability, computation overhead, and ease 

of implementation. 

• Determine the strengths, limitations, and tradeoffs of 

these strategies relative to the requirements of the edge 

cloud. 

• Highlight research gaps and propose directions for 

developing adaptive, energy-aware, and lightweight 

heuristic scheduling models. 

• Elucidate research voids and put forward future directions 

toward the development of adaptive, energy-aware, and 

lightweight heuristic scheduling models. 

 

These are the subsequent research questions that have 

been raised towards the fulfillment of the stated purpose: 

• RQ1: What are the key heuristic algorithms used for 

workload scheduling in edge cloud environments, and 

how can they be systematically categorized? 

• RQ2: How do these heuristic methods perform with 

respect to critical performance metrics, including energy 

efficiency, latency, adaptability, scalability, 

computational cost, and implementation ease? 

• RQ3: What are the tradeoffs and limitations of existing 

heuristic scheduling methods in addressing the dynamic, 

heterogeneous, and limited-resource nature of edge-cloud 

environments? 

• RQ4: What are the open research challenges, and how can 

future heuristic strategies (simple, metaheuristic, or 

hybrid) be designed to improve workload scheduling in 

edge–cloud environments? 

This paper fills the noted research gap by the following: 

• Classification of heuristic scheduling approaches into 

three classes: simple heuristics, hybrid heuristic 

strategies, and metaheuristics. 

• Detailed examination of representative algorithms, such 

as HEFT, Min-Min/Max-Min, ACO, PSO, and Greedy 

Resource-Aware heuristics. 

• Comparison of the chosen methods according to latency, 

energy efficiency, scalability, adaptability, computational 

cost, and implementation ease. 

• Research gap and future trend identification, focusing on 

adaptive, lightweight, and energy-aware heuristic models 

for future-edge cloud systems. 

In contrast to earlier surveys, where heuristics are covered 

as a subsidiary section within expansive literature reviews of 

cloud, fog, or edge scheduling [8-13], this paper gives the 

primary committed and systematic survey solely dedicated to 

the topic of workload scheduling based on heuristics in the 

field of edge-cloud systems. This paper has originality in three 

folds: 

• Scope specificity: While current reviews contemplate 

numerous scheduling approaches’ families (optimization, 

AI, heuristics, etc.), this survey focuses only on heuristic 

algorithms (simple, metaheuristic, and hybrid heuristic 

strategies) and their application to the edge–cloud 

scenarios. 

• Comparative depth: In contrast to earlier studies that 
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provide descriptive overviews, this paper delivers a 

structured comparative evaluation across six performance 

criteria: latency awareness, energy efficiency, scalability, 

adaptability, computational cost, and implementation 

ease. 

• Gap addressing: The paper points to untouched 

challenges of heuristics in edge–cloud like adaptability 

for mobility, energy awareness for resource-limited 

nodes, and lightweight metaheuristic design, and suggests 

specific directions for future research. 

The rest of this paper is organized as follows. Section II 

discusses the related work on workload scheduling of the edge 

cloud. Section III gives the required background and gives the 

formal definition of the scheduling issue. Section IV gives an 

overview of heuristic scheduling algorithms, and Section V 

outlines some representative algorithms and their real-world 

applications. Section VI gives a comparison of these 

algorithms. Section VII outlines the major challenge and 

indicates the future promising works, and finally, Section VIII 

summarizes the paper with the major insights. 

2. Related Work  
Extensive reviews have appeared on the topic of task 

scheduling under the paradigm of edge-cloud, and hundreds 

of survey and review papers have appeared evaluating the vast 

range of methods, including heuristic, metaheuristic, 

optimization-based, and machine learning-based approaches. 

However, these reviews are of varying scope and depth, and 

they seldom present an in-depth review of the heuristic-based 

approaches only. Paper [8] presented one of the earliest 

surveys of heuristic algorithms, but they only considered 

cloud computing infrastructures. Though it can be useful 

towards classical algorithms like Min–Min/Max–Min and 

HEFT, it fails to consider edge-cloud-related issues like 

heterogeneity, dynamic workloads, and latency-conscious 

applications. However, the latest studies have given increased 

focus on hybrid and AI-based scheduling. Paper [9] put 

forward the idea of a deep learning-based heuristic scheduler 

by hybridizing PSO and the Firefly Algorithm, improving the 

run of resource-intensive IoT tasks for cloud systems. Paper 

[10] examined IoT task scheduling under the scenarios of edge 

and fog computing and observed that classical metaheuristics 

like NSGA-II and NSGA-III usually suffer from the 

restriction of scalability and adaptability.  

