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Abstract - Cardiovascular disease is the most significant cause of mortality throughout the globe, as stated by the World Health 

Organization (WHO). Researchers are interested in detecting Cardiovascular Disease (CVD) using electrocardiography (ECG) 

images due to their simplicity of use, explainability, visualization, and representational potential. Based on the Deep Learning-

Based Two-Way Feature Depiction (DLTWFD), which is derived from a 2-D Deep Convolutional Neural Network (2D DCNN) 

and a 1-D Deep Convolutional Neural Network (1D-DCNN), this research presents a CVD detection method based on the 

DLTWFD. For the purpose of providing connection and correlation in the initial ECG pattern, the 2-D DCNN takes the raw 

ECG pictures as input. To give the correlation between various texture and shape properties of the ECG pictures and to describe 

the local and global changes in the ECG pattern that are caused by CVD, the 1-D DCNN accepts the Modified Local Ternary 

Pattern (MLTP) and the Histogram of Oriented Gradient (HOG) features. By combining the deep qualities from raw ECG 

pictures, texture, and form features of the ECG, the DLTWFD presented improves the uniqueness of the features. The proposed 

DLTWFD achieves an overall accuracy of 98.20%, a recall of 98.20%, a precision of 98.10%, and an F1-score of 98.05%, 

surpassing the current state of the art. 

Keywords -  Biomedical Image Processing, Cardiovascular Disease Detection, Deep Convolution Neural Network, Histogram 

of Oriented Gradients, Local Ternary pattern, Texture Descriptor, Machine Learning. 

1. Introduction  
Not only is the heart an essential organ in the body, but it 

also serves as the driving force behind a person's overall health 

improvement. The most significant cause of mortality around 

the globe is cardiovascular disease, which is also referred to 

as heart disease in certain circles. In 2019, heart disorders were 

responsible for 32 percent (17.9 million) of all fatalities, 

according to the WHO. Particularly noteworthy is the fact that 

heart attacks and strokes were responsible for 85 percent of all 

deaths [1]. The failure or malfunction of the heart or blood 

arteries is the primary causal factor in the development of 

cardiac disorders. Nearly three-quarters of all fatalities that are 

caused by heart illnesses take place in nations that have 

incomes that fall between the middle and poor levels [2]. Heart 

disease is the most significant cause of death among all 

illnesses that do not result from an infectious agent. 

Behavioral factors, such as a poor diet, smoking, tobacco use, 

weight, excessive alcohol consumption, excessive salt 

consumption, and a lack of physical activity, as well as 

physiological factors, such as high blood pressure, cholesterol, 

high glucose, and high blood sugar, are significant 

contributors to the development of heart diseases [3, 4]. Pain 

or discomfort in the chest, arm, elbow, left shoulder, back, or 

jaw, unconsciousness, trouble balancing, sudden vision loss, 

difficulty speaking, cold sweats, dizziness, a severe headache, 

or difficulty speaking are some of the symptoms that most 

commonly accompany cardiac issues. Other symptoms 

include speech difficulties, cold sweats, dizziness, and sudden 

loss of vision. These groupings may include a variety of heart 

problems, including but not limited to heart failure, coronary 

heart disease, stroke, peripheral artery disease, venous disease, 

subclinical atherosclerosis, congenital heart disease, 

peripheral heart disease, valve disease, and other heart 

illnesses [5, 6]. Both non-surgical and surgical methods are 

also used in the process of diagnosing heart problems. 

Invasive procedures include coronary angiography and blood 

testing, to name just two examples. The ECG, Coronary 

Computed Tomography Angiograms (CCTA), cardiac 

Magnetic Resonance Imaging (MRI), and echocardiograms 

are all examples of non-invasive procedures. 

Electrocardiograms are among the numerous non-invasive, 

low-cost, and straightforward procedures used to diagnose 

heart disease. Therefore, electrocardiograms have become the 

method of choice for identifying and diagnosing cardiac 

diseases, such as myocardial infarction, arrhythmia, 

pericarditis, electrolyte imbalances, and pulmonary illnesses 

[7-9]. This has led to the widespread acceptance of 

electrocardiograms as the preferred technique.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The overall framework of a machine learning-based 

Electrocardiogram (ECG)- based cardiovascular disease 

detection system is illustrated in Figure 1. The classification 

system incorporates a wide range of processes, including 

signal pre-processing, feature extraction, feature selection, 

classification, and the identification of heart disease. The 

technology can diagnose cardiac problems by using either an 

ECG signal or an image. The input signal is often 

contaminated with noise and artifacts due to the presence of 

internal body components and electrode connections.  

Motion artifacts, wandering baseline artifacts, loose lead 

artifacts, muscle tremor artifacts, arterial pulse trapping 

artifacts, echo distortion artifacts, neuro-modulation artifacts, 

electromagnetic interference, and other similar artifacts are 

some of the key artifacts that may be seen on an ECG. 

Normalization, noise reduction, cropping, and artifact 

rejection are some of the additional steps included in the pre-

processing stages of electrocardiogram records. Capturing the 

features of the ECG signal is a crucial component of the 

feature extraction process [10]. These features represent the 

changes in the signal that are brought about by abnormalities. 

