
International Journal of Engineering Trends and Technology Volume 73 Issue 11, 39-50, November 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I11P104 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Heuristic-Based Workload Scheduling Approaches in

Edge-Cloud Environments: A Review

Hasnae NOUHAS1*, Abdessamad BELANGOUR1, Mahmoud NASSAR2

1Laboratory of Artificial Intelligence and Systems, LAIS, Hassan II University, Faculty of Sciences Ben M’sik, Casablanca,

Morocco.
2IMS Team, ADMIR Laboratory, ENSIAS, Rabat IT Center, Mohammed V University in Rabat, Rabat, Morocco.

*Corresponding Author : hasnae_nouhas@um5.ac.ma

Received: 01 July 2025 Revised: 29 October 2025 Accepted: 03 November 2025 Published: 25 November 2025

Abstract - Edge-cloud computing architecture has become appropriate and promising to satisfy the performance requirements

of resource-intensive and latency-critical applications. Effective scheduling of workload serves the purpose of exploiting the

distributed, heterogeneous, and dynamic characteristics of these environments. Among the developed approaches, heuristic-

based scheduling methods are important due to the low level of complexity and practical merit they present in real-time and

resource-limited environments. Heuristic-based workload scheduling methods are the center of focus of this paper. Present

methods are classified into simple heuristics, metaheuristics, and hybrid schemes, and surveyed on prominent examples of HEFT,

ACO, PSO, Min-Min/Max-Min, and Greedy Resource-Aware algorithms. Each of these is put through the prism of the scheduling

objectives, benefits, and their tradeoff on various executed metrics like latency, energy efficiency, and flexibility. Though these

strategies are beneficial, the issues associated with their usability for dynamic applications and multi-objective scenarios are

prominent. Important research gaps are listed along with proposed future works, including adaptations, energy-oriented, and

lightweight scheduling models. Of even higher value, it is notable to recognize the growing interest in the application of AI-

based schemes, which have the potential to enhance heuristic-based scheduling once integrated into hybrid systems. This survey

aspires to present the convenient go-to thesis of the researcher tackling the challenge of creating a productive workload

scheduling design in the edge-cloud infrastructures.

Keywords - Cloud computing, Edge computing, Workload scheduling, Heuristic Algorithms, Metaheuristic Algorithms.

1. Introduction
Massive-scale deployments of Internet of Things (IoT)

devices and emerging applications, which are latency-

sensitive and highly data-intensive, have given rise to the

formation of edge-cloud computing paradigms. In this

approach, computation occurs at the edge nodes, which are

closer to data sources and remote cloud servers, resulting in

greater responsiveness, reduced bandwidth costs, and

improved scalability. Applications, such as real-time video

analytics, self-driving cars, and intelligent health care

systems, are increasingly including this hybrid infrastructure

so as to satisfy excessive Quality of Service (QoS) and Quality

of Experience (QoE) constraints [1]. Workload scheduling,

which falls among the major issues in these environments,

defies decisions on where, how, and when the computing tasks

must be executed on the distributed and heterogeneous

resources. Edge-cloud infrastructure is more challenging than

the traditional cloud-based infrastructure due to the role of the

more dynamic network scenarios, constrained edge resources,

and the non-stationary end-users [2]. Smart scheduling must

make the proper balance between the competing ends like

latency, energy, resource, and SLA fulfillment. Poor

scheduling in edge–cloud environments can have serious

consequences in real-world systems. For example, in

autonomous vehicles, inadequate scheduling (e.g., suboptimal

offloading, task dropping) can lead to safety risks: a recent

study in Vehicular MEC demonstrated that poor scheduling

under fixed bandwidth leads to dropped tasks and elevated

latency, whereas optimized scheduling avoids task drops and

significantly lowers delay, improving system reliability [3]. In

vehicular edge computing, schemes that neglect latency or

privacy constraints often underperform: one approach that

jointly considered these metrics improved QoS by about 55%

relative to state-of-the-art baselines [4].

In healthcare systems, delays in task scheduling for

wearable sensor data (such as monitoring and diagnostics) can

lead to misdiagnoses, slower response times, or worse patient

outcomes. The review Edge Computing in Healthcare:

Innovations, Opportunities… shows that real-time decision-

making, offloading, and privacy are central issues, and that

many healthcare IoT applications are currently constrained by

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hasnae_nouhas@um5.ac.ma

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

40

delays in processing or communication [5]. In another

experiment on mobile edge computing in patient monitoring,

it is illustrated how the combination of MEC + 5G decreases

latency in the data flows of healthcare sensors but also reveals

how inadequate bandwidth/resource scheduling continues as a

bottleneck [6].

In the same way, for large-scale edge case deployments,

studies of balancing latency and energy constraints for

heterogeneous networks indicate that suboptimal scheduling

could cause unacceptable latency or high waste of energy. On

the positive side, optimized scheduling can decrease latency

by tens of milliseconds as well as enhance energy efficiency

to a significant extent [7]. Such cases highlight the urgent

necessity for efficient as well as adaptive scheduling

approaches in edge–cloud environments.

There are numerous approaches to scheduling issues, but

heuristic methods are very fashionable due to their simplicity

of application, as well as processing, along with adaptability.

Rather than exact optimization algorithms that can be costly

in terms of time and processing, heuristics offer near-optimal

answers with less time invested, which is suitable for many

real-time applications where resources are scarce. For

example, the Heterogeneous Earliest Finish Time (HEFT)

algorithm has been extensively adopted for task scheduling in

heterogeneous systems. In more recent publications, there are

known efforts that use hybrid methods that involve combining

neural network-based approaches and heuristic policies to

enhance scheduling performance in edge-cloud environments

[8].

However, despite the growing body of research, existing

surveys and reviews often consider heuristics as part of a

broader taxonomy that includes optimization and AI-driven

approaches. As a result, there is no dedicated and systematic

survey that thoroughly examines workload scheduling, which

is based on heuristics in edge cloud systems. This gap renders

it hard to compare algorithms reliably, detect their tradeoffs,

and trace their adaptability to edge-specific challenges like

workload dynamics, energy constraints, and heterogeneous

resources. This survey intends to present a systematic and

focused survey of heuristic-based workload scheduling

strategies in edge-cloud infrastructure. The goal of this paper

is to:

• Categorize heuristic algorithms into three types: simple

heuristics, metaheuristics, and hybrid heuristic

approaches.

• Analyse and compare representative schemes on various

performance metrics, i.e., latency, energy efficiency,

scalability, adaptability, computation overhead, and ease

of implementation.

• Determine the strengths, limitations, and tradeoffs of

these strategies relative to the requirements of the edge

cloud.

• Highlight research gaps and propose directions for

developing adaptive, energy-aware, and lightweight

heuristic scheduling models.

• Elucidate research voids and put forward future directions

toward the development of adaptive, energy-aware, and

lightweight heuristic scheduling models.

These are the subsequent research questions that have

been raised towards the fulfillment of the stated purpose:

• RQ1: What are the key heuristic algorithms used for

workload scheduling in edge cloud environments, and

how can they be systematically categorized?

• RQ2: How do these heuristic methods perform with

respect to critical performance metrics, including energy

efficiency, latency, adaptability, scalability,

computational cost, and implementation ease?

• RQ3: What are the tradeoffs and limitations of existing

heuristic scheduling methods in addressing the dynamic,

heterogeneous, and limited-resource nature of edge-cloud

environments?

