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Abstract - Cardiovascular disease is the most significant cause of mortality throughout the globe, as stated by the World Health
Organization (WHO). Researchers are interested in detecting Cardiovascular Disease (CVD) using electrocardiography (ECG)
images due to their simplicity of use, explainability, visualization, and representational potential. Based on the Deep Learning-
Based Two-Way Feature Depiction (DLTWFD), which is derived from a 2-D Deep Convolutional Neural Network (2D DCNN)
and a 1-D Deep Convolutional Neural Network (I1D-DCNN), this research presents a CVD detection method based on the
DLTWFD. For the purpose of providing connection and correlation in the initial ECG pattern, the 2-D DCNN takes the raw
ECG pictures as input. To give the correlation between various texture and shape properties of the ECG pictures and to describe
the local and global changes in the ECG pattern that are caused by CVD, the 1-D DCNN accepts the Modified Local Ternary
Pattern (MLTP) and the Histogram of Oriented Gradient (HOG) features. By combining the deep qualities from raw ECG
pictures, texture, and form features of the ECG, the DLTWFD presented improves the uniqueness of the features. The proposed
DLTWFD achieves an overall accuracy of 98.20%, a recall of 98.20%, a precision of 98.10%, and an Fl-score of 98.05%,

surpassing the current state of the art.

Keywords - Biomedical Image Processing, Cardiovascular Disease Detection, Deep Convolution Neural Network, Histogram

of Oriented Gradients, Local Ternary pattern, Texture Descriptor, Machine Learning.

1. Introduction

Not only is the heart an essential organ in the body, but it
also serves as the driving force behind a person's overall health
improvement. The most significant cause of mortality around
the globe is cardiovascular disease, which is also referred to
as heart disease in certain circles. In 2019, heart disorders were
responsible for 32 percent (17.9 million) of all fatalities,
according to the WHO. Particularly noteworthy is the fact that
heart attacks and strokes were responsible for 85 percent of all
deaths [1]. The failure or malfunction of the heart or blood
arteries is the primary causal factor in the development of
cardiac disorders. Nearly three-quarters of all fatalities that are
caused by heart illnesses take place in nations that have
incomes that fall between the middle and poor levels [2]. Heart
disease is the most significant cause of death among all
illnesses that do not result from an infectious agent.
Behavioral factors, such as a poor diet, smoking, tobacco use,
weight, excessive alcohol consumption, excessive salt
consumption, and a lack of physical activity, as well as
physiological factors, such as high blood pressure, cholesterol,
high glucose, and high blood sugar, are significant
contributors to the development of heart diseases [3, 4]. Pain
or discomfort in the chest, arm, elbow, left shoulder, back, or
jaw, unconsciousness, trouble balancing, sudden vision loss,

difficulty speaking, cold sweats, dizziness, a severe headache,
or difficulty speaking are some of the symptoms that most
commonly accompany cardiac issues. Other symptoms
include speech difficulties, cold sweats, dizziness, and sudden
loss of vision. These groupings may include a variety of heart
problems, including but not limited to heart failure, coronary
heart disease, stroke, peripheral artery disease, venous disease,
subclinical atherosclerosis, congenital heart disease,
peripheral heart disease, valve disease, and other heart
illnesses [5, 6]. Both non-surgical and surgical methods are
also used in the process of diagnosing heart problems.
Invasive procedures include coronary angiography and blood
testing, to name just two examples. The ECG, Coronary
Computed Tomography Angiograms (CCTA), cardiac
Magnetic Resonance Imaging (MRI), and echocardiograms
are all examples of non-invasive  procedures.
Electrocardiograms are among the numerous non-invasive,
low-cost, and straightforward procedures used to diagnose
heart disease. Therefore, electrocardiograms have become the
method of choice for identifying and diagnosing cardiac
diseases, such as myocardial infarction, arrhythmia,
pericarditis, electrolyte imbalances, and pulmonary illnesses
[7-9]. This has led to the widespread acceptance of
electrocardiograms as the preferred technique.
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The overall framework of a machine learning-based
Electrocardiogram (ECG)- based cardiovascular disease
detection system is illustrated in Figure 1. The classification
system incorporates a wide range of processes, including
signal pre-processing, feature extraction, feature selection,
classification, and the identification of heart disease. The
technology can diagnose cardiac problems by using either an
ECG signal or an image. The input signal is often
contaminated with noise and artifacts due to the presence of
internal body components and electrode connections.