An ECG signal may be used to extract a wide variety of 

parameters, including morphological and derived 

characteristics. Morphological characteristics, including the 

length of the QRS complex, the duration of the P wave, the ST 

segment, the PR interval, the Q wave valley, the T wave 

valley, and other components, distinguish the pattern of the 

heartbeat. A number of these characteristics are also included. 

[11] Some of the characteristics that were developed include 

the Discrete Wavelet Transform (DWT), the Zero Crossing 

Rate (ZCR), the Principal Component Analysis (PCA), the 

Independent Component Analysis (ICA), the Empirical Mode 

Decomposition (EMD), the Vector Cardiography (VCG) 

vector, eigenvectors, and other similar features. For machine 

learning, feature extraction is a vital component since it 

enables the collection of the EEG signal's most essential and 

distinguishing characteristics. 

 
Fig. 1 Generalized framework of CVD system 

In the field of CVD, some of the imaging modalities that 

are used include Computed Tomography (CT), Single Photon 

Emission Computed Tomography (SPECT), MRI, and echo 

imaging. Different approaches have been taken to CVD based 

on its form, texture, and severity. Machine learning-based 

algorithms that utilize the features of texture, form, or color 

may be employed to screen medical images for anomalies [12, 

13].   

Various ML and DL-based CVD detection techniques 

have been presented in recent decades, which focus on the 

ECG signal. However, these techniques provide poor results 

due to poor spatial correlation, lower interpretation capability 

of models, higher complexity of DL models, class imbalance 

problem, and less standardization in the CVD detection 

scheme. Significantly less concentration is given to CVD 

detection using images that provide a texture depiction of the 

ECG pattern. Therefore, it is essential to focus on improving 

the accuracy of CVD detection using an effective complex 

pattern feature representation of the ECG images.  

In this study, the DLTWFD for CVD is presented based 

on ECG images to enhance the accuracy of CVD 

identification. This article makes several significant 

contributions, which are summarized as follows:  

• The 2-D DCNN) DLTWFD uses the 1-DCNN to enhance 

the feature representation of ECG images. If you want to 

portray aberrant patterns in ECG pictures, the 2-D DCNN 

provides greater spatial connectivity and correlation of 

the raw ECG images. A correlation in the textural and 

form qualities of the ECG pictures is provided by the 1-D 

DCNN, which utilizes innovative MLTP and HOG 

features.  

• Using accuracy, precision, recall, and F1-score, the 

performance assessment of the suggested CVD detection 

technique is being carried out.  

Continuing, the remainder of the article is organized as 

follows: Section 2 discusses the work relevant to identifying 

cardiovascular disease using electrocardiograms. Within the 

third section, comprehensive mathematical modeling, 

formulation, and approach are presented. The fourth section 

provides a concise summary of the experiment's outcomes, 

along with additional remarks. Lastly, the findings and 

potential future applications of the CVD detection system are 

presented in Section 5.  

2. Related Work 
ECG pictures have seen a significant increase in their use 

for the identification of CVD due to their visual 

interpretability and ease of use. Over the past decade, machine 

learning has become the most widely used method for 

diagnosing heart disease. The HRV signal was decomposed 

into its subbands by Giri et al. [19], who utilized the Discrete 

Wavelet Transform (DWT) for this purpose. The use of PCA, 
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ICA, and LDA achieved a reduction in the dimensionality of 

the sub-band DWT coefficients. An accuracy of classification 

of 96.8% was achieved using the ICA and Gaussian mixture 

model. During the process of HRV signal decomposition, 

Patidar et al. [20] investigated tunable-Q wavelet transform 

sub-bands using Principal Component Analysis (PCA) for 

feature reduction and centered correntropy for feature 

calculation techniques. The accuracy of the LSSVM classifier 

was 99.72%. HRV signals are broken down using the FAWT 

analytical wavelet transform [21] developed by Kumar et al. 

We discovered that it is possible to derive nonlinear 

entropy-based features from sub-band data. They achieved a 

perfect score in the Coronary Artery Detection (CAD) test 

using their approach. Sood and his colleagues described an 

Empirical Mode Decomposition (EMD) for HRV intrinsic 

mode functions in a publication [22]. With p-values lower than 

0.05, the most discriminative features for CAD were the mean 

frequency characteristics calculated from the Fourier-Bessel 

expansion, the amplitude modulation bandwidth, and the 

frequency modulation bandwidth. An SVM-based Coronary 

Artery Disease (CAD) detection system was developed by 

Alizadehsani et al. [23] to recognize CAD and diagnose heart 

ailments. An Artificial Neural Network (ANN) model was 

developed by Arabasadi et al. [24] using a Multilayer 

Perceptron (MLP) structure with a sigmoid exponential 

function. This was accomplished by using four well-known 

ranking algorithms to select more essential traits. 