• RQ4: What are the open research challenges, and how can

future heuristic strategies (simple, metaheuristic, or

hybrid) be designed to improve workload scheduling in

edge–cloud environments?

This paper fills the noted research gap by the following:

• Classification of heuristic scheduling approaches into

three classes: simple heuristics, hybrid heuristic

strategies, and metaheuristics.

• Detailed examination of representative algorithms, such

as HEFT, Min-Min/Max-Min, ACO, PSO, and Greedy

Resource-Aware heuristics.

• Comparison of the chosen methods according to latency,

energy efficiency, scalability, adaptability, computational

cost, and implementation ease.

• Research gap and future trend identification, focusing on

adaptive, lightweight, and energy-aware heuristic models

for future-edge cloud systems.

In contrast to earlier surveys, where heuristics are covered

as a subsidiary section within expansive literature reviews of

cloud, fog, or edge scheduling [8-13], this paper gives the

primary committed and systematic survey solely dedicated to

the topic of workload scheduling based on heuristics in the

field of edge-cloud systems. This paper has originality in three

folds:

• Scope specificity: While current reviews contemplate

numerous scheduling approaches’ families (optimization,

AI, heuristics, etc.), this survey focuses only on heuristic

algorithms (simple, metaheuristic, and hybrid heuristic

strategies) and their application to the edge–cloud

scenarios.

• Comparative depth: In contrast to earlier studies that

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

41

provide descriptive overviews, this paper delivers a

structured comparative evaluation across six performance

criteria: latency awareness, energy efficiency, scalability,

adaptability, computational cost, and implementation

ease.

• Gap addressing: The paper points to untouched

challenges of heuristics in edge–cloud like adaptability

for mobility, energy awareness for resource-limited

nodes, and lightweight metaheuristic design, and suggests

specific directions for future research.

The rest of this paper is organized as follows. Section II

discusses the related work on workload scheduling of the edge

cloud. Section III gives the required background and gives the

formal definition of the scheduling issue. Section IV gives an

overview of heuristic scheduling algorithms, and Section V

outlines some representative algorithms and their real-world

applications. Section VI gives a comparison of these

algorithms. Section VII outlines the major challenge and

indicates the future promising works, and finally, Section VIII

summarizes the paper with the major insights.

2. Related Work
Extensive reviews have appeared on the topic of task

scheduling under the paradigm of edge-cloud, and hundreds

of survey and review papers have appeared evaluating the vast

range of methods, including heuristic, metaheuristic,

optimization-based, and machine learning-based approaches.

However, these reviews are of varying scope and depth, and

they seldom present an in-depth review of the heuristic-based

approaches only. Paper [8] presented one of the earliest

surveys of heuristic algorithms, but they only considered

cloud computing infrastructures. Though it can be useful

towards classical algorithms like Min–Min/Max–Min and

HEFT, it fails to consider edge-cloud-related issues like

heterogeneity, dynamic workloads, and latency-conscious

applications. However, the latest studies have given increased

focus on hybrid and AI-based scheduling. Paper [9] put

forward the idea of a deep learning-based heuristic scheduler

by hybridizing PSO and the Firefly Algorithm, improving the

run of resource-intensive IoT tasks for cloud systems. Paper

[10] examined IoT task scheduling under the scenarios of edge

and fog computing and observed that classical metaheuristics

like NSGA-II and NSGA-III usually suffer from the

restriction of scalability and adaptability.

To overcome these shortcomings, they presented DRLIS,

a scheduler based on Deep Reinforcement Learning, which

showed better convergence and optimization ability than

classical methods. Several surveys have considered broader

viewpoints on scheduling. Paper [11] classified scheduling of

the edge–cloud setting into heuristic, metaheuristic, and

optimization-based families, and additionally considered

Quality-of-Service (QoS) demands and fault tolerance. Paper

[12] presented a comprehensive survey of resource scheduling

in the edge computing setting and covered key topics of task

offloading, resource scheduling, and resource provisioning

approaches. Paper [13] covered heuristic scheduling of the fog

computing setting, and presented greedy, priority-based, and

nature-inspired heuristics, and hybrid heuristic approaches,

and focused on energy and resource constraints.

Although these works are contributory, they generally

consider the heuristics as only one of the numerous categories,

but not the core of the study. None of these gives a systematic

survey containing the followings: (i) classifying the heuristic

strategies as simple, metaheuristics, and hybrid strategies; (ii)

providing balanced comparison of the most significant

performance aspects like latency, energy efficiency,

scalability, adaptability, computational cost, and

implementation complexity; and (iii) identifying outstanding

issues inherent to heuristic scheduling for hybrid edge-cloud

environments. This work fills this gap by narrowly focusing

on heuristic-based workload scheduling. This paper offers a

structured coverage and analysis of representative algorithms

for key criteria, with a predominantly illustrative perspective

on research directions, underpinning interest in adaptive,

lightweight, or energy-aware heuristic models for edge cloud

environments.

However, a big gap still prevails in the literature. Either

they are:

• Concentrates on cloud or fog computing but fails to

consider specific edge cloud integration constraints,

• Focus on AI-based approaches, but ignore classical

heuristic approaches, or

• Give a descriptive summary rather than a systematic,

comparative assessment for a variety of important

performance criteria, such as latency awareness,

scalability, energy efficiency, and implementation

complexity.

This paper will fill this gap by being the first systematic

literature review on workload scheduling with a basis on

heuristic approaches conducted for edge clouds. Unlike other

existing literature reviews, this paper will classify heuristic

approaches into three categories, which include simple

heuristics, metaheuristics, and hybrid heuristic strategies, in

order to perform a fair analysis that will compare different

approaches, with comprehensive quantitative insights taken

from existing literature that will validate any qualitative

assessments made. This specialized view will not only shed

insight on where heuristics belong in hybrid architectures but

will also point out some possible uses for heuristics with AI.

3. Background
3.1. Edge-Cloud Architecture Overview

Edge cloud computing forms a hybrid model that

amalgamates two stages of computing infrastructure: edge

nodes that are geographically close to data-generating

resources, such as IoT sensors, as well as cloud servers that

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

42

have high compute capabilities. It is the type of data center

hierarchy where data processing could be assigned for

different sites, dependent on the applications’ latency as well

as resource requirements. It runs on the edge layer for latency

and bandwidth-sensitive tasks, as well as in the cloud for

computation-intensive processes, along with long-term data

storing. It enhances the responsiveness, reduces data

transmission overheads, and enhances scalability and fault

tolerance in distributed systems [14].

3.2. Workload Characteristics

Workloads in edge-cloud environments are extremely

heterogeneous, derived from various sources, including sensor

types, mobile devices, cameras, and industrial robots.

Workload differs in terms of computation intensity, latency

sensitivity, data volume, and frequency. Also, the arrival of

the workload is dynamic and unpredictable, making the

scheduling decisions at run time critical. Schedulers need to

consider different factors such as available resources, network

states, as well as application priority, so as to guarantee service

level objectives [15].

3.3. Scheduling Objectives

Scheduling workloads in Edge-Cloud requires

considering as well as balancing several competing objectives:

• Latency Minimization: One of the key factors that makes

edge computing more attractive for implementation is

that it promotes latency minimization. Adjusting

scheduling algorithms must aim at delegating more tasks

near the data origin to minimize the round-trip time [16].

