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Abstract - Edge-cloud computing architecture has become appropriate and promising to satisfy the performance requirements
of resource-intensive and latency-critical applications. Effective scheduling of workload serves the purpose of exploiting the
distributed, heterogeneous, and dynamic characteristics of these environments. Among the developed approaches, heuristic-
based scheduling methods are important due to the low level of complexity and practical merit they present in real-time and
resource-limited environments. Heuristic-based workload scheduling methods are the center of focus of this paper. Present
methods are classified into simple heuristics, metaheuristics, and hybrid schemes, and surveyed on prominent examples of HEF'T,
ACO, PSO, Min-Min/Max-Min, and Greedy Resource-Aware algorithms. Each of these is put through the prism of the scheduling
objectives, benefits, and their tradeoff on various executed metrics like latency, energy efficiency, and flexibility. Though these
strategies are beneficial, the issues associated with their usability for dynamic applications and multi-objective scenarios are
prominent. Important research gaps are listed along with proposed future works, including adaptations, energy-oriented, and
lightweight scheduling models. Of even higher value, it is notable to recognize the growing interest in the application of Al-
based schemes, which have the potential to enhance heuristic-based scheduling once integrated into hybrid systems. This survey
aspires to present the convenient go-to thesis of the researcher tackling the challenge of creating a productive workload

scheduling design in the edge-cloud infrastructures.
Keywords - Cloud computing, Edge computing, Workload scheduling, Heuristic Algorithms, Metaheuristic Algorithms.

latency, energy, resource, and SLA fulfillment. Poor
scheduling in edge—cloud environments can have serious
consequences in real-world systems. For example, in
autonomous vehicles, inadequate scheduling (e.g., suboptimal
offloading, task dropping) can lead to safety risks: a recent

1. Introduction

Massive-scale deployments of Internet of Things (IoT)
devices and emerging applications, which are latency-
sensitive and highly data-intensive, have given rise to the
formation of edge-cloud computing paradigms. In this

approach, computation occurs at the edge nodes, which are
closer to data sources and remote cloud servers, resulting in
greater responsiveness, reduced bandwidth costs, and
improved scalability. Applications, such as real-time video
analytics, self-driving cars, and intelligent health care
systems, are increasingly including this hybrid infrastructure
so as to satisfy excessive Quality of Service (QoS) and Quality
of Experience (QoE) constraints [1]. Workload scheduling,
which falls among the major issues in these environments,
defies decisions on where, how, and when the computing tasks
must be executed on the distributed and heterogeneous
resources. Edge-cloud infrastructure is more challenging than
the traditional cloud-based infrastructure due to the role of the
more dynamic network scenarios, constrained edge resources,
and the non-stationary end-users [2]. Smart scheduling must
make the proper balance between the competing ends like

study in Vehicular MEC demonstrated that poor scheduling
under fixed bandwidth leads to dropped tasks and elevated
latency, whereas optimized scheduling avoids task drops and
significantly lowers delay, improving system reliability [3]. In
vehicular edge computing, schemes that neglect latency or
privacy constraints often underperform: one approach that
jointly considered these metrics improved QoS by about 55%
relative to state-of-the-art baselines [4].

In healthcare systems, delays in task scheduling for
wearable sensor data (such as monitoring and diagnostics) can
lead to misdiagnoses, slower response times, or worse patient
outcomes. The review Edge Computing in Healthcare:
Innovations, Opportunities... shows that real-time decision-
making, offloading, and privacy are central issues, and that
many healthcare IoT applications are currently constrained by
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delays in processing or communication [5]. In another
experiment on mobile edge computing in patient monitoring,
it is illustrated how the combination of MEC + 5G decreases
latency in the data flows of healthcare sensors but also reveals
how inadequate bandwidth/resource scheduling continues as a
bottleneck [6].

In the same way, for large-scale edge case deployments,
studies of balancing latency and energy constraints for
heterogeneous networks indicate that suboptimal scheduling
could cause unacceptable latency or high waste of energy. On
the positive side, optimized scheduling can decrease latency
by tens of milliseconds as well as enhance energy efficiency
to a significant extent [7]. Such cases highlight the urgent
necessity for efficient as well as adaptive scheduling
approaches in edge—cloud environments.

There are numerous approaches to scheduling issues, but
heuristic methods are very fashionable due to their simplicity
of application, as well as processing, along with adaptability.
Rather than exact optimization algorithms that can be costly
in terms of time and processing, heuristics offer near-optimal
answers with less time invested, which is suitable for many
real-time applications where resources are scarce. For
example, the Heterogeneous Earliest Finish Time (HEFT)
algorithm has been extensively adopted for task scheduling in
heterogeneous systems. In more recent publications, there are
known efforts that use hybrid methods that involve combining
neural network-based approaches and heuristic policies to
enhance scheduling performance in edge-cloud environments

[8].