To develop the ANN model, the genetic approach begins 

by accurately detecting Coronary Artery Disease (CAD) with 

a 93.85% accuracy rate. A description of SVM-based CVD 

detection may be found in Tabassum and Islam [25]. The 

percentage of patients who had apnea, sinus tachycardia, atrial 

fibrillation, and myocardial infarction was determined to be 

84.6%. The SVM was trained using the following parameters: 

the RR interval, the QRS complex, the ST elevation, the heart 

rate, the ST interval, and the PR interval. In their study [26], 

Gauvane and colleagues presented an MLP-based approach 

for detecting heart disease. This algorithm is trained using data 

from various factors, including physical characteristics, blood 

pressure, cholesterol levels, and blood sugar levels. The 

accuracy of this solution is 0.91, and its recall is 0.89. The 

Hybrid Recurrent Function with Linear Model (HRFLM) was 

used by Mohan et al. [27] to diagnose cardiac disease with an 

accuracy rate of 88.7% in the Cleveland dataset. The selection 

of efficient features limits the system's performance.  

Following that, Sharma et al. [28] demonstrated the 

diagnosis of cardiac disease using KNN, SVM, NB, and DNN. 

The SVM algorithm yields results superior to those obtained 

by DNN (81.9%), NB (83.97%), and KNN (81.43%) when 

applied to the Pittsburgh dataset. There is a possibility that the 

system's efficiency and efficacy might be improved by 

employing generative models to produce a synthetic dataset. 

The authors Li et al. [29] proposed a feature selection 

technique based on conditional mutual information, which is 

an efficient approach. FCMIM-SVM achieved an accuracy of 

92.37% when used on the Cleveland dataset for the detection 

of heart disease. The FCMIM expedited processing by 

prioritizing the most critical information. The outcomes of 

machine learning-based techniques are highly dependent on 

the quality, uniqueness, and number of features. Several 

different classifiers for Cardiovascular Disease (CVD) were 

created by Prajwal et al. [30], including SVM, KNN, GB, 

ANN, and HV. The accuracy rates are 72.68% for SVM, 

70.03% for GB, 71.32% for HV, 66.14% for KNN, and 

72.51% for ANN. They developed features based on body 

mass index I), which assist in identifying.  

Using ECG data, Fang et al. [31] proposed the use of 

RBF-SVM for the purpose of identifying cardiac disease. The 

Pan-Tompkins and K-means clustering algorithms were used 

to extract and select QRS characteristics. A total accuracy of 

98.98% was achieved. When compared to standard samples, 

which had an accuracy rate of 99.74%, aberrant samples had 

a lower accuracy rate of 97.53%. A study conducted by 

Biswas et al. [32] investigated the impact that feature selection 

strategies had on SVM, RF, LR, KNN, NB, and DT machine 

learning classifiers. Mutual information, analysis of variance, 

and chi-square were used. The RF + MuI classifier achieves a 

success rate of 94.51%, surpassing the accuracy of other 

feature options. Based on the comprehensive review of the 

existing literature, the following research gaps have been 

identified: 

• Inadequate spatial correlation and textural portrayal  

• The number of ECG images reduces the efficiency of 

CVD identification [33, 34]. 

• The issue of class imbalance and data scarcity arises as a 

result of unequal training and a shortage of public ECG 

images used for training deep learning models [35, 36]. 

• Low levels of both explainability and interpretability of 

the algorithm [38, 39]. Baseline drift, motion artifacts, 

and power line interference all contributed to the system's 

poor performance.  

• Less work is done on CVD detection using images that 

provide a texture depiction of the ECG pattern. 

• Lower accuracy for multiclass CVD detection  

• Lower “Explainability and Interpretability” in the ECG 

signal-based CVD detection 

• Complexity in the existing techniques is due to higher 

training parameters and the intricacy of the model 

framework. 

• Lower spatial correlation in the complex ECG patterns.  

3. Methodology  
The suggested DLTWFD-based CVD detection 

technique is shown diagrammatically in Figure 2, available 

here. Initially, the ECG photos are preprocessed to crop the 

header and footer of the images. This cropping does not 
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represent any information about the ECG or health condition 

of the individual. Two deep convolutional neural network 

arms make up the FLTWFR. These arms mix raw pictures 

with morphological, form, and textural characteristics. To 

learn the hierarchical characteristics of the ECG from two-

dimensional images, a Two-Dimensional Deep Convolutional 

Neural Network (2D-DCNN) is employed. Providing the 

connection between the form, texture, and morphological 

characteristics of the ECG, the second arm comprises a one-

dimensional DCNN capable of accepting numerous ECG 

features. These features include HOG-based shape features, 

MLTP-based texture features, and morphological aspects of 

the ECG. A flattening and concatenation process is performed 

on the features of the final layers of both the 2D-DCNN and 

the 1D-DCNN representations. To improve the connection 

between neurons, the concatenated characteristics are sent to 

the FC layer. In conclusion, a softmax classifier is used to 

categorize ECG images into the following categories: 

Abnormal Heartbeat (AH), Myocardial Infarction (MI), 

History of Myocardial Infarction (HMI), and normal.   