• Enhancing Energy Efficiency: Typically, edge devices

are employed in a power-restricted environment, which

may cause edge devices to run out of power. Scheduling

algorithms must avoid excessive data transfer and avoid

overloading power-restricted nodes [11].

• Load Balancing: In order to avoid resource loading on

certain nodes, whereas others are underloaded, it is

recommended that schedulers use equal task distribution.

This helps in maintaining steady performance, improving

system throughput, and reducing execution time [15].

• Quality of Service (QoS)/Quality of Experience (QoE):

Almost every application requires certain guarantees, for

example, on-time execution, guaranteed availability, and

accurate data. For this purpose, scheduling needs to

respect Service Level Agreements (SLAs), with a good

QoE at the same time [15].

3.4. Limitations of Traditional Scheduling Approaches

Conventionally, schedulers employed in cloud

computing, designed based upon static policies or

deterministic approaches, are not suited for edge cloud since

they react rigidly to changes occurring in real time, consuming

high computation resources, having high overhead in

resources with a large number of edge nodes as well as mobile

devices, and being centralized, with high communication

overhead and lack of fault tolerance. It indicates a need for a

lightweight, adaptive, and decentralized scheduler, for which

these approaches based upon heuristics had immense promise

[11, 17].

4. Heuristic-Based Scheduling Approaches

Classification
Heuristic scheduling algorithms are crucial for managing

the dynamic nature of workloads that edge clouds exhibit.

Figure 1 below shows that there are three categories under

which heuristic scheduling algorithms are classified, including

simple heuristics, metaheuristics, and hybrid heuristics.

4.1. Simple Heuristics

Simple heuristics refer to techniques that use rules for

decision-making in relation to scheduling, based on a set of

predefined rules. Simple heuristics are computationally

optimal and perform best in real-time systems [18]. Simple

heuristics include:

• First-Come, First-Served (FCFS): processes are allocated

based on the order of arrival, regardless of system

conditions, independent of individual needs. FCFS is

simple. It may suffer from inefficiencies, resource

wastage, and delays [19].

• Shortest Job First (SJF): This scheduling technique

involves selecting processes that require the shortest

execution time to minimize waiting time [19]. One major

problem with this technique may lie in estimating task

lengths.

• Min-Min and Max-Min: These schedules choose the tasks

having minimum or maximum complete time,

respectively, for optimization of overall scheduling

efficiency [18].

• Round Robin (RR): Assigns time slices for individual use

on a cycle basis in an attempt to be fair, but with the

benefit of potentially less context-switching overhead

[18].

4.2. Metaheuristics

Fig. 1 Classification of heuristic scheduling approaches

Metaheuristics are higher-level procedures for the

optimization of exploration of the solution space. They

become employable for complex optimization problems, such

as task scheduling for edge-cloud systems. Major techniques

that fall into the category of metaheuristics are as follows.

Heuristic-Based Workload
Scheduling Approaches

Simple Heuristic
Approaches

Metaheuristic
Approaches

Hybrid
Approaches

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

43

• Genetic Algorithm (GA): Genetic selections provide

inspiration for Genetic Algorithms (GAs) owing to the

application of mechanisms such as selection, crossover,

and mutation by genetic algorithms for evolving a

solution over several generations. Though genetic

algorithms are helpful in addressing much larger problem

sizes, they consume a lot of computational power [20].

• Particle Swarm Optimization (PSO): Its Individuals are

modeled as particles that move in a solution space, where

the change in the position of a particle occurs based on

both individual and global past experience. It is clear that

both simplicity and fast convergence speed are built into

PSO models [20].

• Ant Colony Optimization (ACO): This method rests on

the premise of simulating ant foraging behavior.

Pheromone trails are employed as a technique for

building solutions that address combinatorial problems in

artificial ant foraging behavior studies [21].

• Simulated Annealing (SA): Its inspiration comes from the

heating and cooling treatment of metals. The model

makes suboptimal decisions to avoid reaching a local

minimum, which facilitates a more efficient resolution of

challenging scheduling problems [20].

Recent studies have utilized various metaheuristic

techniques to enhance scheduling efficiency in cloud and edge

environments. For example, one study employed ACO to

compute a fitness function and balance multiple scheduling

objectives, demonstrating its usefulness in addressing

complex problems. Another study adapted the firefly

algorithm for workflow scheduling across cloud–edge

systems, making improvements in both makespan and cost

[21, 22].

4.3. Hybrid Heuristics

Hybrid heuristics are a combination of various heuristic

or metaheuristic strategies with the goal of benefiting from

their respective strengths and mitigating their respective

weaknesses. Hybrid strategies have been employed to address

the complex task scheduling problem within edge–cloud

systems.

As an example, a hybrid metaheuristic algorithm was

proposed for IoT service placement with the optimization of

such factors as makespan, cost, and energy usage [20]. While

metaheuristics and hybrid approaches themselves may not be

AI-driven, they belong to the family of heuristic-based

approaches. Incorporating machine learning or neural

components into these systems, however, is the path toward

AI-driven scheduling.

5. Representative Heuristic Approaches
This section reviews heuristic and metaheuristic methods

used for workload scheduling in edge-cloud computing. The

subsequent subsections describe the selection process and the

reasoning behind the chosen algorithms.

5.1. Methodology for Algorithm Selection

The selection of representative algorithms followed a

structured process designed to ensure relevance, diversity, and

coverage across the main categories of heuristic-based

scheduling. The process was guided by a review of peer-

reviewed studies published between 2018 and 2025, retrieved

from major digital libraries.

Only algorithms that were explicitly applied to edge, fog,

or edge–cloud scheduling were taken into account.

Additionally, it was ensured that each study evaluated:

• Proposed or analyzed a heuristic or hybrid heuristic

scheduling algorithm.

• Addressed at least one key performance objective,

including latency, energy efficiency, scalability, or

flexibility.

• Provided comparable or empirical results that enable a

systematic assessment based on certain criteria.

• Contained enough information about the implementation

or concept for analysis purposes.

• Addressed at least one key performance objective, like

latency, energy efficiency, scalability, or flexibility.

Studies focusing solely on exact optimization algorithms,

deep learning, or cloud scheduling were not considered, as

were domain-specific solutions that are not generally

applicable.

This ensured that generally applicable heuristics for edge

cloud environments are encompassed by the selected

algorithms.

5.2. Justification of Selection

On the basis of this, we chose five algorithms that

represent:

• HEFT: A classic static heuristic widely employed in

heterogeneous and edge platforms.

• Min-Min, Max-Min: Lightweight heuristics that are still

benchmark algorithms in heterogeneous scheduling

problems.

• ACO: Metaheuristic based on swarm intelligence, suited

for multi-objective optimization for edge-cloud systems.

• PSO: A metaheuristic valued for balancing global and

local search, adaptable to dynamic conditions.

• GRAH: Modern heuristics explicitly designed for

dynamic, resource-constrained edge–cloud

environments.

Though other techniques, including Genetic Algorithms

(GA), Cuckoo Search (CS), Simulated Annealing (SA),

Artificial Bee Colony (ABC), Tabu Search (TS), or Grey Wolf

Optimizer (GWO), among others, also satisfy the criteria for

inclusion, we restrict this work to this set for clarity. All of

them encompass the diversity of heuristic approaches:

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

44

• Simple heuristics: HEFT, Min-Min, and Max-Min.

• Metaheuristics: ACO and PSO.