However, despite the growing body of research, existing
surveys and reviews often consider heuristics as part of a
broader taxonomy that includes optimization and Al-driven
approaches. As a result, there is no dedicated and systematic
survey that thoroughly examines workload scheduling, which
is based on heuristics in edge cloud systems. This gap renders
it hard to compare algorithms reliably, detect their tradeoffs,
and trace their adaptability to edge-specific challenges like
workload dynamics, energy constraints, and heterogeneous
resources. This survey intends to present a systematic and
focused survey of heuristic-based workload scheduling
strategies in edge-cloud infrastructure. The goal of this paper
is to:

e Categorize heuristic algorithms into three types: simple
heuristics, metaheuristics, and hybrid heuristic
approaches.

e Analyse and compare representative schemes on various
performance metrics, i.e., latency, energy efficiency,
scalability, adaptability, computation overhead, and ease
of implementation.

e Determine the strengths, limitations, and tradeoffs of
these strategies relative to the requirements of the edge
cloud.
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o Highlight research gaps and propose directions for
developing adaptive, energy-aware, and lightweight
heuristic scheduling models.

o  Elucidate research voids and put forward future directions
toward the development of adaptive, energy-aware, and
lightweight heuristic scheduling models.

These are the subsequent research questions that have
been raised towards the fulfillment of the stated purpose:

e RQI: What are the key heuristic algorithms used for
workload scheduling in edge cloud environments, and
how can they be systematically categorized?

¢ RQ2: How do these heuristic methods perform with
respect to critical performance metrics, including energy
efficiency, latency, adaptability, scalability,
computational cost, and implementation ease?

¢ RQ3: What are the tradeoffs and limitations of existing
heuristic scheduling methods in addressing the dynamic,
heterogeneous, and limited-resource nature of edge-cloud
environments?

e RQ4: What are the open research challenges, and how can
future heuristic strategies (simple, metaheuristic, or
hybrid) be designed to improve workload scheduling in
edge—cloud environments?

This paper fills the noted research gap by the following:

e Classification of heuristic scheduling approaches into
three classes: simple heuristics, hybrid heuristic
strategies, and metaheuristics.

e Detailed examination of representative algorithms, such
as HEFT, Min-Min/Max-Min, ACO, PSO, and Greedy
Resource-Aware heuristics.

e  Comparison of the chosen methods according to latency,
energy efficiency, scalability, adaptability, computational
cost, and implementation ease.

e Research gap and future trend identification, focusing on
adaptive, lightweight, and energy-aware heuristic models
for future-edge cloud systems.

In contrast to earlier surveys, where heuristics are covered
as a subsidiary section within expansive literature reviews of
cloud, fog, or edge scheduling [8-13], this paper gives the
primary committed and systematic survey solely dedicated to
the topic of workload scheduling based on heuristics in the
field of edge-cloud systems. This paper has originality in three
folds:

e Scope specificity: While current reviews contemplate
numerous scheduling approaches’ families (optimization,
Al, heuristics, etc.), this survey focuses only on heuristic
algorithms (simple, metaheuristic, and hybrid heuristic
strategies) and their application to the edge—cloud
scenarios.

e Comparative depth: In contrast to earlier studies that
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provide descriptive overviews, this paper delivers a
structured comparative evaluation across six performance
criteria: latency awareness, energy efficiency, scalability,
adaptability, computational cost, and implementation
ease.

e Gap addressing: The paper points to untouched
challenges of heuristics in edge—cloud like adaptability
for mobility, energy awareness for resource-limited
nodes, and lightweight metaheuristic design, and suggests
specific directions for future research.

The rest of this paper is organized as follows. Section II
discusses the related work on workload scheduling of the edge
cloud. Section III gives the required background and gives the
formal definition of the scheduling issue. Section IV gives an
overview of heuristic scheduling algorithms, and Section V
outlines some representative algorithms and their real-world
applications. Section VI gives a comparison of these
algorithms. Section VII outlines the major challenge and
indicates the future promising works, and finally, Section VIII
summarizes the paper with the major insights.

2. Related Work

Extensive reviews have appeared on the topic of task
scheduling under the paradigm of edge-cloud, and hundreds
of survey and review papers have appeared evaluating the vast
range of methods, including heuristic, metaheuristic,
optimization-based, and machine learning-based approaches.
However, these reviews are of varying scope and depth, and
they seldom present an in-depth review of the heuristic-based
approaches only. Paper [8] presented one of the earliest
surveys of heuristic algorithms, but they only considered
cloud computing infrastructures. Though it can be useful
towards classical algorithms like Min—-Min/Max—Min and
HEFT, it fails to consider edge-cloud-related issues like
heterogeneity, dynamic workloads, and latency-conscious
applications. However, the latest studies have given increased
focus on hybrid and Al-based scheduling. Paper [9] put
forward the idea of a deep learning-based heuristic scheduler
by hybridizing PSO and the Firefly Algorithm, improving the
run of resource-intensive loT tasks for cloud systems. Paper
[10] examined IoT task scheduling under the scenarios of edge
and fog computing and observed that classical metaheuristics
like NSGA-II and NSGA-II usually suffer from the
restriction of scalability and adaptability.

To overcome these shortcomings, they presented DRLIS,
a scheduler based on Deep Reinforcement Learning, which
showed better convergence and optimization ability than
classical methods. Several surveys have considered broader
viewpoints on scheduling. Paper [11] classified scheduling of
the edge—cloud setting into heuristic, metaheuristic, and
optimization-based families, and additionally considered
Quality-of-Service (QoS) demands and fault tolerance. Paper
[12] presented a comprehensive survey of resource scheduling
in the edge computing setting and covered key topics of task
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offloading, resource scheduling, and resource provisioning
approaches. Paper [13] covered heuristic scheduling of the fog
computing setting, and presented greedy, priority-based, and
nature-inspired heuristics, and hybrid heuristic approaches,
and focused on energy and resource constraints.