To overcome these shortcomings, they presented DRLIS, 

a scheduler based on Deep Reinforcement Learning, which 

showed better convergence and optimization ability than 

classical methods. Several surveys have considered broader 

viewpoints on scheduling. Paper [11] classified scheduling of 

the edge–cloud setting into heuristic, metaheuristic, and 

optimization-based families, and additionally considered 

Quality-of-Service (QoS) demands and fault tolerance. Paper 

[12] presented a comprehensive survey of resource scheduling 

in the edge computing setting and covered key topics of task 

offloading, resource scheduling, and resource provisioning 

approaches. Paper [13] covered heuristic scheduling of the fog 

computing setting, and presented greedy, priority-based, and 

nature-inspired heuristics, and hybrid heuristic approaches, 

and focused on energy and resource constraints. 

Although these works are contributory, they generally 

consider the heuristics as only one of the numerous categories, 

but not the core of the study. None of these gives a systematic 

survey containing the followings: (i) classifying the heuristic 

strategies as simple, metaheuristics, and hybrid strategies; (ii) 

providing balanced comparison of the most significant 

performance aspects like latency, energy efficiency, 

scalability, adaptability, computational cost, and 

implementation complexity; and (iii) identifying outstanding 

issues inherent to heuristic scheduling for hybrid edge-cloud 

environments. This work fills this gap by narrowly focusing 

on heuristic-based workload scheduling. This paper offers a 

structured coverage and analysis of representative algorithms 

for key criteria, with a predominantly illustrative perspective 

on research directions, underpinning interest in adaptive, 

lightweight, or energy-aware heuristic models for edge cloud 

environments.  

However, a big gap still prevails in the literature. Either 

they are: 

• Concentrates on cloud or fog computing but fails to 

consider specific edge cloud integration constraints, 

• Focus on AI-based approaches, but ignore classical 

heuristic approaches, or 

• Give a descriptive summary rather than a systematic, 

comparative assessment for a variety of important 

performance criteria, such as latency awareness, 

scalability, energy efficiency, and implementation 

complexity. 

This paper will fill this gap by being the first systematic 

literature review on workload scheduling with a basis on 

heuristic approaches conducted for edge clouds. Unlike other 

existing literature reviews, this paper will classify heuristic 

approaches into three categories, which include simple 

heuristics, metaheuristics, and hybrid heuristic strategies, in 

order to perform a fair analysis that will compare different 

approaches, with comprehensive quantitative insights taken 

from existing literature that will validate any qualitative 

assessments made. This specialized view will not only shed 

insight on where heuristics belong in hybrid architectures but 

will also point out some possible uses for heuristics with AI. 

3. Background  
3.1. Edge-Cloud Architecture Overview 

Edge cloud computing forms a hybrid model that 

amalgamates two stages of computing infrastructure: edge 

nodes that are geographically close to data-generating 

resources, such as IoT sensors, as well as cloud servers that 
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have high compute capabilities. It is the type of data center 

hierarchy where data processing could be assigned for 

different sites, dependent on the applications’ latency as well 

as resource requirements. It runs on the edge layer for latency 

and bandwidth-sensitive tasks, as well as in the cloud for 

computation-intensive processes, along with long-term data 

storing. It enhances the responsiveness, reduces data 

transmission overheads, and enhances scalability and fault 

tolerance in distributed systems  [14]. 

3.2. Workload Characteristics 

Workloads in edge-cloud environments are extremely 

heterogeneous, derived from various sources, including sensor 

types, mobile devices, cameras, and industrial robots. 

Workload differs in terms of computation intensity, latency 

sensitivity, data volume, and frequency. Also, the arrival of 

the workload is dynamic and unpredictable, making the 

scheduling decisions at run time critical. Schedulers need to 

consider different factors such as available resources, network 

states, as well as application priority, so as to guarantee service 

level objectives [15].    

3.3. Scheduling Objectives 

Scheduling workloads in Edge-Cloud requires 

considering as well as balancing several competing objectives: 

• Latency Minimization: One of the key factors that makes 

edge computing more attractive for implementation is 

that it promotes latency minimization. Adjusting 

scheduling algorithms must aim at delegating more tasks 

near the data origin to minimize the round-trip time [16]. 

• Enhancing Energy Efficiency: Typically, edge devices 

are employed in a power-restricted environment, which 

may cause edge devices to run out of power. Scheduling 

algorithms must avoid excessive data transfer and avoid 

overloading power-restricted nodes [11]. 

• Load Balancing: In order to avoid resource loading on 

certain nodes, whereas others are underloaded, it is 

recommended that schedulers use equal task distribution. 

This helps in maintaining steady performance, improving 

system throughput, and reducing execution time [15]. 

• Quality of Service (QoS)/Quality of Experience (QoE): 

Almost every application requires certain guarantees, for 

example, on-time execution, guaranteed availability, and 

accurate data. For this purpose, scheduling needs to 

respect Service Level Agreements (SLAs), with a good 

QoE at the same time [15]. 

 

3.4. Limitations of Traditional Scheduling Approaches 

Conventionally, schedulers employed in cloud 

computing, designed based upon static policies or 

deterministic approaches, are not suited for edge cloud since 

they react rigidly to changes occurring in real time, consuming 

high computation resources, having high overhead in 

resources with a large number of edge nodes as well as mobile 

devices, and being centralized, with high communication 

overhead and lack of fault tolerance. It indicates a need for a 

lightweight, adaptive, and decentralized scheduler, for which 

these approaches based upon heuristics had immense promise 

[11, 17]. 