• Hybrid/resource-aware heuristics: GRAH.

This representative set allows for a systematic evaluation

across latency, energy efficiency, scalability, adaptability,

computational cost, and implementation ease.

5.3. Heterogeneous Earliest Finish Time (HEFT)

The HEFT algorithm, a classic static algorithm, was first

developed for task scheduling in heterogeneous computing

environments. This algorithm gives more priority to tasks with

upward ranks, which assign a task to a processor in such a way

that it gets completed as early as possible. Because of its

effectiveness in minimizing makespan with high efficiency,

HEFT has been largely used in edge cloud environments [18].

But the major drawback of this algorithm was that it was a

static algorithm, which neither offered dynamic rescheduling

[23] nor considered power consumption, which was a concern

for edge clouds [24].

5.4. Ant Colony Optimization (ACO)

ACO is a metaheuristic that was inspired by ant foraging

behavior, in which virtual ants probabilistically search task

allocations with the aid of pheromone trails that stand for the

quality of previous solutions found. Its main strength resides

in improving multi-objective scheduling in a dynamic edge

cloud environment, thanks to its flexibility in adapting to

changing network conditions [22]. In contrast, ACO also has

some weaknesses. For instance, its most elementary form

remains capable of addressing just a relatively small problem

instance, such as the Traveling Salesman Problem with a small

number of graph vertices, with high memory complexity,

usually O(n²) [25]. In addition, ACO is parameter-sensitive,

not scalable for large-scale data, and not suitable for real-time

deployment [26].

5.5. Particle Swarm Optimization (PSO)

PSO approaches task scheduling as a problem involving

swarm intelligence, with particles indicating possible

solutions that move in a search space with an understanding

of both personal and social learning [20]. PSO has already

been validated for edge-cloud architectures, including task

scheduling with latency and energy considerations, as well as

for large-scale or dynamically changing workloads [18]. One

major reason for its widespread adoption is its ease of use

while handling non-linear, multi-modal functions, as well as

its flexibility in being applicable to different scheduling,

resource assignment, and feature selection problems [24].

Nevertheless, its computational complexity varies with

respect to its number of particles, dimension, and iterations,

having a time complexity of O(n × d × t) [27].

5.6. Min-Min and Max-Min Heuristics

These are common but straightforward list scheduling

methods:

• Min-Min algorithm selects a task with minimum

execution time for a resource, making it useful in

scenarios that consist of more smaller tasks, as it helps in

reducing waiting time as well as speedy execution [28,

29]. However, its major drawback might result in large

tasks being delayed, as they are usually given lower

priorities, which leads to a queue of larger tasks being

formed [29].

• Max-Min: This algorithm chooses a task with maximum

minimum completion time, which will be allocated to a

node that completes it first. It prevents larger tasks from

being perpetually blocked by smaller tasks, making it

more suitable for a heterogeneous environment with

nodes having different capabilities, with a variety of task

resource needs. However, it faces inefficiencies if there

are mostly smaller tasks, which may get excessively

delayed [29].

Such techniques are most useful in situations where

workload sizes and complexities are varied, thus being

applicable for heterogeneous edge cloud settings [18]. In most

cases, such algorithms rely on static decision-making,

meaning they are not able to adjust to changes in task rates,

availability, or system load [29]. Besides, such heuristics may

rely on static task execution time estimates, independent of

device power state or energy, hence being ineffective, for

instance, in settings that require task execution under certain

power levels.

5.7. Greedy Resource-Aware Heuristics

Some research has introduced custom greedy algorithms

that schedule the tasks according to system measurements like

the load on the CPU, the usage of memory, or energy levels.

Some heuristics, for example, schedule tasks on the closest

node with enough resources for the purpose of reducing the

latency of data transfer. These approaches are lightweight and

suitable for real-time edge scheduling [16].

Greedy Resource-Aware Heuristics (GRAH) are more

energy-efficient due to their dynamic awareness of node

conditions and adaptive, proximity-aware decisions, making

them ideal for energy-sensitive fog and edge environments. In

general, they are valued for their simplicity and speed, as they

base decisions solely on the current system state without

considering future tasks or conditions [29]. Yet, in a

dynamically changing context such as fog computing, they

may find it difficult to produce overall globally optimal results

since they concentrate more upon immediate gains, with no

attention towards changing system conditions [29]. This

notwithstanding, they perform best for real-time scheduling

and straightforward scenarios, providing practical and

efficient solutions in many edge-cloud contexts [13].

All such heuristic strategies represent a reflection of

different approaches that work towards task scheduling

optimization in edge cloud computing. Though they present

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

45

some individual merits as well as pitfalls, they collectively

form a major development phase for more efficient scheduling

approaches.

6. Comparative Analysis of Heuristic Algorithms
This section presents a comparative study of different

workload scheduling algorithms based on heuristics for edge

clouds. This will help to assess different strengths and

weaknesses that exist between various algorithms with respect

to meeting edge cloud requirements. The comparison will be

done with respect to some key factors that are important in

edge-cloud systems, such as latency awareness, energy

efficiency, scalability, adaptability, computational cost, and

simplicity of implementation [18, 30].

6.1. Evaluation Criteria

Table 1 defines six evaluation criteria used to assess the

selected algorithms.

Table 1. Comparison criteria

Criterion Abbreviation Description

Latency Awareness LA
Ability to minimize task response time and satisfy real-time performance

constraints [30].

Energy Efficiency EE
Capacity to reduce and optimize energy consumption, particularly at resource-

constrained edge nodes [28].

Scalability S Capability to maintain performance as the number of tasks or nodes increases [30].

Adaptability A
Flexibility to operate effectively under dynamic workloads and changing network

conditions [30].

Computational

Cost
CC Overhead imposed by the algorithm itself (low cost is preferred at the edge [28].

Implementation

Ease
IE Practicality and simplicity of integration into real-world systems

6.2. Systematic Summary of Heuristic Scheduling Methods

This subsection gives a structured synthesis of the

representative heuristic algorithms described in Section 5,

summing up their most important performance criteria.

All algorithms are evaluated with respect to six key

factors: Latency Awareness, Energy Efficiency, Scalability,

Adaptability, Computational Cost, and Implementation Ease.

Table 2 synthesizes insights gleaned from more recent studies,

involving a set of qualitative assessments that are backed by

references with a description of algorithm behavior under a

hybrid edge-cloud environment.

This enables a clear understanding of how various classes

of heuristics, including simple, metaheuristic, or hybrid,

handle the multi-objective nature of scheduling, besides

illuminating typical weaknesses related to being static or

having high computational overhead. For a complementary

perspective to this summary based on scientific evidence,

Table 3 below provides a straightforward comparative table,

which translates descriptive results into a standardized scale

of ratings (very low, low, moderate, good, very good) for a

more comparable result between algorithms. This

standardized scoring system will form a basis for analysis in

Section 6.4.

6.3. Comparison of Scheduling Algorithms in Edge-Cloud

Systems

In this section, each algorithm has been assigned a value

on a scale from very low to very good per criterion, where very

low represents the weakest performance and very good

indicates the strongest.

This scoring approach provides a structured and

consistent way to assess the strengths and limitations of each

algorithm across key factors relevant to hybrid edge–cloud

computing, and it is based on evidence reported in the

literature. Table 3 summarizes the performance ratings.