Although these works are contributory, they generally
consider the heuristics as only one of the numerous categories,
but not the core of the study. None of these gives a systematic
survey containing the followings: (i) classifying the heuristic
strategies as simple, metaheuristics, and hybrid strategies; (ii)
providing balanced comparison of the most significant
performance aspects like latency, energy efficiency,
scalability,  adaptability, = computational  cost, and
implementation complexity; and (iii) identifying outstanding
issues inherent to heuristic scheduling for hybrid edge-cloud
environments. This work fills this gap by narrowly focusing
on heuristic-based workload scheduling. This paper offers a
structured coverage and analysis of representative algorithms
for key criteria, with a predominantly illustrative perspective
on research directions, underpinning interest in adaptive,
lightweight, or energy-aware heuristic models for edge cloud
environments.

However, a big gap still prevails in the literature. Either
they are:

e Concentrates on cloud or fog computing but fails to
consider specific edge cloud integration constraints,

e Focus on Al-based approaches, but ignore classical
heuristic approaches, or

e Give a descriptive summary rather than a systematic,
comparative assessment for a variety of important
performance criteria, such as latency awareness,
scalability, energy efficiency, and implementation
complexity.

This paper will fill this gap by being the first systematic
literature review on workload scheduling with a basis on
heuristic approaches conducted for edge clouds. Unlike other
existing literature reviews, this paper will classify heuristic
approaches into three categories, which include simple
heuristics, metaheuristics, and hybrid heuristic strategies, in
order to perform a fair analysis that will compare different
approaches, with comprehensive quantitative insights taken
from existing literature that will validate any qualitative
assessments made. This specialized view will not only shed
insight on where heuristics belong in hybrid architectures but
will also point out some possible uses for heuristics with Al

3. Background
3.1. Edge-Cloud Architecture Overview

Edge cloud computing forms a hybrid model that
amalgamates two stages of computing infrastructure: edge
nodes that are geographically close to data-generating
resources, such as IoT sensors, as well as cloud servers that
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have high compute capabilities. It is the type of data center
hierarchy where data processing could be assigned for
different sites, dependent on the applications’ latency as well
as resource requirements. It runs on the edge layer for latency
and bandwidth-sensitive tasks, as well as in the cloud for
computation-intensive processes, along with long-term data
storing. It enhances the responsiveness, reduces data
transmission overheads, and enhances scalability and fault
tolerance in distributed systems [14].

3.2. Workload Characteristics

Workloads in edge-cloud environments are extremely
heterogeneous, derived from various sources, including sensor
types, mobile devices, cameras, and industrial robots.
Workload differs in terms of computation intensity, latency
sensitivity, data volume, and frequency. Also, the arrival of
the workload is dynamic and unpredictable, making the
scheduling decisions at run time critical. Schedulers need to
consider different factors such as available resources, network
states, as well as application priority, so as to guarantee service
level objectives [15].

3.3. Scheduling Objectives
Scheduling workloads in Edge-Cloud requires
considering as well as balancing several competing objectives:

o Latency Minimization: One of the key factors that makes
edge computing more attractive for implementation is
that it promotes latency minimization. Adjusting
scheduling algorithms must aim at delegating more tasks
near the data origin to minimize the round-trip time [16].

e Enhancing Energy Efficiency: Typically, edge devices
are employed in a power-restricted environment, which
may cause edge devices to run out of power. Scheduling
algorithms must avoid excessive data transfer and avoid
overloading power-restricted nodes [11].

e Load Balancing: In order to avoid resource loading on
certain nodes, whereas others are underloaded, it is
recommended that schedulers use equal task distribution.
This helps in maintaining steady performance, improving
system throughput, and reducing execution time [15].

e Quality of Service (QoS)/Quality of Experience (QoE):
Almost every application requires certain guarantees, for
example, on-time execution, guaranteed availability, and
accurate data. For this purpose, scheduling needs to
respect Service Level Agreements (SLAs), with a good
QoE at the same time [15].

3.4. Limitations of Traditional Scheduling Approaches
Conventionally, schedulers employed in cloud
computing, designed based upon static policies or
deterministic approaches, are not suited for edge cloud since
they react rigidly to changes occurring in real time, consuming
high computation resources, having high overhead in
resources with a large number of edge nodes as well as mobile
devices, and being centralized, with high communication
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overhead and lack of fault tolerance. It indicates a need for a
lightweight, adaptive, and decentralized scheduler, for which
these approaches based upon heuristics had immense promise
[11,17].

4. Heuristic-Based Scheduling Approaches

Classification

Heuristic scheduling algorithms are crucial for managing
the dynamic nature of workloads that edge clouds exhibit.
Figure 1 below shows that there are three categories under
which heuristic scheduling algorithms are classified, including
simple heuristics, metaheuristics, and hybrid heuristics.

4.1. Simple Heuristics

Simple heuristics refer to techniques that use rules for
decision-making in relation to scheduling, based on a set of
predefined rules. Simple heuristics are computationally
optimal and perform best in real-time systems [18]. Simple
heuristics include:

o  First-Come, First-Served (FCFS): processes are allocated
based on the order of arrival, regardless of system
conditions, independent of individual needs. FCFS is
simple. It may suffer from inefficiencies, resource
wastage, and delays [19].

e Shortest Job First (SJF): This scheduling technique
involves selecting processes that require the shortest
execution time to minimize waiting time [19]. One major
problem with this technique may lie in estimating task
lengths.