 
Fig. 2 Flow diagram of the proposed DLTWFD-based CVD detection scheme 

 
To establish spatial connections in the ECG images, the 

first arm comprises a three-layered, two-dimensional DCNN. 

Following the Rectified Linear Unit (ReLU) layer, the Batch 

Normalization layer (BN), and the maximum pooling 

(MaxPool) layer, the two-dimensional DCNN is composed of 

three convolutional layers, each with 64, 128, and 256 filters 

of varying sizes. Within the ECG pattern, the convolution 

layer provides correlation and connection to portray the 

changes caused by illnesses. 

The convolution process of a two-dimensional Deep 

Convolutional Neural Network (DCNN) for ECG images, 

with a resolution of Row × Col and a filter kernel W, is 

represented by Equation 1. When it comes to the Conv layer, 

filters that have dimensions of 3×3 and a stride of 1 pixel are 

used. It is generally accepted that the initial settings of the 

Conv filters are set arbitrarily.  

𝐶𝑜𝑛𝑣(𝑥, 𝑦) = ∑ ∑ 𝐸𝐶𝐺(𝑖 − 𝑥, 𝑗 − 𝑦)𝑊(𝑥, 𝑦)𝐶𝑜𝑙
𝑗=1

𝑅𝑜𝑤
𝑖=1  (1) 

In accordance with equation 2, the ReLU layer contributes 

to the enhancement of the non-linear character of the output of 

the convolution layer by converting all negative neurons to 

zero. Through the use of the ReLU layer, training performance 

is improved, and training is accelerated.  

Relu(x, y) = max(0, conv(x, y)) (2) 

The MaxPool layer is responsible for selecting the most 

valuable values from the local 2×2 pixel area to reduce the 

number of features and eliminate redundant ones. By taking 

into account the mean (m) and standard deviation of neurons 

throughout the batch size of 32, as well as two trainable 

parameters—scale (α) and offset (γ) —which are initialized 

randomly, the BN layer can normalize the output of the ReLU 

layer. In the case of the 2D DCNN, the BN operation may be 

expressed as equation 3. 

BN(x,y)= α.
𝑅𝑒𝐿𝑈(𝑥,𝑦)−𝑚

𝜎
+  𝛾 (3) 
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To provide connection and correlation between local and 

global textural, MLTP, and morphological characteristics of 

ECG, the second arm comprises a one-dimensional DCNN. 

There are also three layers of one-dimensional convolution in 

the one-dimensional DCNN, with 64, 128, and 256 filters at 

each layer, followed by layers of ReLU, BN, and MaxPool. 

Following the flattening of the output of the MaxPool layer in 

the 2-D DCNN and the 1-D DCNN, a 1-D vector is then sent 

to the Fully Connected Layer (FCL), which has fifty hidden 

layers. Through the process of merging each deep feature with 

all of the other characteristics, the FCL can improve the 

connectedness between profound features. The probabilistic 

softmax classifier is also applied to categorize the 

electrocardiogram images into the following categories: AH, 

HMI, MI, and normal.  

3.1. MLTP Features  

When compared to the two levels of banalization included 

in LBP, the LTP is an upgraded form of LBP that considers 

three additional levels. The LTP provides superior local 

spatial features, which can reflect the changes that occur 

locally in the pictures. By dividing the picture into local 

patches of 3×3 pixels, the LTP technique is used. This is the 

value that is deemed to be the threshold. A comparison is made 

between the values of the nearby pixels and the value of the 

Centered Pixel (CX), and if the value is greater than CX +th, 

then the pattern is judged to be 1. If the value of the 

surrounding pixel is lower than the CX-th, the pattern is 

regarded as having a value of -1. According to equation 4, the 

pattern is deemed to be identical to zero if the value of the 

adjoining pixel falls within the range of CX+th to CX-th. 

𝑙𝑡𝑝(𝑥) = {   

−1                           𝑖𝑓 𝑥 < 𝐶𝑋 − 𝑡ℎ
0             𝑋 − 𝑡ℎ ≤ 𝑥 ≤ 𝐶𝑋 + 𝑡ℎ
1                            𝑖𝑓 𝑥 > 𝐶𝑋 + 𝑡ℎ

  (4) 

The L-LTP is produced by changing 1 to 0 and -1 to 1, 

thereby generating a binary pattern. The U-LTP is constructed 

by changing -1 to 0, while the L-LTP is constructed by 

changing 1 to 0. After being translated to a decimal equivalent, 

the binary sequence of L-LTP and U-LTP yields a result that 

falls anywhere between 0 and 255. This is because there are 

eight neighbors. 

The threshold value, which is manually determined, has a 

significant impact on the results when the LTP is examined. 

Additionally, the LTP characteristics can be affected by noise 

as well as uneven fluctuations in light throughout the image. 

For the purpose of assessing the correlation, the standard LTP 

considers a single neighbor, which is susceptible to being 

influenced by noise and uneven contrast.  