Table 2. Systematic comparison of heuristic algorithms across key performance criteria in edge–cloud scheduling (based on Section 5)

Algorithm LA EE S A CC IE

HEFT

Minimizes

makespan

effectively

(moderate)

[18]

Ignores

energy

(low)

[24]

Well-suited for

heterogeneous

systems

(good) [18]

Static, no

rescheduling

(very low)

[23]

Ranking-

based,

efficient

(good)

[18]

Simple &

widely

adopted

(good) [18]

ACO

Multi-

objective

optimization

reduces

Energy-

aware

variants

exist

Limited

scalability

(good) [25]

Adapts to

changing

environments

(very good)

High O(n²)

complexity

(very low)

[25]

Parameter-

sensitive,

complex

(low) [26]

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

46

latency

(very good)

[22]

(very

good)

[22]

[22]

PSO

Reduces task

delays

(reasonable)

[18]

Efficient

allocation

(good)

[18]

Large-scale

applicability

(very good)

[24]

Moderately

adaptive

(moderate)

[27]

O(n × d × t)

cost

(moderate)

[27]

Relatively

simple

(reasonable)

[20]

Min-

Min/Max-

Min

Handles

small/large

tasks but

unbalanced

(moderate)

[28]

No energy

model

(low)

[29]

Useful in

heterogeneity

(moderate)

[29]

Static & rigid

(very low)

[29]

Very

lightweight

(very

good) [28]

Extremely

easy (very

good) [28]

GRAH

Proximity-

aware

scheduling

(very good)

[16]

Energy-

aware &

dynamic

(very

good)

[29]

Scales to large

real-time

systems (very

good) [13]

Adapts to state

but not long-

term

(moderate)

[29]

Lightweight

& efficient

(good)

[16]

Simple but

case-

specific

(moderate)

[13]

Table 3. Comparative evaluation of heuristic scheduling algorithms in edge–cloud systems

Algorithm LA EE S A CC IE

HEFT moderate low good Very low good good

ACO Very good Very good good Very good Very low low

PSO good good Very good moderate moderate good

Min-Min / Max-Min moderate low moderate Very low Very good Very good

GRAH very good Very good Very good moderate good moderate

Fig. 2 Comparative bar chart of heuristic scheduling algorithms through six performance metrics

6.4. Graphical Representation of Comparative Results

For improving clarity as well as meeting visual analysis

needs, Figure 2 plots a bar graph for a comparative result of

Table 3. This graphical representation helps in speedy

identification of tradeoffs in addition to easy understanding of

strengths relevant to each algorithm related to hybrid edge

clouds, as indicated by six criteria with an ordinal scale rating

of 1–5, starting with Very low as 1 and culminating with Very

good as 5. As shown in Figure 2, both GRAH and ACO have

high performance with respect to latency, energy, and

scalability, whereas PSO shows high scalability with balanced

results. On the other hand, although HEFT and Min-Min/Max-

Min remain simple with low computational overhead, they are

non-adaptive and lack energy-awareness in dynamic

environments.

6.5. Observations and Insights

Based on the comparison, Greedy Resource-Aware

Heuristics demonstrate the most balanced performance across

all criteria, combining strong latency awareness, energy

0

1

2

3

4

5

6

LA (Latency

Awareness)

EE (Energy

Efficiency)

S (Scalability) A (Adaptability) CC

(Computational

Cost)

IE

(Implementation

Ease)

Comparative bar chart of heuristic scheduling algorithms

HEFT ACO PSO Min–Min / Max–Min GRAH

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

47

efficiency, and scalability, while maintaining a comparatively

low computational cost and moderate implementation

complexity. ACO performs well on latency and energy

optimization and can adapt easily to different conditions.

However, due to a high level of computational complexity and

a lower ease of implementation, it may not be appropriate for

edge settings. PSO performs with a stable level of quality;

more specifically, energy efficiency and good scalability are

achieved to a great extent. But for proper operation under

varying conditions, precise tuning of PSO algorithms is

needed. HEFT can also be applicable for handling static

workloads due to acceptable computational efficiency and

simple implementation. Its inadequacies lie in its lack of

awareness about energy consumption and flexibility. Lastly,

Min-Min and Max-Min are the least complicated out of the

four algorithms presented. They achieved the best results in

terms of both computational efficiency and implementation

complexity. They received the lowest results for both

flexibility and power efficiency.

In conclusion, Greedy Resource-Aware Heuristics

provide a fair optimization solution for a hybrid edge cloud

computing system, with notable latency reduction, energy

efficiency, and scalability with a minimal overhead cost. It

shows that ACO performs well in terms of its optimizing

capability, but its effectiveness will be affected since it

requires high computational demands. On the other hand, PSO

shows a fair level of efficiency with moderate flexibility. It

was established that both HEFT and Min-Min/Max-Min

perform well for non-dynamic resources, but they lack

adaptability as well as energy awareness needed for a dynamic

edge cloud scenario.

6.6. Cross-Criterion Insights and Tradeoffs
Table 2 and Table 3, which indicate the comparison

results, indicate definite patterns as well as certain

compromises between criteria in the selected heuristic

algorithms. Heuristics that perform best for a certain criterion

may compromise on other criteria, which indicates that no

algorithm performs best for all criteria.

• Latency vs. Computational Cost: Algorithms such as

ACO and GRAH have been shown to achieve significant

latency reduction due to their adaptive and search-based

design. However, this enhancement comes with an

increased computational overhead. Conversely, simple

heuristics such as HEFT and Min–Min are

computationally efficient but demonstrate reduced

efficacy in minimizing delay under dynamic workloads.

• Energy Efficiency vs. Ease of Implementation: It has been

proven that the algorithms that integrate dynamic or

energy-aware mechanisms, such as ACO, PSO, or

GRAH, perform well in terms of energy efficiency. But

such algorithms require more complicated parameter

tuning or system feedback, which may result in adverse

effects on deployment ease.

• Adaptability vs. Simplicity: On one side, metaheuristics

and hybrid approaches are described as being flexible,

adapting to workload changes, but they also bring

complexity with regard to design. On the other hand,

simple heuristics, being easy to implement, fail to handle

changes in real time effectively.

• Scalability and Stability: PSO maintains stable

performance as the system size grows, proving effective

for heterogeneous or federated edge-cloud systems.

Despite its robust performance in smaller-scale settings,

ACO may be susceptible to parameter sensitivity as

system size increases.

• Scalability and Stability: Both PSO and GRAH show

stable outcomes in large-scale scenarios, so they could

also be appropriate in heterogeneous or federated edge-

cloud infrastructures. However, in small-scale scenarios,

ACO could yield good results, but in large-scale

scenarios, it could also face stability issues regarding

parameters.

As an aggregate, these tradeoffs imply that criterion-

driven selection for heuristics is required in the sense that

static workload scenarios could be better suited for either

HEFT or Min–Min, while other scenarios could be appropriate

for either ACO, PSO, or GRAH algorithms. The

aforementioned interpretation transcends specific scores in

understanding each type of heuristic in relation to its

operational scenarios in edge-cloud architecture.

6.7. Comparison with Existing Surveys
Almost all the previous literature reviews on workload

scheduling in cloud, fog, or edge setups [3-8] investigated

different paradigms in terms of algorithms, including

heuristics, meta-heuristics, and AI-based approaches, with a

wide-ranging taxonomy. Still, they discussed heuristics in a

supporting role only, lacking a separate performance-centric

comparison in their scope. The current literature review is

different in the sense that it concentrates only on heuristics for

workload scheduling in edge-cloud hybrid setups, with an

organized synthesis on six different criteria: latency, energy

efficiency, scalability, adaptability, computational cost, and

implementation ease.