4. Heuristic-Based Scheduling Approaches 

Classification 
Heuristic scheduling algorithms are crucial for managing 

the dynamic nature of workloads that edge clouds exhibit. 

Figure 1 below shows that there are three categories under 

which heuristic scheduling algorithms are classified, including 

simple heuristics, metaheuristics, and hybrid heuristics. 

4.1. Simple Heuristics 

Simple heuristics refer to techniques that use rules for 

decision-making in relation to scheduling, based on a set of 

predefined rules. Simple heuristics are computationally 

optimal and perform best in real-time systems [18]. Simple 

heuristics include: 

• First-Come, First-Served (FCFS): processes are allocated 

based on the order of arrival, regardless of system 

conditions, independent of individual needs. FCFS is 

simple. It may suffer from inefficiencies, resource 

wastage, and delays [19]. 

• Shortest Job First (SJF): This scheduling technique 

involves selecting processes that require the shortest 

execution time to minimize waiting time [19]. One major 

problem with this technique may lie in estimating task 

lengths. 

• Min-Min and Max-Min: These schedules choose the tasks 

having minimum or maximum complete time, 

respectively, for optimization of overall scheduling 

efficiency [18]. 

• Round Robin (RR): Assigns time slices for individual use 

on a cycle basis in an attempt to be fair, but with the 

benefit of potentially less context-switching overhead 

[18]. 

4.2. Metaheuristics 

 
Fig. 1 Classification of heuristic scheduling approaches 

Metaheuristics are higher-level procedures for the 

optimization of exploration of the solution space. They 

become employable for complex optimization problems, such 

as task scheduling for edge-cloud systems. Major techniques 

that fall into the category of metaheuristics are as follows. 

Heuristic-Based  Workload 
Scheduling Approaches

Simple Heuristic 
Approaches

Metaheuristic 
Approaches

Hybrid 
Approaches
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• Genetic Algorithm (GA): Genetic selections provide 

inspiration for Genetic Algorithms (GAs) owing to the 

application of mechanisms such as selection, crossover, 

and mutation by genetic algorithms for evolving a 

solution over several generations. Though genetic 

algorithms are helpful in addressing much larger problem 

sizes, they consume a lot of computational power [20]. 

• Particle Swarm Optimization (PSO): Its Individuals are 

modeled as particles that move in a solution space, where 

the change in the position of a particle occurs based on 

both individual and global past experience. It is clear that 

both simplicity and fast convergence speed are built into 

PSO models [20]. 

• Ant Colony Optimization (ACO): This method rests on 

the premise of simulating ant foraging behavior. 

Pheromone trails are employed as a technique for 

building solutions that address combinatorial problems in 

artificial ant foraging behavior studies [21]. 

• Simulated Annealing (SA): Its inspiration comes from the 

heating and cooling treatment of metals. The model 

makes suboptimal decisions to avoid reaching a local 

minimum, which facilitates a more efficient resolution of 

challenging scheduling problems [20].     

Recent studies have utilized various metaheuristic 

techniques to enhance scheduling efficiency in cloud and edge 

environments. For example, one study employed ACO to 

compute a fitness function and balance multiple scheduling 

objectives, demonstrating its usefulness in addressing 

complex problems. Another study adapted the firefly 

algorithm for workflow scheduling across cloud–edge 

systems, making improvements in both makespan and cost 

[21, 22]. 

4.3. Hybrid Heuristics 

Hybrid heuristics are a combination of various heuristic 

or metaheuristic strategies with the goal of benefiting from 

their respective strengths and mitigating their respective 

weaknesses. Hybrid strategies have been employed to address 

the complex task scheduling problem within edge–cloud 

systems.  

As an example, a hybrid metaheuristic algorithm was 

proposed for IoT service placement with the optimization of 

such factors as makespan, cost, and energy usage [20]. While 

metaheuristics and hybrid approaches themselves may not be 

AI-driven, they belong to the family of heuristic-based 

approaches. Incorporating machine learning or neural 

components into these systems, however, is the path toward 

AI-driven scheduling. 

5. Representative Heuristic Approaches 
This section reviews heuristic and metaheuristic methods 

used for workload scheduling in edge-cloud computing. The 

subsequent subsections describe the selection process and the 

reasoning behind the chosen algorithms. 

5.1. Methodology for Algorithm Selection 

The selection of representative algorithms followed a 

structured process designed to ensure relevance, diversity, and 

coverage across the main categories of heuristic-based 

scheduling. The process was guided by a review of peer-

reviewed studies published between 2018 and 2025, retrieved 

from major digital libraries.  

Only algorithms that were explicitly applied to edge, fog, 

or edge–cloud scheduling were taken into account. 