¢ Min-Min and Max-Min: These schedules choose the tasks
having minimum or maximum complete time,
respectively, for optimization of overall scheduling
efficiency [18].

¢ Round Robin (RR): Assigns time slices for individual use
on a cycle basis in an attempt to be fair, but with the
benefit of potentially less context-switching overhead
[18].

4.2. Metaheuristics

Heuristic-Based Workload

Scheduling Approaches
L
I i |
Simple Heuristic Metaheuristic Hybrid
Approaches Approaches Approaches

Fig. 1 Classification of heuristic scheduling approaches

Metaheuristics are higher-level procedures for the
optimization of exploration of the solution space. They
become employable for complex optimization problems, such
as task scheduling for edge-cloud systems. Major techniques
that fall into the category of metaheuristics are as follows.
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e Genetic Algorithm (GA): Genetic selections provide
inspiration for Genetic Algorithms (GAs) owing to the
application of mechanisms such as selection, crossover,
and mutation by genetic algorithms for evolving a
solution over several generations. Though genetic
algorithms are helpful in addressing much larger problem
sizes, they consume a lot of computational power [20].

o Particle Swarm Optimization (PSO): Its Individuals are
modeled as particles that move in a solution space, where
the change in the position of a particle occurs based on
both individual and global past experience. It is clear that
both simplicity and fast convergence speed are built into
PSO models [20].

e Ant Colony Optimization (ACO): This method rests on
the premise of simulating ant foraging behavior.
Pheromone trails are employed as a technique for
building solutions that address combinatorial problems in
artificial ant foraging behavior studies [21].

o Simulated Annealing (SA): Its inspiration comes from the
heating and cooling treatment of metals. The model
makes suboptimal decisions to avoid reaching a local
minimum, which facilitates a more efficient resolution of
challenging scheduling problems [20].

Recent studies have utilized various metaheuristic
techniques to enhance scheduling efficiency in cloud and edge
environments. For example, one study employed ACO to
compute a fitness function and balance multiple scheduling
objectives, demonstrating its usefulness in addressing
complex problems. Another study adapted the firefly
algorithm for workflow scheduling across cloud—edge
systems, making improvements in both makespan and cost
[21,22].

4.3. Hybrid Heuristics

Hybrid heuristics are a combination of various heuristic
or metaheuristic strategies with the goal of benefiting from
their respective strengths and mitigating their respective
weaknesses. Hybrid strategies have been employed to address
the complex task scheduling problem within edge—cloud
systems.

As an example, a hybrid metaheuristic algorithm was
proposed for IoT service placement with the optimization of
such factors as makespan, cost, and energy usage [20]. While
metaheuristics and hybrid approaches themselves may not be
Al-driven, they belong to the family of heuristic-based
approaches. Incorporating machine learning or neural
components into these systems, however, is the path toward
Al-driven scheduling.

5. Representative Heuristic Approaches

This section reviews heuristic and metaheuristic methods
used for workload scheduling in edge-cloud computing. The
subsequent subsections describe the selection process and the
reasoning behind the chosen algorithms.
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5.1. Methodology for Algorithm Selection

The selection of representative algorithms followed a
structured process designed to ensure relevance, diversity, and
coverage across the main categories of heuristic-based
scheduling. The process was guided by a review of peer-
reviewed studies published between 2018 and 2025, retrieved
from major digital libraries.

Only algorithms that were explicitly applied to edge, fog,
or edge—cloud scheduling were taken into account.
Additionally, it was ensured that each study evaluated:

e Proposed or analyzed a heuristic or hybrid heuristic
scheduling algorithm.

e Addressed at least one key performance objective,
including latency, energy efficiency, scalability, or
flexibility.

e Provided comparable or empirical results that enable a
systematic assessment based on certain criteria.

e  Contained enough information about the implementation
or concept for analysis purposes.

e Addressed at least one key performance objective, like
latency, energy efficiency, scalability, or flexibility.

Studies focusing solely on exact optimization algorithms,
deep learning, or cloud scheduling were not considered, as
were domain-specific solutions that are not generally
applicable.

This ensured that generally applicable heuristics for edge
cloud environments are encompassed by the selected
algorithms.

5.2. Justification of Selection
On the basis of this, we chose five algorithms that
represent:

e HEFT: A classic static heuristic widely employed in
heterogeneous and edge platforms.

e Min-Min, Max-Min: Lightweight heuristics that are still
benchmark algorithms in heterogeneous scheduling
problems.

e ACO: Metaheuristic based on swarm intelligence, suited
for multi-objective optimization for edge-cloud systems.

e PSO: A metaheuristic valued for balancing global and
local search, adaptable to dynamic conditions.

e GRAH: Modern heuristics explicitly designed for
dynamic, resource-constrained edge—cloud
environments.

Though other techniques, including Genetic Algorithms
(GA), Cuckoo Search (CS), Simulated Annealing (SA),
Artificial Bee Colony (ABC), Tabu Search (TS), or Grey Wolf
Optimizer (GWO), among others, also satisfy the criteria for
inclusion, we restrict this work to this set for clarity. All of
them encompass the diversity of heuristic approaches:
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e  Simple heuristics: HEFT, Min-Min, and Max-Min.
e Metaheuristics: ACO and PSO.
e  Hybrid/resource-aware heuristics: GRAH.