7. Challenges and Future Directions
Despite the significant advancements in edge-cloud

computing using heuristics for the scheduling approaches,

there remain some open issues yet to be addressed. The

following issues represent rich areas for research with respect

to improving adaptability, efficiency, and scalability in

managing edge cloud workloads.

7.1. Key Challenges

• Less adaptability in dynamic Environments: Heuristics

that belong to the classical category, for instance, HEFT,

Min–Min, and Max–Min, were traditionally designed for

static environments only. Edge-cloud computing, on the

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

48

other hand, is a dynamic environment with fluctuating

workloads, varying levels of network connectivity,

changing workloads, and variable resource availability,

limiting its effectiveness in such settings.

• Suboptimal global scheduling from local decisions:

Greedy heuristics are appreciated for their simplicity and

low computational complexity, but they commonly make

locally optimal decisions based only on their states in the

nodes in question. In large-scale edge-cloud systems,

locally made choices could potentially cause suboptimal

global systems’ performance in terms of unbalanced load

distribution, resource underutilization, and starvation in

some nodes.

• Higher computational cost in Metaheuristics:

Metaheuristics like PSO and ACO offer strong flexibility

and multi-objective optimization capabilities, but

typically come with high computational and memory

demands. This makes them unsuitable for deployment on

lightweight, resource-constrained edge nodes-especially

in real-time or latency-sensitive applications-unless

adapted or hybridized for efficiency.

7.2. Future Research Directions

• Design of Adaptive Heuristics: In future research,

designing context-aware and adaptive heuristics for

handling varying levels of workloads and availability

nodes while incorporating user mobility into the design

would be beneficial to enhance the responsiveness and

robustness of edge cloud systems.

• Lightweight Metaheuristic Variants: Research should

optimize and simplify metaheuristics like ACO and PSO

by including techniques like parameter pruning or tuning

with a set of greedy rules. This may help retain

performance with reduced overhead costs for edge device

deployment.

• Hybrid Scheduling Approaches: One of the promising

areas that can be explored is the design of hybrid

schedulers with multiple objectives by combining the

power of diverse heuristic algorithms; for instance, a

combination of Min-Min with PSO or HEFT with Greedy

Priorities.

• Energy and SLA-Aware Extensions: Enhancing

traditional heuristics with capabilities like energy-

awareness, battery management, and Service Level

Agreement (SLA) compliance would significantly

improve their practicality and long-term viability in real-

world edge computing environments.

In conclusion, despite the immense potential of heuristic

algorithms for scheduling in future edge cloud designs, real-

world challenges such as adaptability, scalability, and

resource awareness necessitate further research.

This includes developing lightweight, adaptive

algorithms, modifying metaheuristics for edge environments,

and integrating energy and SLA awareness into existing

heuristic frameworks. This precise guidance creates a distinct

heuristic structure that can adapt and schedule according to the

complex performance demands of emerging edge–cloud

systems.

7.3. Ethical and Societal Considerations

With the increasing complexity of edge–cloud computing

infrastructure, ethical concerns become increasingly

significant. Scheduling tasks influences where and how

sensitive data-such as personal or medical information—is

processed, thereby raising concerns about privacy and

security. It is essential that heuristic algorithms adopt secure

data-handling protocols to uphold user trust and meet

regulatory standards.

An additional ethical dimension pertains to energy

consumption and sustainability. It should be noted that edge

devices and data centers contribute to carbon emissions;

therefore, the design of energy-efficient scheduling is both a

technical necessity and an ethical obligation toward

environmentally responsible computing.

In addition, heuristic and hybrid scheduling algorithms

might unintentionally inject bias or unfairness in resource

allocation, benefiting some users, devices, or regions at the

expense of others. It is imperative that scheduling policies be

transparent and auditable, particularly in mission-critical

domains such as healthcare and autonomous transportation.

Finally, as edge-cloud infrastructures operate across

jurisdictions, schedulers must comply with regulatory and

compliance frameworks, among which are the General Data

Protection Regulation (GDPR) or the Health Insurance

Portability and Accountability Act (HIPAA). To address these

concerns, interdisciplinary research is necessary. This

research must combine technical efficiency with ethical

accountability. The objective is to ensure trustworthy

workload orchestration in real-world deployments.

8. Conclusion
Heuristic workload scheduling is among the most critical

performance optimization aspects in edge-cloud computing

platforms. Due to the increasing requirements for ultra-low

latency, energy efficiency, and scalability, the development of

lightweight yet efficient scheduling algorithms has become

increasingly challenging. This paper presents a structured

review of heuristic scheduling strategies. The heuristic

scheduling strategies are categorized into three classes:

simple, metaheuristic, and hybrid. The paper also analyzes

several representative algorithms, including HEFT, ACO,

PSO, Min–Min/Max–Min, and GRAH. These algorithms are

analyzed across six performance criteria: latency, energy

consumption, scalability, adaptability, computational cost,

and implementation ease. The comparative results indicate

that GRAH achieves the most balanced performance, while

ACO and PSO offer strong adaptability and energy

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

49

optimization at the expense of higher computational cost. In

contrast, classical heuristics such as HEFT and Min–Min

remain practical for static workloads but are less effective

under dynamic or resource-constrained conditions. Despite

these advantages, heuristic-based methods still face persistent

challenges in real-time adaptability, multi-objective tradeoffs,

and energy- and SLA-awareness within heterogeneous

systems.

To address these gaps, future research should:

• Develop context-aware and adaptive heuristic

frameworks capable of responding dynamically to

workload fluctuations, mobility, and resource variability

in real time.

• Design lightweight variants of metaheuristics such as

ACO and PSO by applying parameter tuning,

dimensionality reduction, or integration with greedy

strategies to make them feasible for resource-constrained

edge nodes.

• Integrate heuristics with AI-driven mechanisms, such as

deep reinforcement learning, to enable predictive and

self-optimizing scheduling that anticipates changes rather

than merely reacting to them.

• Incorporate energy-, SLA-, and fairness-aware extensions

to ensure not only performance efficiency but also

sustainability and equitable task distribution across

distributed infrastructures.

• Establish standardized benchmarking and simulation

platforms for evaluating heuristic models under realistic

hybrid edge–cloud scenarios, enabling consistent

comparison and reproducibility.

By pursuing these directions, future work can transform

heuristic scheduling into a more adaptive, sustainable, and

intelligent discipline, bridging the gap between lightweight

decision-making and context-aware orchestration. This

evolution will pave the way for robust, ethically responsible,

and high-performance workload management of emerging

edge–cloud systems.