3.2. Modified LTP Features 

     When evaluating textures, the standard LTP only considers 

close neighbors, which reduces its resilience when dealing 

with noisy or low-contrast images. A further disadvantage of 

typical LTP is its weak spatial connectivity, which reduces 

classification ability. Multiple neighbors, with a maximum of 

three layers, are considered for the assessment of texture in the 

unique Modified LTP (MLTP) that has been developed. The 

MLTP considers eight neighbors, and cap C sub, 1 minus 8 

end subscript are located at the corresponding radii R1=1, 

R2=2, and R3=3.  

 
Fig. 3 Visualization of the LTP process 
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Fig. 4 Spatial representation of MLTP 

MLTP provides the connection between the center pixel 

and its three adjacent pixels to achieve a more accurate 

depiction of the texture.  

Using Equation 3, which assigns a larger weight to the 

immediate neighbor than the neighbor at radius R3=3, the 

equal surrounding pixel value is taken into consideration. 

Figure 5 illustrates the procedure involved in MLTP.  

𝑥 = (𝐴𝑖 − 𝐶𝑋) × 𝑅3 + (𝐵𝑖 − 𝐶𝑋) × 𝑅2 + (𝐶𝑖 −
𝐶𝑋) × 𝑅1   (5) 

Following the division of the ULTP and LLTP into the 

N×N blocks, the histograms of each block are individually 

calculated. To construct the final feature vector, the 

histograms from each block are concatenated. When the 

picture is divided into blocks, it becomes easier to capture the 

fluctuations in the electrocardiogram signals present in the 

local area. The single-block characteristics are inadequate in 

comparison to the spatial connection offered by this. There are 

512 features available in the MLTP histogram single block (N 

= 1), with 256 features for ULTP and 256 features for LLTP.  

These features are designed to provide scale and shift 

invariance. When the value of N is equal to two, the LLTP and 

ULTP descriptors are separated into equal blocks of 2×2 local 

regions. Each of these blocks is composed of a total of (row/2) 

rows and (cols/2) columns, where row and col represent the 

number of rows and columns initially present in the picture. 

Table 1 provides a summary of the MLTP feature vector 

dimensions for each block. Figure 6 presents a visual 

representation of the MLTP properties, along with the 

corresponding histogram. 

Table 1. MNLTP features for different blocks 

Number 

of Blocks 

(N) 

ULTP 

Features 

(Histogram 

values) 

LLTP 

Features 

(Histogram 

values) 

Total 

Features 

N=1 256 256 512 

N=2 1024 1024 2048 

N=3 2304 2304 4608 

N=4 4096 4096 8192 

N=5 6400 6400 12800 

 
Fig. 5 Process of MLTP 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6 Visualization of the MLTP descriptor, (a) Original ECG image (Abnormal Heartbeats), (b) Pre-processed image, (c) Lower MLTP descriptor 

(d) Upper MLTP descriptor, (e) Histogram of lower MLTP, and (f) Histogram of upper MLTP. 

3.3. HOG Features 

It is possible to define the form of objects present in 

remote sensing photos by using the HOG, which provides the 

orientation of gradients in various directions. The computation 

of the horizontal (Ix) and vertical (Iy) gradients is 

accomplished by using a horizontal derivative filter (Hx) and 

a vertical derivative filter (Hy) with equations 6-9, 

respectively.  
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𝐻𝑥 = [−101] (6)  

𝐻𝑦 = [−101]𝑇 (7)   

The magnitude of the orientation gradient, denoted as M, 

is determined by using the value of 10. In contrast, the 

orientation, denoted as θ, is computed considering nine bins 

ranging from 0 to 180 degrees.  

The total concentration of the edges is determined by the 

magnitude and direction, which is used to define the anomalies 

in the ECG structure.  

𝐼𝑥 = 𝑖𝑚 ∗ 𝐻𝑥 (8) 

𝐼𝑦 = 𝑖𝑚 ∗ 𝐻𝑦 (9) 

𝑀 = √𝐼𝑥2 + 𝐼𝑦2 (10) 

𝜃 = 𝑡𝑎𝑛−1 (
𝐼𝑦

𝐼𝑥
) (11) 

Initially, the pictures are normalized using the second 

normalization form to address the issue of changes in lighting. 

The picture is divided into local blocks, each composed of 2×2 

cells with a size of 8×8 pixels. For the purpose of enhancing 

contrast, the blocks are deemed to overlap by fifty percent.  

The computation of nine bin histogram features for each 

cell yields a total of 34,596 features for an image of size 

256×256. The HOG visualizations are shown in Figure 7, 

which includes horizontal gradients (Figure 7(a)), vertical 

gradients (Figure 7(b)), and the magnitude of gradients 

(Figure 7(c)), respectively.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 7 Visualization of HOG (a) Preprocessed ECG image, (b) Horizontal gradient, (c) Vertical gradients, and (d) Magnitude of HOG. 

3.4. Morphological Features 

An improvement in signal quality is achieved by using 

preprocessing methods, such as filtering and normalization, to 

extract P, QRS, and T morphological characteristics from 

ECG images. Waveform boundaries can be identified using 

edge detection techniques, such as the Canny or Sobel filters. 
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Wavelet transformations and adaptive thresholding are two 

examples of segmentation methods that may be used to 

specifically separate the P wave, QRS complex, and T wave. 