Motion artifacts, wandering baseline artifacts, loose lead
artifacts, muscle tremor artifacts, arterial pulse trapping
artifacts, echo distortion artifacts, neuro-modulation artifacts,
electromagnetic interference, and other similar artifacts are
some of the key artifacts that may be seen on an ECG.
Normalization, noise reduction, cropping, and artifact
rejection are some of the additional steps included in the pre-
processing stages of electrocardiogram records. Capturing the
features of the ECG signal is a crucial component of the
feature extraction process [10]. These features represent the
changes in the signal that are brought about by abnormalities.
An ECG signal may be used to extract a wide variety of
parameters, including morphological and derived
characteristics. Morphological characteristics, including the
length of the QRS complex, the duration of the P wave, the ST
segment, the PR interval, the Q wave valley, the T wave
valley, and other components, distinguish the pattern of the
heartbeat. A number of these characteristics are also included.
[11] Some of the characteristics that were developed include
the Discrete Wavelet Transform (DWT), the Zero Crossing
Rate (ZCR), the Principal Component Analysis (PCA), the
Independent Component Analysis (ICA), the Empirical Mode
Decomposition (EMD), the Vector Cardiography (VCG)
vector, eigenvectors, and other similar features. For machine
learning, feature extraction is a vital component since it
enables the collection of the EEG signal's most essential and
distinguishing characteristics.
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Fig. 1 Generalized framework of CVD system
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In the field of CVD, some of the imaging modalities that
are used include Computed Tomography (CT), Single Photon
Emission Computed Tomography (SPECT), MRI, and echo
imaging. Different approaches have been taken to CVD based
on its form, texture, and severity. Machine learning-based
algorithms that utilize the features of texture, form, or color
may be employed to screen medical images for anomalies [12,
13].

Various ML and DL-based CVD detection techniques
have been presented in recent decades, which focus on the
ECG signal. However, these techniques provide poor results
due to poor spatial correlation, lower interpretation capability
of models, higher complexity of DL models, class imbalance
problem, and less standardization in the CVD detection
scheme. Significantly less concentration is given to CVD
detection using images that provide a texture depiction of the
ECG pattern. Therefore, it is essential to focus on improving
the accuracy of CVD detection using an effective complex
pattern feature representation of the ECG images.

In this study, the DLTWFD for CVD is presented based
on ECG images to enhance the accuracy of CVD
identification. This article makes several significant
contributions, which are summarized as follows:

The 2-D DCNN) DLTWFD uses the 1-DCNN to enhance
the feature representation of ECG images. If you want to
portray aberrant patterns in ECG pictures, the 2-D DCNN
provides greater spatial connectivity and correlation of
the raw ECG images. A correlation in the textural and
form qualities of the ECG pictures is provided by the 1-D
DCNN, which utilizes innovative MLTP and HOG
features.

Using accuracy, precision, recall, and Fl-score, the
performance assessment of the suggested CVD detection
technique is being carried out.

Continuing, the remainder of the article is organized as
follows: Section 2 discusses the work relevant to identifying
cardiovascular disease using electrocardiograms. Within the
third section, comprehensive mathematical modeling,
formulation, and approach are presented. The fourth section
provides a concise summary of the experiment's outcomes,
along with additional remarks. Lastly, the findings and
potential future applications of the CVD detection system are
presented in Section 5.

2. Related Work

ECG pictures have seen a significant increase in their use
for the identification of CVD due to their visual
interpretability and ease of use. Over the past decade, machine
learning has become the most widely used method for
diagnosing heart disease. The HRV signal was decomposed
into its subbands by Giri et al. [19], who utilized the Discrete
Wavelet Transform (DWT) for this purpose. The use of PCA,
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ICA, and LDA achieved a reduction in the dimensionality of
the sub-band DWT coefficients. An accuracy of classification
of 96.8% was achieved using the ICA and Gaussian mixture
model. During the process of HRV signal decomposition,
Patidar et al. [20] investigated tunable-Q wavelet transform
sub-bands using Principal Component Analysis (PCA) for
feature reduction and centered correntropy for feature
calculation techniques. The accuracy of the LSSVM classifier
was 99.72%. HRYV signals are broken down using the FAWT
analytical wavelet transform [21] developed by Kumar et al.

We discovered that it is possible to derive nonlinear
entropy-based features from sub-band data. They achieved a
perfect score in the Coronary Artery Detection (CAD) test
using their approach. Sood and his colleagues described an
Empirical Mode Decomposition (EMD) for HRV intrinsic
mode functions in a publication [22]. With p-values lower than
0.05, the most discriminative features for CAD were the mean
frequency characteristics calculated from the Fourier-Bessel
expansion, the amplitude modulation bandwidth, and the
frequency modulation bandwidth. An SVM-based Coronary
Artery Disease (CAD) detection system was developed by
Alizadehsani et al. [23] to recognize CAD and diagnose heart
ailments. An Artificial Neural Network (ANN) model was
developed by Arabasadi et al. [24] using a Multilayer
Perceptron (MLP) structure with a sigmoid exponential
function. This was accomplished by using four well-known
ranking algorithms to select more essential traits.