This representative set allows for a systematic evaluation
across latency, energy efficiency, scalability, adaptability,
computational cost, and implementation ease.

5.3. Heterogeneous Earliest Finish Time (HEFT)

The HEFT algorithm, a classic static algorithm, was first
developed for task scheduling in heterogeneous computing
environments. This algorithm gives more priority to tasks with
upward ranks, which assign a task to a processor in such a way
that it gets completed as early as possible. Because of its
effectiveness in minimizing makespan with high efficiency,
HEFT has been largely used in edge cloud environments [18].
But the major drawback of this algorithm was that it was a
static algorithm, which neither offered dynamic rescheduling
[23] nor considered power consumption, which was a concern
for edge clouds [24].

5.4. Ant Colony Optimization (ACO)

ACO is a metaheuristic that was inspired by ant foraging
behavior, in which virtual ants probabilistically search task
allocations with the aid of pheromone trails that stand for the
quality of previous solutions found. Its main strength resides
in improving multi-objective scheduling in a dynamic edge
cloud environment, thanks to its flexibility in adapting to
changing network conditions [22]. In contrast, ACO also has
some weaknesses. For instance, its most elementary form
remains capable of addressing just a relatively small problem
instance, such as the Traveling Salesman Problem with a small
number of graph vertices, with high memory complexity,
usually O(n?) [25]. In addition, ACO is parameter-sensitive,
not scalable for large-scale data, and not suitable for real-time
deployment [26].

5.5. Particle Swarm Optimization (PSO)

PSO approaches task scheduling as a problem involving
swarm intelligence, with particles indicating possible
solutions that move in a search space with an understanding
of both personal and social learning [20]. PSO has already
been validated for edge-cloud architectures, including task
scheduling with latency and energy considerations, as well as
for large-scale or dynamically changing workloads [18]. One
major reason for its widespread adoption is its ease of use
while handling non-linear, multi-modal functions, as well as
its flexibility in being applicable to different scheduling,
resource assignment, and feature selection problems [24].
Nevertheless, its computational complexity varies with
respect to its number of particles, dimension, and iterations,
having a time complexity of O(n x d x t) [27].

5.6. Min-Min and Max-Min Heuristics
These are common but straightforward list scheduling
methods:
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e Min-Min algorithm selects a task with minimum
execution time for a resource, making it useful in
scenarios that consist of more smaller tasks, as it helps in
reducing waiting time as well as speedy execution [28,
29]. Howeyver, its major drawback might result in large
tasks being delayed, as they are usually given lower
priorities, which leads to a queue of larger tasks being
formed [29].

e  Max-Min: This algorithm chooses a task with maximum
minimum completion time, which will be allocated to a
node that completes it first. It prevents larger tasks from
being perpetually blocked by smaller tasks, making it
more suitable for a heterogeneous environment with
nodes having different capabilities, with a variety of task
resource needs. However, it faces inefficiencies if there
are mostly smaller tasks, which may get excessively
delayed [29].

Such techniques are most useful in situations where
workload sizes and complexities are varied, thus being
applicable for heterogeneous edge cloud settings [18]. In most
cases, such algorithms rely on static decision-making,
meaning they are not able to adjust to changes in task rates,
availability, or system load [29]. Besides, such heuristics may
rely on static task execution time estimates, independent of
device power state or energy, hence being ineffective, for
instance, in settings that require task execution under certain
power levels.

5.7. Greedy Resource-Aware Heuristics

Some research has introduced custom greedy algorithms
that schedule the tasks according to system measurements like
the load on the CPU, the usage of memory, or energy levels.
Some heuristics, for example, schedule tasks on the closest
node with enough resources for the purpose of reducing the
latency of data transfer. These approaches are lightweight and
suitable for real-time edge scheduling [16].

Greedy Resource-Aware Heuristics (GRAH) are more
energy-efficient due to their dynamic awareness of node
conditions and adaptive, proximity-aware decisions, making
them ideal for energy-sensitive fog and edge environments. In
general, they are valued for their simplicity and speed, as they
base decisions solely on the current system state without
considering future tasks or conditions [29]. Yet, in a
dynamically changing context such as fog computing, they
may find it difficult to produce overall globally optimal results
since they concentrate more upon immediate gains, with no
attention towards changing system conditions [29]. This
notwithstanding, they perform best for real-time scheduling
and straightforward scenarios, providing practical and
efficient solutions in many edge-cloud contexts [13].

All such heuristic strategies represent a reflection of
different approaches that work towards task scheduling
optimization in edge cloud computing. Though they present
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some individual merits as well as pitfalls, they collectively
form a major development phase for more efficient scheduling
approaches.

6. Comparative Analysis of Heuristic Algorithms

This section presents a comparative study of different
workload scheduling algorithms based on heuristics for edge
clouds. This will help to assess different strengths and
weaknesses that exist between various algorithms with respect

to meeting edge cloud requirements. The comparison will be
done with respect to some key factors that are important in
edge-cloud systems, such as latency awareness, energy
efficiency, scalability, adaptability, computational cost, and
simplicity of implementation [18, 30].