Additionally, it was ensured that each study evaluated: 

• Proposed or analyzed a heuristic or hybrid heuristic 

scheduling algorithm. 

• Addressed at least one key performance objective, 

including latency, energy efficiency, scalability, or 

flexibility. 

• Provided comparable or empirical results that enable a 

systematic assessment based on certain criteria. 

• Contained enough information about the implementation 

or concept for analysis purposes. 

• Addressed at least one key performance objective, like 

latency, energy efficiency, scalability, or flexibility. 

Studies focusing solely on exact optimization algorithms, 

deep learning, or cloud scheduling were not considered, as 

were domain-specific solutions that are not generally 

applicable.  

This ensured that generally applicable heuristics for edge 

cloud environments are encompassed by the selected 

algorithms. 

5.2. Justification of Selection 

On the basis of this, we chose five algorithms that 

represent: 

• HEFT: A classic static heuristic widely employed in 

heterogeneous and edge platforms. 

• Min-Min, Max-Min: Lightweight heuristics that are still 

benchmark algorithms in heterogeneous scheduling 

problems. 

• ACO: Metaheuristic based on swarm intelligence, suited 

for multi-objective optimization for edge-cloud systems. 

• PSO: A metaheuristic valued for balancing global and 

local search, adaptable to dynamic conditions. 

• GRAH: Modern heuristics explicitly designed for 

dynamic, resource-constrained edge–cloud 

environments. 

Though other techniques, including Genetic Algorithms 

(GA), Cuckoo Search (CS), Simulated Annealing (SA), 

Artificial Bee Colony (ABC), Tabu Search (TS), or Grey Wolf 

Optimizer (GWO), among others, also satisfy the criteria for 

inclusion, we restrict this work to this set for clarity. All of 

them encompass the diversity of heuristic approaches: 
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• Simple heuristics: HEFT, Min-Min, and Max-Min. 

• Metaheuristics: ACO and PSO. 

• Hybrid/resource-aware heuristics: GRAH. 

 

This representative set allows for a systematic evaluation 

across latency, energy efficiency, scalability, adaptability, 

computational cost, and implementation ease. 

5.3. Heterogeneous Earliest Finish Time (HEFT) 

The HEFT algorithm, a classic static algorithm, was first 

developed for task scheduling in heterogeneous computing 

environments. This algorithm gives more priority to tasks with 

upward ranks, which assign a task to a processor in such a way 

that it gets completed as early as possible. Because of its 

effectiveness in minimizing makespan with high efficiency, 

HEFT has been largely used in edge cloud environments [18]. 

But the major drawback of this algorithm was that it was a 

static algorithm, which neither offered dynamic rescheduling 

[23] nor considered power consumption, which was a concern 

for edge clouds [24]. 

5.4. Ant Colony Optimization (ACO) 

ACO is a metaheuristic that was inspired by ant foraging 

behavior, in which virtual ants probabilistically search task 

allocations with the aid of pheromone trails that stand for the 

quality of previous solutions found. Its main strength resides 

in improving multi-objective scheduling in a dynamic edge 

cloud environment, thanks to its flexibility in adapting to 

changing network conditions [22]. In contrast, ACO also has 

some weaknesses. For instance, its most elementary form 

remains capable of addressing just a relatively small problem 

instance, such as the Traveling Salesman Problem with a small 

number of graph vertices, with high memory complexity, 

usually O(n²) [25]. In addition, ACO is parameter-sensitive, 

not scalable for large-scale data, and not suitable for real-time 

deployment [26]. 

5.5. Particle Swarm Optimization (PSO) 

PSO approaches task scheduling as a problem involving 

swarm intelligence, with particles indicating possible 

solutions that move in a search space with an understanding 

of both personal and social learning [20]. PSO has already 

been validated for edge-cloud architectures, including task 

scheduling with latency and energy considerations, as well as 

for large-scale or dynamically changing workloads [18]. One 

major reason for its widespread adoption is its ease of use 

while handling non-linear, multi-modal functions, as well as 

its flexibility in being applicable to different scheduling, 

resource assignment, and feature selection problems [24]. 

Nevertheless, its computational complexity varies with 

respect to its number of particles, dimension, and iterations, 

having a time complexity of O(n × d × t) [27]. 

5.6. Min-Min and Max-Min Heuristics 

These are common but straightforward list scheduling 

methods: 

• Min-Min algorithm selects a task with minimum 

execution time for a resource, making it useful in 

scenarios that consist of more smaller tasks, as it helps in 

reducing waiting time as well as speedy execution [28, 

29]. However, its major drawback might result in large 

tasks being delayed, as they are usually given lower 

priorities, which leads to a queue of larger tasks being 

formed [29]. 

• Max-Min: This algorithm chooses a task with maximum 

minimum completion time, which will be allocated to a 

node that completes it first. It prevents larger tasks from 

being perpetually blocked by smaller tasks, making it 

more suitable for a heterogeneous environment with 

nodes having different capabilities, with a variety of task 

resource needs. However, it faces inefficiencies if there 

are mostly smaller tasks, which may get excessively 

delayed [29]. 