To develop the ANN model, the genetic approach begins
by accurately detecting Coronary Artery Disease (CAD) with
a 93.85% accuracy rate. A description of SVM-based CVD
detection may be found in Tabassum and Islam [25]. The
percentage of patients who had apnea, sinus tachycardia, atrial
fibrillation, and myocardial infarction was determined to be
84.6%. The SVM was trained using the following parameters:
the RR interval, the QRS complex, the ST elevation, the heart
rate, the ST interval, and the PR interval. In their study [26],
Gauvane and colleagues presented an MLP-based approach
for detecting heart disease. This algorithm is trained using data
from various factors, including physical characteristics, blood
pressure, cholesterol levels, and blood sugar levels. The
accuracy of this solution is 0.91, and its recall is 0.89. The
Hybrid Recurrent Function with Linear Model (HRFLM) was
used by Mohan et al. [27] to diagnose cardiac disease with an
accuracy rate of 88.7% in the Cleveland dataset. The selection
of efficient features limits the system's performance.

Following that, Sharma et al. [28] demonstrated the
diagnosis of cardiac disease using KNN, SVM, NB, and DNN.
The SVM algorithm yields results superior to those obtained
by DNN (81.9%), NB (83.97%), and KNN (81.43%) when
applied to the Pittsburgh dataset. There is a possibility that the
system's efficiency and efficacy might be improved by
employing generative models to produce a synthetic dataset.
The authors Li et al. [29] proposed a feature selection
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technique based on conditional mutual information, which is
an efficient approach. FCMIM-SVM achieved an accuracy of
92.37% when used on the Cleveland dataset for the detection
of heart disease. The FCMIM expedited processing by
prioritizing the most critical information. The outcomes of
machine learning-based techniques are highly dependent on
the quality, uniqueness, and number of features. Several
different classifiers for Cardiovascular Disease (CVD) were
created by Prajwal et al. [30], including SVM, KNN, GB,
ANN, and HV. The accuracy rates are 72.68% for SVM,
70.03% for GB, 71.32% for HV, 66.14% for KNN, and
72.51% for ANN. They developed features based on body
mass index I), which assist in identifying.

Using ECG data, Fang et al. [31] proposed the use of
RBF-SVM for the purpose of identifying cardiac disease. The
Pan-Tompkins and K-means clustering algorithms were used
to extract and select QRS characteristics. A total accuracy of
98.98% was achieved. When compared to standard samples,
which had an accuracy rate of 99.74%, aberrant samples had
a lower accuracy rate of 97.53%. A study conducted by
Biswas et al. [32] investigated the impact that feature selection
strategies had on SVM, RF, LR, KNN, NB, and DT machine
learning classifiers. Mutual information, analysis of variance,
and chi-square were used. The RF + Mul classifier achieves a
success rate of 94.51%, surpassing the accuracy of other
feature options. Based on the comprehensive review of the
existing literature, the following research gaps have been
identified:

Inadequate spatial correlation and textural portrayal

The number of ECG images reduces the efficiency of
CVD identification [33, 34].

The issue of class imbalance and data scarcity arises as a
result of unequal training and a shortage of public ECG
images used for training deep learning models [35, 36].
Low levels of both explainability and interpretability of
the algorithm [38, 39]. Baseline drift, motion artifacts,
and power line interference all contributed to the system's
poor performance.

Less work is done on CVD detection using images that
provide a texture depiction of the ECG pattern.

Lower accuracy for multiclass CVD detection

Lower “Explainability and Interpretability” in the ECG
signal-based CVD detection

Complexity in the existing techniques is due to higher
training parameters and the intricacy of the model
framework.

Lower spatial correlation in the complex ECG patterns.

3. Methodology

The suggested DLTWFD-based CVD detection
technique is shown diagrammatically in Figure 2, available
here. Initially, the ECG photos are preprocessed to crop the
header and footer of the images. This cropping does not
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represent any information about the ECG or health condition
of the individual. Two deep convolutional neural network
arms make up the FLTWFR. These arms mix raw pictures
with morphological, form, and textural characteristics. To
learn the hierarchical characteristics of the ECG from two-
dimensional images, a Two-Dimensional Deep Convolutional
Neural Network (2D-DCNN) is employed. Providing the
connection between the form, texture, and morphological
characteristics of the ECG, the second arm comprises a one-
dimensional DCNN capable of accepting numerous ECG

features. These features include HOG-based shape features,
MLTP-based texture features, and morphological aspects of
the ECG. A flattening and concatenation process is performed
on the features of the final layers of both the 2D-DCNN and
the 1D-DCNN representations. To improve the connection
between neurons, the concatenated characteristics are sent to
the FC layer. In conclusion, a softmax classifier is used to
categorize ECG images into the following categories:
Abnormal Heartbeat (AH), Myocardial Infarction (MI),
History of Myocardial Infarction (HMI), and normal.