References
[1] Kanagarla Krishna Prasanth Bra, “Edge Computing and Analytics for IoT Devices: Enhancing Real-Time Decision Making in Smart

Environments,” International Journal for Multidisciplinary Research (IJFMR), vol. 6, no. 5, pp. 1-9, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Nasir Abbas et al., “Mobile Edge Computing: A Survey,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450-465, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[3] Mahsa Paknejad et al., “A Reliable and Efficient 5G Vehicular MEC: Guaranteed Task Completion with Minimal Latency,” 2025 IEEE

International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, pp. 566-571, 2025. [CrossRef]

[Google Scholar] [Publisher Link]

[4] Hossein Ahmadvand, and Fouzhan Foroutan, “Latency and Privacy-Aware Resource Allocation in Vehicular Edge Computing,” arXiv

Preprint, pp. 1-6, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[5] Alexandru Rancea, Ionut Anghel, and Tudor Cioara, “Edge Computing in Healthcare: Innovations, Opportunities, and Challenges,” Future

Internet, vol. 16, no. 9, no. 1-28, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[6] Yazeed Yasin Ghadi et al., “Enhancing Patient Healthcare with Mobile Edge Computing and 5G: Challenges and Solutions for Secure

Online Health Tools,” Journal of Cloud Computing, vol. 13, no. 1, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[7] Dinesh Sahu et al., “Optimizing Energy and Latency in Edge Computing Through a Boltzmann Driven Bayesian Framework for Adaptive

Resource Scheduling,” Scientific Reports, vol. 15, no. 1, pp. 1-26, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[8] Nasim Soltani, Behzad Soleimani, and Behrang Barekatain, “Heuristic Algorithms for Task Scheduling in Cloud Computing: A Survey,”

International Journal of Computer Network and Information Security (IJCNIS), vol. 9, no. 8, pp. 16-22, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[9] Harshala Shingne, and R. Shriram, “Heuristic Deep Learning Scheduling in Cloud for Resource-Intensive Internet of Things Systems,”

Computers and Electrical Engineering, vol. 108, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Zhiyu Wang et al., “Deep Reinforcement Learning-based Scheduling for Optimizing System Load and Response Time in Edge and Fog

Computing Environments,” Future Generation Computer Systems, vol. 152, pp. 55-69, 2024. [CrossRef] [Google Scholar] [Publisher

Link]

[11] Hassan Asghar, and Eun-Sung Jung, “A Survey on Scheduling Techniques in the Edge Cloud: Issues, Challenges and Future Directions,”

arXiv Preprint, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Quyuan Luo et al., “Resource Scheduling in Edge Computing: A Survey,” IEEE Communications Surveys and Tutorials, vol. 23, no. 4,

pp. 2131-2165, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[13] Deafallah Alsadie, “Advancements in Heuristic Task Scheduling for IoT Applications in Fog-Cloud Computing: Challenges and

Prospects,” PeerJ Computer Science, vol. 10, pp. 1-58, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[14] Olha Boiko et al., “Edge-Cloud Architectures for Hybrid Energy Management Systems: A Comprehensive Review,” IEEE Sensors

Journal, vol. 24, no. 10, pp. 15748-15772, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.36948/ijfmr.2024.v06i05.29826
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Edge+Computing+and+Analytics+for+IoT+Devices%3A+Enhancing+Real-Time+Decision+Making+in+Smart+Environments&btnG=
https://www.ijfmr.com/research-paper.php?id=29826
https://doi.org/10.1109/JIOT.2017.2750180
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobile+Edge+Computing%3A+A+Survey&btnG=
https://ieeexplore.ieee.org/document/8030322
https://doi.org/10.1109/ICCWorkshops67674.2025.11162463
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Reliable+and+Efficient+5G+Vehicular+MEC%3A+Guaranteed+Task+Completion+with+Minimal+Latency&btnG=
https://ieeexplore.ieee.org/document/11162463
https://doi.org/10.48550/arXiv.2501.02804
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Latency+and+Privacy-Aware+Resource+Allocation+in+Vehicular+Edge+Computing&btnG=
https://arxiv.org/abs/2501.02804
https://doi.org/10.3390/fi16090329
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Edge+Computing+in+Healthcare%3A+Innovations%2C+Opportunities%2C+and+Challenges&btnG=
https://www.mdpi.com/1999-5903/16/9/329
https://doi.org/10.1186/s13677-024-00654-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Patient+Healthcare+with+Mobile+Edge+Computing+and+5G%3A+Challenges+and+Solutions+for+Secure+Online+Health+Tools&btnG=
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-024-00654-4
https://doi.org/10.1038/s41598-025-16317-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+Energy+and+Latency+in+Edge+Computing+Through+a+Boltzmann+Driven+Bayesian+Framework+for+Adaptive+Resource+Scheduling&btnG=
https://www.nature.com/articles/s41598-025-16317-6
https://doi.org/10.5815/ijcnis.2017.08.03
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heuristic+Algorithms+for+Task+Scheduling+in+Cloud+Computing%3A+A+Survey&btnG=
https://www.mecs-press.org/ijcnis/ijcnis-v9-n8/v9n8-3.html
https://doi.org/10.1016/j.compeleceng.2023.108652
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heuristic+Deep+Learning+Scheduling+in+Cloud+for+Resource-Intensive+Internet+of+Things+Systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790623000770?via%3Dihub
https://doi.org/10.1016/j.future.2023.10.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Reinforcement+Learning-based+Scheduling+for+Optimizing+System+Load+and+Response+Time+in+Edge+and+Fog+Computing+Environments&btnG=
https://www.sciencedirect.com/science/article/pii/S0167739X23003862?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0167739X23003862?via%3Dihub
https://doi.org/10.48550/arXiv.2202.07799
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Scheduling+Techniques+in+the+Edge+Cloud%3A+Issues%2C+Challenges+and+Future+Directions&btnG=
https://arxiv.org/abs/2202.07799
https://doi.org/10.1109/COMST.2021.3106401
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource+Scheduling+in+Edge+Computing%3A+A+Survey&btnG=
https://ieeexplore.ieee.org/document/9519636
https://doi.org/10.7717/peerj-cs.2128
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advancements+in+Heuristic+Task+Scheduling+for+IoT+Applications+in+Fog-Cloud+Computing%3A+Challenges+and+Prospects&btnG=
https://peerj.com/articles/cs-2128/
https://doi.org/10.1109/JSEN.2024.3382390
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Edge-Cloud+Architectures+for+Hybrid+Energy+Management+Systems%3A+A+Comprehensive+Review&btnG=
https://ieeexplore.ieee.org/document/10492690

Hasnae NOUHAS et al. / IJETT, 73(11), 39-50, 2025

50

[15] Ahmed A. Ismail et al., “A Survey on Resource Scheduling Approaches in Multi-Access Edge Computing Environment: A Deep

Reinforcement Learning Study,” Cluster Computing, vol. 28, no. 3, pp. 1-45, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[16] Zaiwar Ali et al., “A Comprehensive Utility Function for Resource Allocation in Mobile Edge Computing,” Computers, Materials and

Continua, vol. 66, no. 2, pp. 1461-1477, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[17] Amin Avan, Akramul Azim, and Qusay H. Mahmoud, “A State-of-the-Art Review of Task Scheduling for Edge Computing: A Delay-

Sensitive Application Perspective,” Electronics, vol. 12, no. 12, pp. 1-27, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[18] Nisha Devi et al., “A Systematic Literature Review for Load Balancing and Task Scheduling Techniques in Cloud Computing,” Artificial

Intelligence Review, vol. 57, no. 10, pp. 1-63, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[19] Saydul Akbar Murad et al., “SG-PBFS: Shortest Gap-Priority Based Fair Scheduling Technique for Job Scheduling in Cloud

Environment,” Future Generation Computer Systems, vol. 150, pp. 232-242, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[20] Hemant Kumar Apat et al., “A Hybrid Meta-Heuristic Algorithm for Multi-Objective IoT Service Placement in Fog Computing