Such techniques are most useful in situations where 

workload sizes and complexities are varied, thus being 

applicable for heterogeneous edge cloud settings [18]. In most 

cases, such algorithms rely on static decision-making, 

meaning they are not able to adjust to changes in task rates, 

availability, or system load [29]. Besides, such heuristics may 

rely on static task execution time estimates, independent of 

device power state or energy, hence being ineffective, for 

instance, in settings that require task execution under certain 

power levels. 

5.7. Greedy Resource-Aware Heuristics 

Some research has introduced custom greedy algorithms 

that schedule the tasks according to system measurements like 

the load on the CPU, the usage of memory, or energy levels. 

Some heuristics, for example, schedule tasks on the closest 

node with enough resources for the purpose of reducing the 

latency of data transfer. These approaches are lightweight and 

suitable for real-time edge scheduling [16]. 

Greedy Resource-Aware Heuristics (GRAH) are more 

energy-efficient due to their dynamic awareness of node 

conditions and adaptive, proximity-aware decisions, making 

them ideal for energy-sensitive fog and edge environments. In 

general, they are valued for their simplicity and speed, as they 

base decisions solely on the current system state without 

considering future tasks or conditions [29]. Yet, in a 

dynamically changing context such as fog computing, they 

may find it difficult to produce overall globally optimal results 

since they concentrate more upon immediate gains, with no 

attention towards changing system conditions [29]. This 

notwithstanding, they perform best for real-time scheduling 

and straightforward scenarios, providing practical and 

efficient solutions in many edge-cloud contexts [13]. 

All such heuristic strategies represent a reflection of 

different approaches that work towards task scheduling 

optimization in edge cloud computing. Though they present 
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some individual merits as well as pitfalls, they collectively 

form a major development phase for more efficient scheduling 

approaches. 

6. Comparative Analysis of Heuristic Algorithms 
This section presents a comparative study of different 

workload scheduling algorithms based on heuristics for edge 

clouds. This will help to assess different strengths and 

weaknesses that exist between various algorithms with respect 

to meeting edge cloud requirements. The comparison will be 

done with respect to some key factors that are important in 

edge-cloud systems, such as latency awareness, energy 

efficiency, scalability, adaptability, computational cost, and 

simplicity of implementation [18, 30].  

6.1. Evaluation Criteria 

Table 1 defines six evaluation criteria used to assess the 

selected algorithms. 

Table 1. Comparison criteria 

Criterion Abbreviation Description 

Latency Awareness LA 
Ability to minimize task response time and satisfy real-time performance 

constraints [30]. 

Energy Efficiency EE 
Capacity to reduce and optimize energy consumption, particularly at resource-

constrained edge nodes [28]. 

Scalability S Capability to maintain performance as the number of tasks or nodes increases [30]. 

Adaptability A 
Flexibility to operate effectively under dynamic workloads and changing network 

conditions [30]. 

Computational 

Cost 
CC Overhead imposed by the algorithm itself (low cost is preferred at the edge [28]. 

Implementation 

Ease 
IE Practicality and simplicity of integration into real-world systems 

6.2. Systematic Summary of Heuristic Scheduling Methods 

This subsection gives a structured synthesis of the 

representative heuristic algorithms described in Section 5, 

summing up their most important performance criteria.  

All algorithms are evaluated with respect to six key 

factors: Latency Awareness, Energy Efficiency, Scalability, 

Adaptability, Computational Cost, and Implementation Ease. 

Table 2 synthesizes insights gleaned from more recent studies, 

involving a set of qualitative assessments that are backed by 

references with a description of algorithm behavior under a 

hybrid edge-cloud environment.  

This enables a clear understanding of how various classes 

of heuristics, including simple, metaheuristic, or hybrid, 

handle the multi-objective nature of scheduling, besides 

illuminating typical weaknesses related to being static or 

having high computational overhead. For a complementary 

perspective to this summary based on scientific evidence, 

Table 3 below provides a straightforward comparative table, 

which translates descriptive results into a standardized scale 

of ratings (very low, low, moderate, good, very good) for a 

more comparable result between algorithms. This 

standardized scoring system will form a basis for analysis in 

Section 6.4. 

6.3. Comparison of Scheduling Algorithms in Edge-Cloud 

Systems 

In this section, each algorithm has been assigned a value 

on a scale from very low to very good per criterion, where very 

low represents the weakest performance and very good 

indicates the strongest.  

This scoring approach provides a structured and 

consistent way to assess the strengths and limitations of each 

algorithm across key factors relevant to hybrid edge–cloud 

computing, and it is based on evidence reported in the 

literature. Table 3 summarizes the performance ratings. 