Conv2D@64 Conv2D@128 Conv2D@256
ReLU, BN RelLU, BN RelLU, BN
MaxPool MaxPool MaxPool
ECG Images
' ' )
A 4 1 1 [
Image _ _ .
Preprocessing
[, . ) . MI
@) HMI
Normal
—» HOG Features [— .
MLTP Feature .
— — Fusion
Features
Morphological Feature  popayer Softmax CVD
| ,| Features | | ConvlD@64 CouvID@128  ConvID@256 Fusion Classifier Detection
(P,QRS and T ReLU.BN  ReLU.BN ReLU, BN
wave Features) MaxPool MaxPool MaxPool

Fig. 2 Flow diagram of the proposed DLTWFD-based CVD detection scheme

To establish spatial connections in the ECG images, the
first arm comprises a three-layered, two-dimensional DCNN.
Following the Rectified Linear Unit (ReLU) layer, the Batch
Normalization layer (BN), and the maximum pooling
(MaxPool) layer, the two-dimensional DCNN is composed of
three convolutional layers, each with 64, 128, and 256 filters
of varying sizes. Within the ECG pattern, the convolution
layer provides correlation and connection to portray the
changes caused by illnesses.

The convolution process of a two-dimensional Deep
Convolutional Neural Network (DCNN) for ECG images,
with a resolution of Row x Col and a filter kernel W, is
represented by Equation 1. When it comes to the Conv layer,
filters that have dimensions of 3x3 and a stride of 1 pixel are
used. It is generally accepted that the initial settings of the
Conv filters are set arbitrarily.

ECG(i—x,j—y)W(xy) (1)

Conv(x,y) = XR X572}
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In accordance with equation 2, the ReLU layer contributes
to the enhancement of the non-linear character of the output of
the convolution layer by converting all negative neurons to
zero. Through the use of the ReLU layer, training performance
is improved, and training is accelerated.

Relu(x,y) = max(0, conv(x,y)) 2)

The MaxPool layer is responsible for selecting the most
valuable values from the local 2x2 pixel area to reduce the
number of features and eliminate redundant ones. By taking
into account the mean (m) and standard deviation of neurons
throughout the batch size of 32, as well as two trainable
parameters—scale (o) and offset (y) —which are initialized
randomly, the BN layer can normalize the output of the ReLU
layer. In the case of the 2D DCNN, the BN operation may be
expressed as equation 3.

ReLU(x,y)—-m
o

BN(x,y)= a. + vy 3)
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To provide connection and correlation between local and
global textural, MLTP, and morphological characteristics of
ECG, the second arm comprises a one-dimensional DCNN.
There are also three layers of one-dimensional convolution in
the one-dimensional DCNN, with 64, 128, and 256 filters at
each layer, followed by layers of ReLU, BN, and MaxPool.
Following the flattening of the output of the MaxPool layer in
the 2-D DCNN and the 1-D DCNN, a 1-D vector is then sent
to the Fully Connected Layer (FCL), which has fifty hidden
layers. Through the process of merging each deep feature with
all of the other characteristics, the FCL can improve the
connectedness between profound features. The probabilistic
softmax classifier is also applied to categorize the
electrocardiogram images into the following categories: AH,
HMI, MI, and normal.

3.1. MLTP Features

When compared to the two levels of banalization included
in LBP, the LTP is an upgraded form of LBP that considers
three additional levels. The LTP provides superior local
spatial features, which can reflect the changes that occur
locally in the pictures. By dividing the picture into local
patches of 3x3 pixels, the LTP technique is used. This is the
value that is deemed to be the threshold. A comparison is made
between the values of the nearby pixels and the value of the
Centered Pixel (CX), and if the value is greater than CX +th,
then the pattern is judged to be 1. If the value of the
surrounding pixel is lower than the CX-th, the pattern is
regarded as having a value of -1. According to equation 4, the
pattern is deemed to be identical to zero if the value of the
adjoining pixel falls within the range of CX+th to CX-th.

-1 if x <CX—th
ltp(x) = 0 X—th<x<CX+th 4)
1 if x> CX + th

The L-LTP is produced by changing 1 to 0 and -1 to 1,
thereby generating a binary pattern. The U-LTP is constructed
by changing -1 to 0, while the L-LTP is constructed by
changing 1 to 0. After being translated to a decimal equivalent,
the binary sequence of L-LTP and U-LTP yields a result that
falls anywhere between 0 and 255. This is because there are
eight neighbors.

The threshold value, which is manually determined, has a
significant impact on the results when the LTP is examined.
Additionally, the LTP characteristics can be affected by noise
as well as uneven fluctuations in light throughout the image.
For the purpose of assessing the correlation, the standard LTP
considers a single neighbor, which is susceptible to being
influenced by noise and uneven contrast.