6.1. Evaluation Criteria
Table 1 defines six evaluation criteria used to assess the
selected algorithms.

Table 1. Comparison criteria

Criterion Abbreviation Description
Latency Awareness LA Ability to minimize task response tlme and satisfy real-time performance
constraints [30].
Energy Efficiency EE Capacity to reduce and optimize energy consumption, particularly at resource-
constrained edge nodes [28].
Scalability S Capability to maintain performance as the number of tasks or nodes increases [30].
Adaptability A Flexibility to operate effectively under fiynamlc workloads and changing network
conditions [30].
Complgztsltonal CcC Overhead imposed by the algorithm itself (low cost is preferred at the edge [28].
Tmp lenllae;t:tlon IE Practicality and simplicity of integration into real-world systems

6.2. Systematic Summary of Heuristic Scheduling Methods
This subsection gives a structured synthesis of the

representative heuristic algorithms described in Section 5,

summing up their most important performance criteria.

All algorithms are evaluated with respect to six key
factors: Latency Awareness, Energy Efficiency, Scalability,
Adaptability, Computational Cost, and Implementation Ease.
Table 2 synthesizes insights gleaned from more recent studies,
involving a set of qualitative assessments that are backed by
references with a description of algorithm behavior under a
hybrid edge-cloud environment.

This enables a clear understanding of how various classes
of heuristics, including simple, metaheuristic, or hybrid,
handle the multi-objective nature of scheduling, besides
illuminating typical weaknesses related to being static or
having high computational overhead. For a complementary
perspective to this summary based on scientific evidence,

Table 3 below provides a straightforward comparative table,
which translates descriptive results into a standardized scale
of ratings (very low, low, moderate, good, very good) for a
more comparable result between algorithms. This
standardized scoring system will form a basis for analysis in
Section 6.4.

6.3. Comparison of Scheduling Algorithms in Edge-Cloud
Systems

In this section, each algorithm has been assigned a value
on a scale from very low to very good per criterion, where very
low represents the weakest performance and very good
indicates the strongest.

This scoring approach provides a structured and
consistent way to assess the strengths and limitations of each
algorithm across key factors relevant to hybrid edge—cloud
computing, and it is based on evidence reported in the
literature. Table 3 summarizes the performance ratings.

Table 2. Systematic comparison of heuristic algorithms across key performance criteria in edge—cloud scheduling (based on Section 5)

Algorithm LA EE S A CC IE
MIE:Q 1sze;n Ignores Well-suited for Static, no Ragl;:;g- Simple &
HEFT effec ti\I/)el energy heterogeneous rescheduling offi cier’l t widely
Y (low) systems (very low) adopted
(moderate) Y y (good) P
18] [24] (good) [18] [23] 18] (good) [18]
Multi- Energy- Limited Adapts to High O(n?) Parameter-
ACO objective aware ala§ili + changing complexity sensitive,
optimization variants (scoo d) [2§] environments (very low) complex
reduces exist & (very good) [25] (low) [26]
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latency (very [22]
(very good) good)
[22] [22]
Reduces task Efficient Large-scale Moderately O(n xdxt) Relatively
PSO delays allocation applicability adaptive cost simple
(reasonable) (good) (very good) (moderate) (moderate) (reasonable)
[18] [18] [24] [27] [27] [20]
Handles
Min- small/large No energy Useful in . Static & rigid .Very . Extremely
. tasks but model heterogeneity lightweight
Min/Max- (very low) easy (very
Min unbalanced (low) (moderate) 129] (very go0d) [28]
(moderate) [29] [29] good) [28]
[28]
e Energy- .
Proximity- aware & Scales to large Adapts to state Lightweight Simple but
aware . . but not long- ; case-
. dynamic real-time & efficient .
GRAH scheduling (very systems (very term (good) specific
(very good) g00d) 00d) [13] (moderate) [16] (moderate)
[16] [29] [13]
[29]
Table 3. Comparative evaluation of heuristic scheduling algorithms in edge—cloud systems
Algorithm LA EE S A CC IE
HEFT moderate low good Very low good good
ACO Very good Very good good Very good Very low low
PSO good good Very good moderate moderate good
Min-Min / Max-Min moderate low moderate Very low Very good Very good
GRAH very good Very good Very good moderate good moderate

Comparative bar chart of heuristic scheduling algorithms

N W AR N

—_—

LA (Latency
Awareness)

EE (Energy
Efficiency)

S (Scalability)

mHEFT mACO

A (Adaptability)
(Computatlonal
Cost)

(Implementatlon
Ease)

PSO ®Min-Min/Max-Min = GRAH

Fig. 2 Comparative bar chart of heuristic scheduling algorithms through six performance metrics

6.4. Graphical Representation of Comparative Results

For improving clarity as well as meeting visual analysis
needs, Figure 2 plots a bar graph for a comparative result of
Table 3. This graphical representation helps in speedy
identification of tradeoffs in addition to easy understanding of
strengths relevant to each algorithm related to hybrid edge
clouds, as indicated by six criteria with an ordinal scale rating
of 1-5, starting with Very low as 1 and culminating with Very
good as 5. As shown in Figure 2, both GRAH and ACO have
high performance with respect to latency, energy, and
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scalability, whereas PSO shows high scalability with balanced
results. On the other hand, although HEFT and Min-Min/Max-
Min remain simple with low computational overhead, they are
non-adaptive and lack energy-awareness in dynamic
environments.