Table 2. Systematic comparison of heuristic algorithms across key performance criteria in edge–cloud scheduling (based on Section 5) 

Algorithm LA EE S A CC IE 

HEFT 

Minimizes 

makespan 

effectively 

(moderate) 

[18] 

Ignores 

energy 

(low) 

[24] 

Well-suited for 

heterogeneous 

systems 

(good) [18] 

Static, no 

rescheduling 

(very low) 

[23] 

Ranking-

based, 

efficient 

(good) 

[18] 

Simple & 

widely 

adopted 

(good) [18] 

ACO 

Multi-

objective 

optimization 

reduces 

Energy-

aware 

variants 

exist 

Limited 

scalability 

(good) [25] 

Adapts to 

changing 

environments 

(very good) 

High O(n²) 

complexity 

(very low) 

[25] 

Parameter-

sensitive, 

complex 

(low) [26] 
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latency 

(very good) 

[22] 

(very 

good) 

[22] 

[22] 

PSO 

Reduces task 

delays 

(reasonable) 

[18] 

Efficient 

allocation 

(good) 

[18] 

Large-scale 

applicability 

(very good) 

[24] 

Moderately 

adaptive 

(moderate) 

[27] 

O(n × d × t) 

cost 

(moderate) 

[27] 

Relatively 

simple 

(reasonable) 

[20] 

Min-

Min/Max-

Min 

Handles 

small/large 

tasks but 

unbalanced 

(moderate) 

[28] 

No energy 

model 

(low) 

[29] 

Useful in 

heterogeneity 

(moderate) 

[29] 

Static & rigid 

(very low) 

[29] 

Very 

lightweight 

(very 

good) [28] 

Extremely 

easy (very 

good) [28] 

GRAH 

Proximity-

aware 

scheduling 

(very good) 

[16] 

Energy-

aware & 

dynamic 

(very 

good) 

[29] 

Scales to large 

real-time 

systems (very 

good) [13] 

Adapts to state 

but not long-

term 

(moderate) 

[29] 

Lightweight 

& efficient 

(good) 

[16] 

Simple but 

case-

specific 

(moderate) 

[13] 

Table 3. Comparative evaluation of heuristic scheduling algorithms in edge–cloud systems 

Algorithm LA EE S A CC IE 

HEFT moderate low good Very low good good 

ACO Very good Very good good Very good Very low low 

PSO good good Very good moderate moderate good 

Min-Min / Max-Min moderate low moderate Very low Very good Very good 

GRAH very good Very good Very good moderate good moderate 

 
Fig. 2 Comparative bar chart of heuristic scheduling algorithms through six performance metrics 

6.4. Graphical Representation of Comparative Results 

For improving clarity as well as meeting visual analysis 

needs, Figure 2 plots a bar graph for a comparative result of 

Table 3. This graphical representation helps in speedy 

identification of tradeoffs in addition to easy understanding of 

strengths relevant to each algorithm related to hybrid edge 

clouds, as indicated by six criteria with an ordinal scale rating 

of 1–5, starting with Very low as 1 and culminating with Very 

good as 5. As shown in Figure 2, both GRAH and ACO have 

high performance with respect to latency, energy, and 

scalability, whereas PSO shows high scalability with balanced 

results. On the other hand, although HEFT and Min-Min/Max-

Min remain simple with low computational overhead, they are 

non-adaptive and lack energy-awareness in dynamic 

environments. 

6.5. Observations and Insights 

Based on the comparison, Greedy Resource-Aware 

Heuristics demonstrate the most balanced performance across 

all criteria, combining strong latency awareness, energy 

0
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efficiency, and scalability, while maintaining a comparatively 

low computational cost and moderate implementation 

complexity. ACO performs well on latency and energy 

optimization and can adapt easily to different conditions. 

However, due to a high level of computational complexity and 

a lower ease of implementation, it may not be appropriate for 

edge settings. PSO performs with a stable level of quality; 

more specifically, energy efficiency and good scalability are 

achieved to a great extent. But for proper operation under 

varying conditions, precise tuning of PSO algorithms is 

needed. HEFT can also be applicable for handling static 

workloads due to acceptable computational efficiency and 

simple implementation. Its inadequacies lie in its lack of 

awareness about energy consumption and flexibility. Lastly, 

Min-Min and Max-Min are the least complicated out of the 

four algorithms presented. They achieved the best results in 

terms of both computational efficiency and implementation 

complexity. They received the lowest results for both 

flexibility and power efficiency. 

In conclusion, Greedy Resource-Aware Heuristics 

provide a fair optimization solution for a hybrid edge cloud 

computing system, with notable latency reduction, energy 

efficiency, and scalability with a minimal overhead cost. It 

shows that ACO performs well in terms of its optimizing 

capability, but its effectiveness will be affected since it 

requires high computational demands. On the other hand, PSO 

shows a fair level of efficiency with moderate flexibility. It 

was established that both HEFT and Min-Min/Max-Min 

perform well for non-dynamic resources, but they lack 

adaptability as well as energy awareness needed for a dynamic 

edge cloud scenario. 