3.2. Modified LTP Features

When evaluating textures, the standard LTP only considers
close neighbors, which reduces its resilience when dealing
with noisy or low-contrast images. A further disadvantage of
typical LTP is its weak spatial connectivity, which reduces
classification ability. Multiple neighbors, with a maximum of
three layers, are considered for the assessment of texture in the
unique Modified LTP (MLTP) that has been developed. The
MLTP considers eight neighbors, and cap C sub, 1 minus 8
end subscript are located at the corresponding radii R1=1,

R2=2, and R3=3.
» 105

31 85 105 1 1 / 0 0 1
th=5, .
’ Binary: 01101001 U LTP
56 35 38 CX=35 1 35 Decimal: 1 pper
CXoth =30, ecimal: 105
CX+th=40
9 13 78 1 -1
1 0 0
Threshold
0 0 134
1 1 0
Binary: 10000110 Lower LTP

Decimal: 134

Fig. 3 Visualization of the LTP process
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C3
Fig. 4 Spatial representation of MLTP

MLTP provides the connection between the center pixel
and its three adjacent pixels to achieve a more accurate

Following the division of the ULTP and LLTP into the
NxN blocks, the histograms of each block are individually
calculated. To construct the final feature vector, the
histograms from each block are concatenated. When the
picture is divided into blocks, it becomes easier to capture the
fluctuations in the electrocardiogram signals present in the
local area. The single-block characteristics are inadequate in
comparison to the spatial connection offered by this. There are
512 features available in the MLTP histogram single block (N
= 1), with 256 features for ULTP and 256 features for LLTP.

These features are designed to provide scale and shift
invariance. When the value of N is equal to two, the LLTP and
ULTP descriptors are separated into equal blocks of 2x2 local
regions. Each of these blocks is composed of a total of (row/2)
rows and (cols/2) columns, where row and col represent the
number of rows and columns initially present in the picture.
Table 1 provides a summary of the MLTP feature vector
dimensions for each block. Figure 6 presents a visual
representation of the MLTP properties, along with the
corresponding histogram.

Table 1. MNLTP features for different blocks

depiction of the texture. ULTP LLTP
Number
. . . . ) Features Features Total
Using Equation 3, which assigns a larger weight to the of Blocks (Histogram (Histogram | Features
immediate neighbor than the neighbor at radius R3=3, the ™) values) values)
equal surrounding pixel value is taken into consideration. N=1 256 256 512
Figure 5 illustrates the procedure involved in MLTP. N=2 1024 1024 2048
B N=3 2304 2304 4608
x = (A; — CX) X R3 + (B; — CX) X R2 + (C; — N=4 4096 4096 8192
CX) X R1 ®) N=5 6400 6400 12800
9| 13|78 | 6543 | 78 | T8 | gei(4,— CX) XR3+ (By—CX) XxR2+(Ce-CX) xRIAB | 1| 0| o
x8=(]78-35|* 3 + |86-35|* 2+ |61-35|* 1/3
31 | 85 X8=76/3
105] 64 | 85 | 86 | 105 x8=22.33‘“2\ 1 0 141
s6 | 35|38 |83 |61 38]38 ss | 19 | 22 1l ala / o1 ]1
th=5, :
9 | 93 (128]35 |43 78|82 o1 | 35 | ag || owes 1|35 | o | Binay:10001101 e y7p
CXth =30, Decimal:141
8138|9137 i
39 |105 | 61 0|1 1
0] 1 1
123 68 [ 78 | 16 | 13 | 78 [ 78 |
Threshold 0 0 9%
9 (13| 78] 9 (13| 78] 65
01010
Binary: 01100000 Lower LTP

Decimal: 96

Fig. 5 Process of MLTP
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Fig. 6 Visualization of the MLTP descriptor, (a) Original ECG image (Abnormal Heartbeats), (b) Pre-processed image, (c) Lower MLTP descriptor
(d) Upper MLTP descriptor, (e) Histogram of lower MLTP, and (f) Histogram of upper MLTP.