6.5. Observations and Insights

Based on the comparison, Greedy Resource-Aware
Heuristics demonstrate the most balanced performance across
all criteria, combining strong latency awareness, energy
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efficiency, and scalability, while maintaining a comparatively
low computational cost and moderate implementation
complexity. ACO performs well on latency and energy
optimization and can adapt easily to different conditions.
However, due to a high level of computational complexity and
a lower ease of implementation, it may not be appropriate for
edge settings. PSO performs with a stable level of quality;
more specifically, energy efficiency and good scalability are
achieved to a great extent. But for proper operation under
varying conditions, precise tuning of PSO algorithms is
needed. HEFT can also be applicable for handling static
workloads due to acceptable computational efficiency and
simple implementation. Its inadequacies lie in its lack of
awareness about energy consumption and flexibility. Lastly,
Min-Min and Max-Min are the least complicated out of the
four algorithms presented. They achieved the best results in
terms of both computational efficiency and implementation
complexity. They received the lowest results for both
flexibility and power efficiency.

In conclusion, Greedy Resource-Aware Heuristics
provide a fair optimization solution for a hybrid edge cloud
computing system, with notable latency reduction, energy
efficiency, and scalability with a minimal overhead cost. It
shows that ACO performs well in terms of its optimizing
capability, but its effectiveness will be affected since it
requires high computational demands. On the other hand, PSO
shows a fair level of efficiency with moderate flexibility. It
was established that both HEFT and Min-Min/Max-Min
perform well for non-dynamic resources, but they lack
adaptability as well as energy awareness needed for a dynamic
edge cloud scenario.

6.6. Cross-Criterion Insights and Tradeoffs

Table 2 and Table 3, which indicate the comparison
results, indicate definite patterns as well as certain
compromises between criteria in the selected heuristic
algorithms. Heuristics that perform best for a certain criterion
may compromise on other criteria, which indicates that no
algorithm performs best for all criteria.

e Latency vs. Computational Cost: Algorithms such as
ACO and GRAH have been shown to achieve significant
latency reduction due to their adaptive and search-based
design. However, this enhancement comes with an
increased computational overhead. Conversely, simple
heuristics such as HEFT and Min-Min are
computationally efficient but demonstrate reduced
efficacy in minimizing delay under dynamic workloads.

o  Energy Efficiency vs. Ease of Implementation: It has been
proven that the algorithms that integrate dynamic or
energy-aware mechanisms, such as ACO, PSO, or
GRAH, perform well in terms of energy efficiency. But
such algorithms require more complicated parameter
tuning or system feedback, which may result in adverse
effects on deployment ease.
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e Adaptability vs. Simplicity: On one side, metaheuristics
and hybrid approaches are described as being flexible,
adapting to workload changes, but they also bring
complexity with regard to design. On the other hand,
simple heuristics, being easy to implement, fail to handle
changes in real time effectively.

e Scalability and Stability: PSO maintains stable
performance as the system size grows, proving effective
for heterogeneous or federated edge-cloud systems.
Despite its robust performance in smaller-scale settings,
ACO may be susceptible to parameter sensitivity as
system size increases.

e Scalability and Stability: Both PSO and GRAH show
stable outcomes in large-scale scenarios, so they could
also be appropriate in heterogeneous or federated edge-
cloud infrastructures. However, in small-scale scenarios,
ACO could yield good results, but in large-scale
scenarios, it could also face stability issues regarding
parameters.

As an aggregate, these tradeoffs imply that criterion-
driven selection for heuristics is required in the sense that
static workload scenarios could be better suited for either
HEFT or Min—Min, while other scenarios could be appropriate
for either ACO, PSO, or GRAH algorithms. The
aforementioned interpretation transcends specific scores in
understanding each type of heuristic in relation to its
operational scenarios in edge-cloud architecture.

6.7. Comparison with Existing Surveys

Almost all the previous literature reviews on workload
scheduling in cloud, fog, or edge setups [3-8] investigated
different paradigms in terms of algorithms, including
heuristics, meta-heuristics, and Al-based approaches, with a
wide-ranging taxonomy. Still, they discussed heuristics in a
supporting role only, lacking a separate performance-centric
comparison in their scope. The current literature review is
different in the sense that it concentrates only on heuristics for
workload scheduling in edge-cloud hybrid setups, with an
organized synthesis on six different criteria: latency, energy
efficiency, scalability, adaptability, computational cost, and
implementation ease.

7. Challenges and Future Directions

Despite the significant advancements in edge-cloud
computing using heuristics for the scheduling approaches,
there remain some open issues yet to be addressed. The
following issues represent rich areas for research with respect
to improving adaptability, efficiency, and scalability in
managing edge cloud workloads.

7.1. Key Challenges

o Less adaptability in dynamic Environments: Heuristics
that belong to the classical category, for instance, HEFT,
Min—Min, and Max—Min, were traditionally designed for
static environments only. Edge-cloud computing, on the
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other hand, is a dynamic environment with fluctuating
workloads, varying levels of network connectivity,
changing workloads, and variable resource availability,
limiting its effectiveness in such settings.

e Suboptimal global scheduling from local decisions:
Greedy heuristics are appreciated for their simplicity and
low computational complexity, but they commonly make
locally optimal decisions based only on their states in the
nodes in question. In large-scale edge-cloud systems,
locally made choices could potentially cause suboptimal
global systems’ performance in terms of unbalanced load
distribution, resource underutilization, and starvation in
some nodes.

e Higher computational cost in  Metaheuristics:
Metaheuristics like PSO and ACO offer strong flexibility
and multi-objective optimization capabilities, but
typically come with high computational and memory
demands. This makes them unsuitable for deployment on
lightweight, resource-constrained edge nodes-especially
in real-time or latency-sensitive applications-unless
adapted or hybridized for efficiency.