6.6. Cross-Criterion Insights and Tradeoffs 
Table 2 and Table 3, which indicate the comparison 

results, indicate definite patterns as well as certain 

compromises between criteria in the selected heuristic 

algorithms. Heuristics that perform best for a certain criterion 

may compromise on other criteria, which indicates that no 

algorithm performs best for all criteria. 

• Latency vs. Computational Cost: Algorithms such as 

ACO and GRAH have been shown to achieve significant 

latency reduction due to their adaptive and search-based 

design. However, this enhancement comes with an 

increased computational overhead. Conversely, simple 

heuristics such as HEFT and Min–Min are 

computationally efficient but demonstrate reduced 

efficacy in minimizing delay under dynamic workloads. 

• Energy Efficiency vs. Ease of Implementation: It has been 

proven that the algorithms that integrate dynamic or 

energy-aware mechanisms, such as ACO, PSO, or 

GRAH, perform well in terms of energy efficiency. But 

such algorithms require more complicated parameter 

tuning or system feedback, which may result in adverse 

effects on deployment ease. 

• Adaptability vs. Simplicity: On one side, metaheuristics 

and hybrid approaches are described as being flexible, 

adapting to workload changes, but they also bring 

complexity with regard to design. On the other hand, 

simple heuristics, being easy to implement, fail to handle 

changes in real time effectively. 

• Scalability and Stability: PSO maintains stable 

performance as the system size grows, proving effective 

for heterogeneous or federated edge-cloud systems. 

Despite its robust performance in smaller-scale settings, 

ACO may be susceptible to parameter sensitivity as 

system size increases. 

• Scalability and Stability: Both PSO and GRAH show 

stable outcomes in large-scale scenarios, so they could 

also be appropriate in heterogeneous or federated edge-

cloud infrastructures. However, in small-scale scenarios, 

ACO could yield good results, but in large-scale 

scenarios, it could also face stability issues regarding 

parameters. 

As an aggregate, these tradeoffs imply that criterion-

driven selection for heuristics is required in the sense that 

static workload scenarios could be better suited for either 

HEFT or Min–Min, while other scenarios could be appropriate 

for either ACO, PSO, or GRAH algorithms. The 

aforementioned interpretation transcends specific scores in 

understanding each type of heuristic in relation to its 

operational scenarios in edge-cloud architecture. 

6.7. Comparison with Existing Surveys 
Almost all the previous literature reviews on workload 

scheduling in cloud, fog, or edge setups [3-8] investigated 

different paradigms in terms of algorithms, including 

heuristics, meta-heuristics, and AI-based approaches, with a 

wide-ranging taxonomy. Still, they discussed heuristics in a 

supporting role only, lacking a separate performance-centric 

comparison in their scope. The current literature review is 

different in the sense that it concentrates only on heuristics for 

workload scheduling in edge-cloud hybrid setups, with an 

organized synthesis on six different criteria: latency, energy 

efficiency, scalability, adaptability, computational cost, and 

implementation ease. 

7. Challenges and Future Directions 
Despite the significant advancements in edge-cloud 

computing using heuristics for the scheduling approaches, 

there remain some open issues yet to be addressed. The 

following issues represent rich areas for research with respect 

to improving adaptability, efficiency, and scalability in 

managing edge cloud workloads. 

7.1. Key Challenges 

• Less adaptability in dynamic Environments: Heuristics 

that belong to the classical category, for instance, HEFT, 

Min–Min, and Max–Min, were traditionally designed for 

static environments only. Edge-cloud computing, on the 
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other hand, is a dynamic environment with fluctuating 

workloads, varying levels of network connectivity, 

changing workloads, and variable resource availability, 

limiting its effectiveness in such settings. 

• Suboptimal global scheduling from local decisions: 

Greedy heuristics are appreciated for their simplicity and 

low computational complexity, but they commonly make 

locally optimal decisions based only on their states in the 

nodes in question. In large-scale edge-cloud systems, 

locally made choices could potentially cause suboptimal 

global systems’ performance in terms of unbalanced load 

distribution, resource underutilization, and starvation in 

some nodes. 

• Higher computational cost in Metaheuristics: 

Metaheuristics like PSO and ACO offer strong flexibility 

and multi-objective optimization capabilities, but 

typically come with high computational and memory 

demands. This makes them unsuitable for deployment on 

lightweight, resource-constrained edge nodes-especially 

in real-time or latency-sensitive applications-unless 

adapted or hybridized for efficiency. 

7.2. Future Research Directions 

• Design of Adaptive Heuristics: In future research, 

designing context-aware and adaptive heuristics for 

handling varying levels of workloads and availability 

nodes while incorporating user mobility into the design 

would be beneficial to enhance the responsiveness and 

robustness of edge cloud systems. 

• Lightweight Metaheuristic Variants: Research should 

optimize and simplify metaheuristics like ACO and PSO 

by including techniques like parameter pruning or tuning 

with a set of greedy rules. This may help retain 

performance with reduced overhead costs for edge device 

deployment. 