3.3. HOG Features

It is possible to define the form of objects present in
remote sensing photos by using the HOG, which provides the
orientation of gradients in various directions. The computation

of the horizontal (Ix) and vertical (Iy) gradients is
accomplished by using a horizontal derivative filter (Hx) and
a vertical derivative filter (Hy) with equations 6-9,
respectively.
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Hx = [-101] (6) M = [Ix? + Iy? (10)
— T
Hy = [=101] ) 6 = tan" (2) (11)
The magnitude of the orientation gradient, denoted as M,
is determined by using the value of 10. In contrast, the Ini.tiall.y, the pictures are nopnalized using t‘he‘secgnd
orientation, denoted as 0, is computed considering nine bins ~ normalization form to address the issue of changes in lighting.
ranging from 0 to 180 degrees. The picture is divided into local blocks, each composed of 2x2

cells with a size of 8x8 pixels. For the purpose of enhancing
The total concentration of the edges is determined by the ~ contrast, the blocks are deemed to overlap by fifty percent.
magnitude and direction, which is used to define the anomalies

in the ECG structure. The computation of nine bin histogram features for each
cell yields a total of 34,596 features for an image of size

Ix = im * Hx ®) 25§X25§. The HOQ Visualizatiqns are §h0wn in Figurg 7,
which includes horizontal gradients (Figure 7(a)), vertical

Iy = im = Hy ) gradients (Figure 7(b)), and the magnitude of gradients

(Figure 7(c)), respectively.

(c) (d)
Fig. 7 Visualization of HOG (a) Preprocessed ECG image, (b) Horizontal gradient, (c) Vertical gradients, and (d) Magnitude of HOG.

3.4. Morphological Features extract P, QRS, and T morphological characteristics from
An improvement in signal quality is achieved by using ECG images. Waveform boundaries can be identified using
preprocessing methods, such as filtering and normalization, to edge detection techniques, such as the Canny or Sobel filters.
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Wavelet transformations and adaptive thresholding are two
examples of segmentation methods that may be used to
specifically separate the P wave, QRS complex, and T wave.
Approaches of feature extraction include peak identification,
amplitude measurement, and duration computation. These
approaches quantify essential characteristics, such as the
duration of the P-wave, the breadth of the QRS complex, and
the shape of the T-wave. The morphological characteristics
consist of three P-wave features, which include duration,
amplitude, and area of the P-wave; five QRS wave features,
which include QRS length, R-wave amplitude, Q-wave
amplitude, S-wave amplitude, and QRS area; and three T-
wave features, which include duration, amplitude, and area of
the T-wave. To optimize the feature representation, the final
feature vector comprises 8192 MLTP features, 34596 features,
and 11 morphological characteristics. These features are then
input into a 1-D deep convolutional neural network.

4. Experimental Results and Discussion

On a personal computer with 16 gigabytes of Random-
Access Memory (RAM) and Windows as the operating
system, the suggested solution utilizes MATLAB 2024. A
batch size of 32 and an initial learning rate of 0.001 are
considered during the training of the proposed algorithm,
which is trained using the Adam optimization method for a
total of 200 epochs. As shown in Figure 8, the model achieves
a training accuracy of 100% for the entire 200 epochs and
demonstrates stability in training beyond the 100th epoch.
Table 2 provides a summary of the hyperparameters that are
used during training.

Table 2. Hyperparameters of DCNN

Parameter Specification
Learning Algorithm Adam
Batch Size 32
Initial Learning Rate 0.001
Loss Function Cross-Entropy
Activation Function ReLU
Epoch 200
100
= 80
560
g
= 40
3
<20
100
Og 100 200 300 400 500 600
Iteration
lOP‘-
v | \
850\
\ ‘ 100 ‘
! 0 100 200 300 400 500 600
Iteration

Fig. 8 Training performance of DLTWFD
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4.1. Dataset

Among the pictures that comprise the public Mendeley
ECG image collection [33], four categories are employed for
performance assessment. These categories include
Myocardial Infarction (MI), History of Myocardial Infarction
(HMI), and normal and Abnormal Heartbeat (AH). Each ECG
contains four ECG signals for the patient.

There are 233 photographs of AH, 239 images of MI, 172
images of HMI, and 284 images of normal that are included in
the collection. A resolution of 2213x1572 pixels is available
for the ECG pictures.

The material in the footer and header that does not
represent any information related to ECG is clipped during the
pre-processing stage of the software development process.
Seventy percent of the dataset is used for training CVD, while
thirty percent is used for testing CVD.

4.2. Discussions on Results for the 4 Class CVD Detection

Additionally, the confusion matrix for the raw pictures
plus 2-DCNN, ECG features plus 1-D DCNN, and DLTWFD
is shown in Figures 9-11, respectively. Following the
implementation of the DLTWEFD, the four-class CVD
detection achieved an exceptional overall accuracy of 98.20%,
a recall of 98.20%, a precision of 98.10%, and an F1-score of
98.05%.

For the diagnosis of four-class cardiovascular disease, the
2D-DCNN has an average recall of 94.58%, precision of
94.83%, F1-score of 94.66%, and accuracy of 94.58%. On the
other hand, the results of the four-class CVD detection using
1D-DCNN were as follows: an overall recall of 96.68%, a
precision of 96.75%, an F1-score of 96.70%, and an accuracy
0f 96.68%.