7.2. Future Research Directions
Design of Adaptive Heuristics: In future research,
designing context-aware and adaptive heuristics for
handling varying levels of workloads and availability
nodes while incorporating user mobility into the design
would be beneficial to enhance the responsiveness and
robustness of edge cloud systems.

e Lightweight Metaheuristic Variants: Research should
optimize and simplify metaheuristics like ACO and PSO
by including techniques like parameter pruning or tuning
with a set of greedy rules. This may help retain
performance with reduced overhead costs for edge device
deployment.

e Hybrid Scheduling Approaches: One of the promising
areas that can be explored is the design of hybrid
schedulers with multiple objectives by combining the
power of diverse heuristic algorithms; for instance, a
combination of Min-Min with PSO or HEFT with Greedy
Priorities.

e Energy and SLA-Aware Extensions: Enhancing
traditional heuristics with capabilities like energy-
awareness, battery management, and Service Level
Agreement (SLA) compliance would significantly
improve their practicality and long-term viability in real-
world edge computing environments.

In conclusion, despite the immense potential of heuristic
algorithms for scheduling in future edge cloud designs, real-
world challenges such as adaptability, scalability, and
resource awareness necessitate further research.

This includes developing lightweight, adaptive
algorithms, modifying metaheuristics for edge environments,
and integrating energy and SLA awareness into existing
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heuristic frameworks. This precise guidance creates a distinct
heuristic structure that can adapt and schedule according to the
complex performance demands of emerging edge—cloud
systems.

7.3. Ethical and Societal Considerations

With the increasing complexity of edge—cloud computing
infrastructure, ethical concerns become increasingly
significant. Scheduling tasks influences where and how
sensitive data-such as personal or medical information—is
processed, thereby raising concerns about privacy and
security. It is essential that heuristic algorithms adopt secure
data-handling protocols to uphold user trust and meet

regulatory standards.

An additional ethical dimension pertains to energy
consumption and sustainability. It should be noted that edge
devices and data centers contribute to carbon emissions;
therefore, the design of energy-efficient scheduling is both a
technical necessity and an ethical obligation toward
environmentally responsible computing.

In addition, heuristic and hybrid scheduling algorithms
might unintentionally inject bias or unfairness in resource
allocation, benefiting some users, devices, or regions at the
expense of others. It is imperative that scheduling policies be
transparent and auditable, particularly in mission-critical
domains such as healthcare and autonomous transportation.

Finally, as edge-cloud infrastructures operate across
jurisdictions, schedulers must comply with regulatory and
compliance frameworks, among which are the General Data
Protection Regulation (GDPR) or the Health Insurance
Portability and Accountability Act (HIPAA). To address these
concerns, interdisciplinary research is necessary. This
research must combine technical efficiency with ethical
accountability. The objective is to ensure trustworthy
workload orchestration in real-world deployments.

8. Conclusion

Heuristic workload scheduling is among the most critical
performance optimization aspects in edge-cloud computing
platforms. Due to the increasing requirements for ultra-low
latency, energy efficiency, and scalability, the development of
lightweight yet efficient scheduling algorithms has become
increasingly challenging. This paper presents a structured
review of heuristic scheduling strategies. The heuristic
scheduling strategies are categorized into three classes:
simple, metaheuristic, and hybrid. The paper also analyzes
several representative algorithms, including HEFT, ACO,
PSO, Min—-Min/Max—Min, and GRAH. These algorithms are
analyzed across six performance criteria: latency, energy
consumption, scalability, adaptability, computational cost,
and implementation ease. The comparative results indicate
that GRAH achieves the most balanced performance, while
ACO and PSO offer strong adaptability and energy
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optimization at the expense of higher computational cost. In o Integrate heuristics with Al-driven mechanisms, such as

contrast, classical heuristics such as HEFT and Min—-Min deep reinforcement learning, to enable predictive and
remain practical for static workloads but are less effective self-optimizing scheduling that anticipates changes rather
under dynamic or resource-constrained conditions. Despite than merely reacting to them.
these advantages, heuristic-based methods still face persistent e Incorporate energy-, SLA-, and fairness-aware extensions
challenges in real-time adaptability, multi-objective tradeoffs, to ensure not only performance efficiency but also
and energy- and SLA-awareness within heterogeneous sustainability and equitable task distribution across
systems. distributed infrastructures.
o Establish standardized benchmarking and simulation
To address these gaps, future research should: platforms for evaluating heuristic models under realistic
hybrid edge—cloud scenarios, enabling consistent
e Develop context-aware and adaptive heuristic comparison and reproducibility.
frameworks capable of responding dynamically to
workload fluctuations, mobility, and resource variability By pursuing these directions, future work can transform
in real time. heuristic scheduling into a more adaptive, sustainable, and

o Design lightweight variants of metaheuristics such as  intelligent discipline, bridging the gap between lightweight
ACO and PSO by applying parameter tuning,  decision-making and context-aware orchestration. This
dimensionality reduction, or integration with greedy  evolution will pave the way for robust, ethically responsible,
strategies to make them feasible for resource-constrained ~ and high-performance workload management of emerging
edge nodes. edge—cloud systems.
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