• Hybrid Scheduling Approaches: One of the promising 

areas that can be explored is the design of hybrid 

schedulers with multiple objectives by combining the 

power of diverse heuristic algorithms; for instance, a 

combination of Min-Min with PSO or HEFT with Greedy 

Priorities. 

• Energy and SLA-Aware Extensions: Enhancing 

traditional heuristics with capabilities like energy-

awareness, battery management, and Service Level 

Agreement (SLA) compliance would significantly 

improve their practicality and long-term viability in real-

world edge computing environments. 

In conclusion, despite the immense potential of heuristic 

algorithms for scheduling in future edge cloud designs, real-

world challenges such as adaptability, scalability, and 

resource awareness necessitate further research.  

This includes developing lightweight, adaptive 

algorithms, modifying metaheuristics for edge environments, 

and integrating energy and SLA awareness into existing 

heuristic frameworks. This precise guidance creates a distinct 

heuristic structure that can adapt and schedule according to the 

complex performance demands of emerging edge–cloud 

systems. 

7.3. Ethical and Societal Considerations 

With the increasing complexity of edge–cloud computing 

infrastructure, ethical concerns become increasingly 

significant. Scheduling tasks influences where and how 

sensitive data-such as personal or medical information—is 

processed, thereby raising concerns about privacy and 

security. It is essential that heuristic algorithms adopt secure 

data-handling protocols to uphold user trust and meet 

regulatory standards. 

An additional ethical dimension pertains to energy 

consumption and sustainability. It should be noted that edge 

devices and data centers contribute to carbon emissions; 

therefore, the design of energy-efficient scheduling is both a 

technical necessity and an ethical obligation toward 

environmentally responsible computing. 

In addition, heuristic and hybrid scheduling algorithms 

might unintentionally inject bias or unfairness in resource 

allocation, benefiting some users, devices, or regions at the 

expense of others. It is imperative that scheduling policies be 

transparent and auditable, particularly in mission-critical 

domains such as healthcare and autonomous transportation. 

Finally, as edge-cloud infrastructures operate across 

jurisdictions, schedulers must comply with regulatory and 

compliance frameworks, among which are the General Data 

Protection Regulation (GDPR) or the Health Insurance 

Portability and Accountability Act (HIPAA). To address these 

concerns, interdisciplinary research is necessary. This 

research must combine technical efficiency with ethical 

accountability. The objective is to ensure trustworthy 

workload orchestration in real-world deployments. 

8. Conclusion 
Heuristic workload scheduling is among the most critical 

performance optimization aspects in edge-cloud computing 

platforms.  Due to the increasing requirements for ultra-low 

latency, energy efficiency, and scalability, the development of 

lightweight yet efficient scheduling algorithms has become 

increasingly challenging. This paper presents a structured 

review of heuristic scheduling strategies. The heuristic 

scheduling strategies are categorized into three classes: 

simple, metaheuristic, and hybrid. The paper also analyzes 

several representative algorithms, including HEFT, ACO, 

PSO, Min–Min/Max–Min, and GRAH. These algorithms are 

analyzed across six performance criteria: latency, energy 

consumption, scalability, adaptability, computational cost, 

and implementation ease. The comparative results indicate 

that GRAH achieves the most balanced performance, while 

ACO and PSO offer strong adaptability and energy 
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optimization at the expense of higher computational cost. In 

contrast, classical heuristics such as HEFT and Min–Min 

remain practical for static workloads but are less effective 

under dynamic or resource-constrained conditions. Despite 

these advantages, heuristic-based methods still face persistent 

challenges in real-time adaptability, multi-objective tradeoffs, 

and energy- and SLA-awareness within heterogeneous 

systems.  

To address these gaps, future research should: 

• Develop context-aware and adaptive heuristic 

frameworks capable of responding dynamically to 

workload fluctuations, mobility, and resource variability 

in real time. 

• Design lightweight variants of metaheuristics such as 

ACO and PSO by applying parameter tuning, 

dimensionality reduction, or integration with greedy 

strategies to make them feasible for resource-constrained 

edge nodes. 

• Integrate heuristics with AI-driven mechanisms, such as 

deep reinforcement learning, to enable predictive and 

self-optimizing scheduling that anticipates changes rather 

than merely reacting to them. 

• Incorporate energy-, SLA-, and fairness-aware extensions 

to ensure not only performance efficiency but also 

sustainability and equitable task distribution across 

distributed infrastructures. 

• Establish standardized benchmarking and simulation 

platforms for evaluating heuristic models under realistic 

hybrid edge–cloud scenarios, enabling consistent 

comparison and reproducibility. 

By pursuing these directions, future work can transform 

heuristic scheduling into a more adaptive, sustainable, and 

intelligent discipline, bridging the gap between lightweight 

decision-making and context-aware orchestration. This 

evolution will pave the way for robust, ethically responsible, 

and high-performance workload management of emerging 

edge–cloud systems.
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