Confusion Matrix
AH 68 1 1 0 97 1%
245% | 04% | 04% | 0.0% | 2.9%
HMI 4 47 1 0 90.4%
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& o
- MI 2 1 68 1 94 4%
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=
o Normal |1 1 1 81 |96.4%
0.4% | 0.4% | 0.4% |29.1% | 3.6%
90.7% (94 .0% |95.8% [28.8% |95.0%
9.3% 6.0% | 42% | 1.2% | 5.0%
> > >
® @\ » e@*\\\}
Tareget Class

Fig. 9 Confusion matrix for 2-D DCNN-based CVD detection
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Confusion Matrix
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Fig. 10 Confusion matrix for 1-D DCNN-based CVD detection

A greater accuracy of 98.2% is provided by the DLTWFD
in comparison to the 2-D DCNN (94.58%) and the 1-D DCNN
(98.68%). This precision is achieved by integrating the
benefits of raw pictures with the texture, form, and
morphological characteristics of the electrocardiograms. In
terms of overall recall, the DLTWEFD offers 100% recall for
the normal, 96.20% for the HMI, 97.2% for the MI, and
98.60% for the AH. With a precision of 100% for normal, 98%
for HMI, 97.20% for AH, and 97.2% for MI, the DLTWFD
will give them accurate results. The F1-Scores for the
DLTFWR are 97.1%, 98.1%, 97.2%, and 100%, respectively,

AH 69 1 0 0 98 6%
248% | 0.4% | 0.0% | 0.0% | 1.4%
0 50 2 0 96.2%
z ™Il 0.0% |18.0%| 0.7% | 0.0% | 3.8%
= vi 0 70 0 |97.2%
553* 07% [ 0.0% |252% | 0.0% | 2.8%
o

Nestoal 0 0 0 84 100%
00% | 0.0% | 0.0% |30.2% | 0.0%
97 2% |98.0% |97.2% | 100% | 98.2%
28% | 20% | 28% | 0.0% | 1.8%

AH HMI MI Normal

Target Class

Fig. 11 Confusion matrix for DLTWFD-based CVD detection

for the AH, HMI, MI, and regular classes. While the
DLTWEFD has a greater accuracy for the normal (100%) and a
lower accuracy for the HMI (96.20%), the normal has superior
accuracy. The DLTWFD contributes to the enhancement of
the spatial correlation and connection in the local, global, and
morphological characteristics of the ECG. A 2-D DCNN using
raw images and a 1-D DCNN with various characteristics
demonstrate the imbalance between recall and accuracy.

Figure 10 presents graphics that demonstrate the
visualizations of the data obtained by the DLTWFD.

Table 3. Comparative results of CVD detection using DLTWFD

Perfor-mance Parameter Method AH HMI MI Normal Average

2-D DCNN 97.1 90.4 94.4 96.4 94.58

Recall 1-D DCNN 97.1 96.2 95.8 97.6 96.68
DLTWEFD 98.6 96.2 97.2 100 98.2

2-D DCNN 90.7 94 95.8 98.8 94.83

Precision 1-D DCNN 94.4 98 95.8 98.8 96.75
DLTWEFD 97.2 98 97.2 100 98.1

2-D DCNN 93.79 92.16 95.09 97.59 94.66

F1-score 1-D DCNN 95.73 97.09 95.8 98.2 96.7
DLTWFD 97.89 97.09 97.2 100 98.05

2-D DCNN 97.1 90.4 94.4 96.4 94.58

Accuracy 1-D DCNN 97.1 96.2 95.8 97.6 96.68
DLTWFD 98.6 96.2 97.2 100 98.2

4.3 Discussions on Results for 2-Class CVD Detection

The performance of the DLTWFD is evaluated for two-
class classification, considering one regular class versus one
sick class and one illness versus another disease, as shown in
Figures 12 and 13. In terms of overall accuracy, the DLTWFD
achieves scores of 98.55 percent for AH versus Normal, 99.05
percent for HMI versus Normal, 100 percent for MI versus
Normal, 98.35 percent for AH versus HMI, 99.05 percent for
HMI versus MI, and 98.6 percent for AH versus MI,
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respectively. When the findings are compared with those of a
typical class, DLTWFD achieves a classification accuracy of
100% for MI, surpassing the conventional classification. The
two-class disease detection demonstrates a higher F1-score,
with values of 98.70% for AH vs. Normal, 99.22% for HMI
vs. Normal, 100% for MI vs. Normal, 98.35% for AH vs.
HMI, 99.17% for HMI vs. MI, and 98.60% for AH vs. MI,
respectively. As shown in Table 4, the outcomes of the
DLTWFD are evaluated for the various block sizes that are
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used in the MLTP. The MLTP yields higher-quality results for ~ is increased, the spatial correlation also increases, and the
the radius R = 3 and four blocks (N = 4) than any other = homogeneity measure of the texture is provided up to R = 3.
method. For a sample size of four, the DLTWFD provides an =~ However, when the radius is increased beyond R =3 (i.e., R =
accuracy of 89.93% for R=1, 94.58% for R=2, 98.20% for 4 and R = 5), the spatial correlation is low, and it fails to
R=3, 97.46% for R=4, and 96.36% for R=5. When the radius achieve spatial homogeneity.
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Fig. 12 Performance of the DLTWFD for two-class classification
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Fig. 13 Confusion matrix for two-class CVD classifications
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4.4. Effect of Block Size on CVD Detection (4-Class CVD