Approaches of feature extraction include peak identification, 

amplitude measurement, and duration computation. These 

approaches quantify essential characteristics, such as the 

duration of the P-wave, the breadth of the QRS complex, and 

the shape of the T-wave. The morphological characteristics 

consist of three P-wave features, which include duration, 

amplitude, and area of the P-wave; five QRS wave features, 

which include QRS length, R-wave amplitude, Q-wave 

amplitude, S-wave amplitude, and QRS area; and three T-

wave features, which include duration, amplitude, and area of 

the T-wave. To optimize the feature representation, the final 

feature vector comprises 8192 MLTP features, 34596 features, 

and 11 morphological characteristics. These features are then 

input into a 1-D deep convolutional neural network.  

4. Experimental Results and Discussion 
On a personal computer with 16 gigabytes of Random-

Access Memory (RAM) and Windows as the operating 

system, the suggested solution utilizes MATLAB 2024. A 

batch size of 32 and an initial learning rate of 0.001 are 

considered during the training of the proposed algorithm, 

which is trained using the Adam optimization method for a 

total of 200 epochs. As shown in Figure 8, the model achieves 

a training accuracy of 100% for the entire 200 epochs and 

demonstrates stability in training beyond the 100th epoch. 

Table 2 provides a summary of the hyperparameters that are 

used during training. 

Table 2. Hyperparameters of DCNN 

Parameter Specification 

Learning Algorithm Adam 

Batch Size 32 

Initial Learning Rate 0.001 

Loss Function Cross-Entropy 

Activation Function ReLU 

Epoch 200 
 

 
Fig. 8 Training performance of DLTWFD 

4.1. Dataset 

Among the pictures that comprise the public Mendeley 

ECG image collection [33], four categories are employed for 

performance assessment. These categories include 

Myocardial Infarction (MI), History of Myocardial Infarction 

(HMI), and normal and Abnormal Heartbeat (AH). Each  ECG 

contains four ECG signals for the patient.  

There are 233 photographs of AH, 239 images of MI, 172 

images of HMI, and 284 images of normal that are included in 

the collection. A resolution of 2213×1572 pixels is available 

for the ECG pictures.  

The material in the footer and header that does not 

represent any information related to ECG is clipped during the 

pre-processing stage of the software development process. 

Seventy percent of the dataset is used for training CVD, while 

thirty percent is used for testing CVD. 

4.2. Discussions on Results for the 4 Class CVD Detection 

Additionally, the confusion matrix for the raw pictures 

plus 2-DCNN, ECG features plus 1-D DCNN, and DLTWFD 

is shown in Figures 9-11, respectively. Following the 

implementation of the DLTWFD, the four-class CVD 

detection achieved an exceptional overall accuracy of 98.20%, 

a recall of 98.20%, a precision of 98.10%, and an F1-score of 

98.05%. 

For the diagnosis of four-class cardiovascular disease, the 

2D-DCNN has an average recall of 94.58%, precision of 

94.83%, F1-score of 94.66%, and accuracy of 94.58%. On the 

other hand, the results of the four-class CVD detection using 

1D-DCNN were as follows: an overall recall of 96.68%, a 

precision of 96.75%, an F1-score of 96.70%, and an accuracy 

of 96.68%.  

Fig. 9 Confusion matrix for 2-D DCNN-based CVD detection 
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Fig. 10 Confusion matrix for 1-D DCNN-based CVD detection 

 
Fig. 11 Confusion matrix for DLTWFD-based CVD detection 

A greater accuracy of 98.2% is provided by the DLTWFD 

in comparison to the 2-D DCNN (94.58%) and the 1-D DCNN 

(98.68%). This precision is achieved by integrating the 

benefits of raw pictures with the texture, form, and 

morphological characteristics of the electrocardiograms. In 

terms of overall recall, the DLTWFD offers 100% recall for 

the normal, 96.20% for the HMI, 97.2% for the MI, and 

98.60% for the AH. With a precision of 100% for normal, 98% 

for HMI, 97.20% for AH, and 97.2% for MI, the DLTWFD 

will give them accurate results. The F1-Scores for the 

DLTFWR are 97.1%, 98.1%, 97.2%, and 100%, respectively, 

for the AH, HMI, MI, and regular classes. While the 

DLTWFD has a greater accuracy for the normal (100%) and a 

lower accuracy for the HMI (96.20%), the normal has superior 

accuracy. The DLTWFD contributes to the enhancement of 

the spatial correlation and connection in the local, global, and 

morphological characteristics of the ECG. A 2-D DCNN using 

raw images and a 1-D DCNN with various characteristics 

demonstrate the imbalance between recall and accuracy.  

Figure 10 presents graphics that demonstrate the 

visualizations of the data obtained by the DLTWFD.  