Environments,” Decision Analytics Journal, vol. 10, pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[21] Mustafa Ibrahim Khaleel et al., “Combinatorial Metaheuristic Methods to Optimize the Scheduling of Scientific Workflows in Green

DVFS-Enabled Edge-Cloud Computing,” Alexandria Engineering Journal, vol. 86, pp. 458-470, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[22] Nebojsa Bacanin et al., “Modified Firefly Algorithm for Workflow Scheduling in Cloud-Edge Environment,” Neural Computing and

Applications, vol. 34, no. 11, pp. 9043-9068, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] Ashutosh Shankar, and Astha Kumari, “QoS-aware Scheduling of Periodic Real-time Task Graphs on Heterogeneous Pre-occupied

MECs,” arXiv Preprint, pp. 1-9, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[24] Dinesh Sahu et al., “Beyond Boundaries A Hybrid Cellular Potts and Particle Swarm Optimization Model for Energy and Latency

Optimization in Edge Computing,” Scientific Reports, vol. 15, no. 1, pp. 1-22, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[25] Rafał Skinderowicz, “Improving Ant Colony Optimization Efficiency for Solving Large TSP Instances,” Applied Soft Computing, vol.

120, pp. 1-28, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[26] Renjbar Sh. Othman, and Ibrahim Mahmood Ibrahim, “A Review of Exploring Recent Advances in Ant Colony Optimization:

Applications and Improvements,” International Journal of Scientific World, vol. 11, no. 1, pp. 114-122, 2025. [CrossRef] [Google Scholar]

[Publisher Link]

[27] Shabariram C. Palaniappan, and Priya P. Ponnuswamy, “Task Offloading in Edge Computing Using Integrated Particle Swarm

Optimization and Genetic Algorithm,” Advances in Science and Technology Research Journal, vol. 19, no. 1, pp. 371-380, 2025.

[CrossRef] [Google Scholar] [Publisher Link]

[28] Farida Siddiqi Prity, Md. Hasan Gazi, and K.M. Aslam Uddin, “A Review of Task Scheduling in Cloud Computing Based on Nature-

Inspired Optimization Algorithm,” Cluster Computing, vol. 26, no. 5, pp. 3037-3067, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[29] Kaushik Sathupadi, “Comparative Analysis of Heuristic and Ai-Based Task Scheduling Algorithms in Fog Computing: Evaluating

Latency, Energy Efficiency, and Scalability in Dynamic, Heterogeneous Environments,” Quarterly Journal of Emerging Technologies

and Innovations, vol. 5, no. 1, pp. 23-40, 2020. [Google Scholar] [Publisher Link]

[30] Sheikh Umar Mushtaq, Sophiya Sheikh, and Sheikh Mohammad Idrees, “Enhanced Priority Based Task Scheduling with Integrated Fault

Tolerance in Distributed Systems,” International Journal of Cognitive Computing in Engineering, vol. 6, pp. 152-169, 2025. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1007/s10586-024-04893-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Resource+Scheduling+Approaches+in+Multi-Access+Edge+Computing+Environment%3A+A+Deep+Reinforcement+Learning+Study&btnG=
https://link.springer.com/article/10.1007/s10586-024-04893-7
https://doi.org/10.32604/cmc.2020.013743
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Utility+Function+for+Resource+Allocation+in+Mobile+Edge+Computing&btnG=
https://www.techscience.com/cmc/v66n2/40681
https://doi.org/10.3390/electronics12122599
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+State-of-the-Art+Review+of+Task+Scheduling+for+Edge+Computing%3A+A+Delay-Sensitive+Application+Perspective&btnG=
https://www.mdpi.com/2079-9292/12/12/2599
https://doi.org/10.1007/s10462-024-10925-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Systematic+Literature+Review+for+Load+Balancing+and+Task+Scheduling+Techniques+in+Cloud+Computing&btnG=
https://link.springer.com/article/10.1007/s10462-024-10925-w
https://doi.org/10.1016/j.future.2023.09.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SG-PBFS%3A+Shortest+Gap-Priority+Based+Fair+Scheduling+Technique+for+Job+Scheduling+in+Cloud+Environment&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X23003266?via%3Dihub
https://doi.org/10.1016/j.dajour.2023.100379
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Hybrid+Meta-Heuristic+Algorithm+for+Multi-Objective+IoT+Service+Placement+in+Fog+Computing+Environments&btnG=
https://www.sciencedirect.com/science/article/pii/S2772662223002199?via%3Dihub
https://doi.org/10.1016/j.aej.2023.11.074
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Combinatorial+Metaheuristic+Methods+to+Optimize+the+Scheduling+of+Scientific+Workflows+in+Green+DVFS-Enabled+Edge-Cloud+Computing&btnG=
https://www.sciencedirect.com/science/article/pii/S1110016823010827?via%3Dihub
https://doi.org/10.1007/s00521-022-06925-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+Firefly+Algorithm+for+Workflow+Scheduling+in+Cloud-Edge+Environment&btnG=
https://link.springer.com/article/10.1007/s00521-022-06925-y
https://doi.org/10.48550/arXiv.2506.12415
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=QoS-aware+Scheduling+of+Periodic+Real-time+Task+Graphs+on+Heterogeneous+Pre-occupied+MECs&btnG=
https://arxiv.org/abs/2506.12415
https://doi.org/10.1038/S41598-025-90348-X
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Beyond+Boundaries+A+Hybrid+Cellular+Potts+and+Particle+Swarm+Optimization+Model+for+Energy+and+Latency+Optimization+in+Edge+Computing&btnG=
https://www.nature.com/articles/s41598-025-90348-x
https://doi.org/10.1016/j.asoc.2022.108653
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+Ant+Colony+Optimization+efficiency+for+Solving+Large+TSP+Instances&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494622001302?via%3Dihub
https://doi.org/10.14419/s0sjgq84
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+of+Exploring+Recent+Advances+in+Ant+%E2%80%8EColony+Optimization%3A+Applications+and+%E2%80%8EImprovements&btnG=
https://www.sciencepubco.com/index.php/IJSW/article/view/33164
https://doi.org/10.12913/22998624/195658
https://scholar.google.com/scholar?q=Task+Offloading+in+Edge+Computing+Using+Integrated+Particle+Swarm+Optimization+and+Genetic+Algorithm&hl=en&as_sdt=0,5
https://www.astrj.com/Task-offloading-in-edge-computing-using-integrated-particle-swarm-optimization-and,195658,0,2.html
https://doi.org/10.1007/s10586-023-04090-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+of+Task+Scheduling+in+Cloud+Computing+Based+on+Nature-Inspired+Optimization+Algorithm&btnG=
https://link.springer.com/article/10.1007/s10586-023-04090-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+Analysis+of+Heuristic+and+Ai-Based+Task+Scheduling+Algorithms+in+Fog+Computing%3A+Evaluating+Latency%2C+Energy+Efficiency%2C+and+Scalability+in+Dynamic%2C+Heterogeneous+Environments&btnG=
https://vectoral.org/index.php/QJETI/article/view/133
https://doi.org/10.1016/j.ijcce.2024.12.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhanced+Priority+Based+Task+Scheduling+with+Integrated+Fault+Tolerance+in+Distributed+Systems&btnG=
https://www.sciencedirect.com/science/article/pii/S2666307424000561?via%3Dihub