Table 3. Comparative results of CVD detection using DLTWFD 

Perfor-mance Parameter Method AH HMI MI Normal Average 

Recall 

2-D DCNN 97.1 90.4 94.4 96.4 94.58 

1-D DCNN 97.1 96.2 95.8 97.6 96.68 

DLTWFD 98.6 96.2 97.2 100 98.2 

Precision 

2-D DCNN 90.7 94 95.8 98.8 94.83 

1-D DCNN 94.4 98 95.8 98.8 96.75 

DLTWFD 97.2 98 97.2 100 98.1 

F1-score 

2-D DCNN 93.79 92.16 95.09 97.59 94.66 

1-D DCNN 95.73 97.09 95.8 98.2 96.7 

DLTWFD 97.89 97.09 97.2 100 98.05 

Accuracy 

2-D DCNN 97.1 90.4 94.4 96.4 94.58 

1-D DCNN 97.1 96.2 95.8 97.6 96.68 

DLTWFD 98.6 96.2 97.2 100 98.2 

4.3 Discussions on Results for 2-Class CVD Detection 

The performance of the DLTWFD is evaluated for two-

class classification, considering one regular class versus one 

sick class and one illness versus another disease, as shown in 

Figures 12 and 13. In terms of overall accuracy, the DLTWFD 

achieves scores of 98.55 percent for AH versus Normal, 99.05 

percent for HMI versus Normal, 100 percent for MI versus 

Normal, 98.35 percent for AH versus HMI, 99.05 percent for 

HMI versus MI, and 98.6 percent for AH versus MI, 

respectively. When the findings are compared with those of a 

typical class, DLTWFD achieves a classification accuracy of 

100% for MI, surpassing the conventional classification. The 

two-class disease detection demonstrates a higher F1-score, 

with values of 98.70% for AH vs. Normal, 99.22% for HMI 

vs. Normal, 100% for MI vs. Normal, 98.35% for AH vs. 

HMI, 99.17% for HMI vs. MI, and 98.60% for AH vs. MI, 

respectively. As shown in Table 4, the outcomes of the 

DLTWFD are evaluated for the various block sizes that are 
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used in the MLTP. The MLTP yields higher-quality results for 

the radius R = 3 and four blocks (N = 4) than any other 

method. For a sample size of four, the DLTWFD provides an 

accuracy of 89.93% for R=1, 94.58% for R=2, 98.20% for 

R=3, 97.46% for R=4, and 96.36% for R=5. When the radius 

is increased, the spatial correlation also increases, and the 

homogeneity measure of the texture is provided up to R = 3. 

However, when the radius is increased beyond R = 3 (i.e., R = 

4 and R = 5), the spatial correlation is low, and it fails to 

achieve spatial homogeneity. 

 
Fig. 12 Performance of the DLTWFD for two-class classification 

   
(a) (b) (c) 

   

(d) (e) (f) 

Fig. 13 Confusion matrix for two-class CVD classifications 
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4.4. Effect of Block Size on CVD Detection (4-Class CVD 

Detection)  

A histogram can be created by considering local areas of 

the ECG MLTP. The feature representation can be improved 

by increasing the number of blocks. Due to the redundancy of 

the features, the feature size increases when N equals four, 

resulting in fewer results being obtained.  

As a result, the MLTP with R = 3 and N = 4 is considered 

in this study for the DLTWFD. 

Table 4. Effect of different block sizes of MLTP on DLTWFD 

Algorithm Radius 
Number of 

Blocks (N) 
Recall Precision F1-score Accuracy 

 

DLTWFD 

(2D-DCNN + 1D-

DCNN) 

 

 

R=1 

N=1 87.37 86.86 87.11 87.05 

N=2 88.46 87.74 88.10 88.13 

N=3 89.52 88.80 89.16 89.21 

N=4 90.12 89.59 89.85 89.93 

N=5 89.82 89.19 89.50 89.57 

R=2 

N=1 90.61 89.82 90.22 90.22 

N=2 90.96 90.18 90.57 90.58 

N=3 91.32 90.53 90.92 90.94 

N=4 94.79 94.53 94.66 94.58 

N=5 93.35 92.97 93.16 93.14 

R=3 

N=1 96.19 96.15 96.17 96.36 

N=2 96.70 96.52 96.61 96.73 

N=3 97.04 97.01 97.03 97.09 

N=4 98.20 98.10 98.05 98.20 

N=5 97.40 97.31 97.35 97.46 

R=4 

N=1 96.70 96.52 96.61 96.74 

N=2 96.76 96.41 96.58 96.74 

N=3 97.04 96.86 96.95 97.09 

N=4 97.35 97.35 97.35 97.46 

N=5 96.06 95.73 95.90 96.01 

R=5 

N=1 91.32 90.53 90.92 90.94 

N=2 92.32 91.72 92.02 92.03 

N=3 95.67 95.57 95.62 95.65 

N=4 96.34 96.27 96.31 96.36 

N=5 95.37 95.22 95.29 95.29 

 
Fig. 14 Accuracy for different block sizes 

 
Fig. 15 Training time of DLTWFD (sec) for different blocks 

4.5. Training Time Analysis 

The amount of time required for training the DLTWFD 

for R = 3 is shown in Figure 14-16, respectively, for each of 

the distinct blocks. Furthermore, it has been discovered that 

the DLTWFD provides optimal training and testing times of 

1889 seconds and 1.23 seconds, respectively, for the N=4 

value. This results in an exceptional level of accuracy for 

diagnosing four different types of CVD. With a value of N 
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equal to five, MLTP offers 12800 histogram features and 

significantly increases the trainable parameters of the 1D-

DCNN. This results in an increase in the computational 

complexity of the DLTWFD. 

 
Fig. 16 Recognition time of DLTWFD (sec) for different blocks 

4.6. Comparisons with Previous Techniques 

We compare the findings of the DLTWFD with those of 

established approaches that consider ECG images for CVD 

identification, as shown in Table 5, based on their accuracy. 

Deep learning models, such as MobileNet V2 and VGG16, 

were examined by Mhamdi et al. [38] to develop an ECG-

based system for CVD diagnosis. The performance of 

MobileNet V2 was somewhat lower than that of VGG16, 

which reached an accuracy of 91% and an F1-score of 0.905. 

MobileNet V2 achieved an accuracy of 95%, while VGG16 

earned an F1-score of 0.942. Based on these findings, it can 

be concluded that deep learning models are successful; 

however, the complexity of the framework somewhat 

constrains their performance.  

The research conducted by Bhangale and colleagues [39] 

focused on conventional machine learning methods, including 

Naïve Bayes, Linear Support Vector Machines (SVM), K-

Nearest Neighbors (KNN), and Random Forest. Random 

Forest achieved the highest accuracy among them, with a 

score of 96.25%, demonstrating its resilience in feature-based 

categorization. Additionally, the Linear Support Vector 

Machine (SVM) demonstrated exceptional performance, 

achieving an accuracy rate of 95.25%. On the other hand, 

KNN and Naïve Bayes demonstrated a lesser level of 

performance, with 83.75% and 70.5%, respectively. In 

contrast, the Deep Learning with Temporal Wavelet Feature 

Representation (DLTWFD) technique, which was suggested, 

achieved an accuracy of 98.20%, significantly outperforming 

the previous methodologies.  

This represents an improvement of 3.95% compared to 

MobileNet V2, an increase of 7.9% compared to VGG16, and 

a 2.03% improvement over Random Forest, which was the 

conventional model that performed the best. As an additional 

point of interest, the suggested strategy achieved a higher F1-

score (98.05), indicating improved overall classification 

consistency. 

Table 5. Comparison of DLTWFD with traditional CVD detection schemes 

Authors Methods Accuracy (%) Recall Precision F1-score 

Mhamdi et al. [38] MobileNet V2 95 94 97.5 94.2 

Mhamdi et al. [38] VGG16 91 90.5 91.2 90.5 

Bhangale et al. [39] 

Naïve bayes 70.5 71 71.25 70.75 

Linear SVM 95.25 94.25 95.5 94.25 

KNN 83.75 84.25 84.25 83.5 

Random Forest 96.25 96.25 96.25 96.25 

Proposed method DLTWFD 98.20 98.20 98.10 98.05 

By integrating the hierarchical, unique characteristics and 

complex patterns derived from the raw ECG images with the 

distinctive texture and shape features generated from MLTP, 

HOG, and morphological features, the proposed DLTWFD 

can provide a more accurate portrayal of the ECG for the 

identification of CVD. To provide a greater connection and 

correlation between the local and global patterns of the ECG, 

the innovative MLTP facilitates the detection of both fine and 

coarse alterations in the ECG pattern. By including 

irregularities in the form of the ECG that are caused by CVDs, 

the HOG and morphological aspects help to enhance the 

individuality of the findings. Both the two-class and the four-

class classifications provide encouraging findings and 

demonstrate a high level of classification accuracy. On the 

other hand, the system's usefulness can be limited by the issue 

of class imbalance and the small size of the initial dataset. Due 

to the availability of 2D-DCNN and 1D-DCNN in two arms, 

the manual parameter adjustment of the DLTWFD presents a 

degree of difficulty.  

5. Conclusion and Future Scopes  
Advanced diagnostic methods are required to diagnose 

cardiovascular disease in a timely and reliable manner, since 

it continues to be a significant worry for the health of people 

all over the world.  

This research presents a framework for DLTWFD that 

utilizes both two-dimensional and one-dimensional DCNNs to 

enhance the identification of CVD using ECG images. By 

integrating raw ECG image analysis with 2-D DCNN and 
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feature extraction through 1-D DCNN, using MLTP and HOG 

features, a comprehensive understanding of local and global 

alterations in ECG patterns caused by CVD is provided. The 

suggested DLTWFD enhances feature distinctiveness, 

resulting in improved classification performance. This is 

accomplished by efficiently merging deep properties from raw 

ECG pictures with texture and shape features.  

The fact that this strategy achieved an accuracy of 

98.20%, recall of 98.20%, precision of 98.10%, and F1-score 

of 98.05% demonstrates that it is more successful than the 

approaches currently considered state-of-the-art. Refining the 

model, improving its computational efficiency, and 

investigating its potential applications in clinical settings will 

be the primary focus of future research. 
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