Detection)

A histogram can be created by considering local areas of
the ECG MLTP. The feature representation can be improved
by increasing the number of blocks. Due to the redundancy of

S.G. Bagul et al. / IJETT, 73(10), 312-326, 2025

the features, the feature size increases when N equals four,
resulting in fewer results being obtained.

As aresult, the MLTP with R = 3 and N =4 is considered
in this study for the DLTWEFD.

Table 4. Effect of different block sizes of MLTP on DLTWFD

Algorithm Radius 1;$2£:E£; Recall Precision F1-score Accuracy
N=1 87.37 86.86 87.11 87.05
N=2 88.46 87.74 88.10 88.13
=1 N=3 89.52 88.80 89.16 89.21
N=4 90.12 89.59 89.85 89.93
N=5 89.82 89.19 89.50 89.57
N=1 90.61 89.82 90.22 90.22
N=2 90.96 90.18 90.57 90.58
R=2 N=3 91.32 90.53 90.92 90.94
N=4 94.79 94.53 94.66 94.58
N=5 93.35 92.97 93.16 93.14
N=1 96.19 96.15 96.17 96.36
(2D33L(:TNV§F?1D- N=2 96.70 96.52 96.61 96.73
DCNN) R=3 N=3 97.04 97.01 97.03 97.09
N=4 98.20 98.10 98.05 98.20
N=5 97.40 97.31 97.35 97.46
N=1 96.70 96.52 96.61 96.74
N=2 96.76 96.41 96.58 96.74
R=4 N=3 97.04 96.86 96.95 97.09
N=4 97.35 97.35 97.35 97.46
N=5 96.06 95.73 95.90 96.01
N=1 91.32 90.53 90.92 90.94
N=2 92.32 91.72 92.02 92.03
R=5 N=3 95.67 95.57 95.62 95.65
N=4 96.34 96.27 96.31 96.36
N=5 95.37 95.22 95.29 95.29
98.5 3000
98 g 2500
S 975 S 2000
g o £
= 2 1500
g 95 I I E 1000 I I I I
< 9 I g
= 500
95.5
0
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Fig. 14 Accuracy for different block sizes

4.5. Training Time Analysis

The amount of time required for training the DLTWFD
for R = 3 is shown in Figure 14-16, respectively, for each of
the distinct blocks. Furthermore, it has been discovered that
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Number of Blocks

® Training time of DLTWFR (sec)
Fig. 15 Training time of DLTWFD (sec) for different blocks

the DLTWFD provides optimal training and testing times of
1889 seconds and 1.23 seconds, respectively, for the N=4
value. This results in an exceptional level of accuracy for
diagnosing four different types of CVD. With a value of N
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equal to five, MLTP offers 12800 histogram features and
significantly increases the trainable parameters of the 1D-
DCNN. This results in an increase in the computational
complexity of the DLTWFD.

98.5
/a
g 9
%)
g 973
= 97
=
S 95
g 9
(=]
E 95.5
95
N=1 N=2 N=3 N=4 N=5

Number of Blocks
B Recognition Time (sec)
Fig. 16 Recognition time of DLTWEFD (sec) for different blocks

4.6. Comparisons with Previous Techniques

We compare the findings of the DLTWFD with those of
established approaches that consider ECG images for CVD
identification, as shown in Table 5, based on their accuracy.
Deep learning models, such as MobileNet V2 and VGG16,
were examined by Mhamdi et al. [38] to develop an ECG-
based system for CVD diagnosis. The performance of
MobileNet V2 was somewhat lower than that of VGGI6,

which reached an accuracy of 91% and an F1-score of 0.905.
MobileNet V2 achieved an accuracy of 95%, while VGG16
earned an Fl-score of 0.942. Based on these findings, it can
be concluded that deep learning models are successful;
however, the complexity of the framework somewhat
constrains their performance.

The research conducted by Bhangale and colleagues [39]
focused on conventional machine learning methods, including
Naive Bayes, Linear Support Vector Machines (SVM), K-
Nearest Neighbors (KNN), and Random Forest. Random
Forest achieved the highest accuracy among them, with a
score of 96.25%, demonstrating its resilience in feature-based
categorization. Additionally, the Linear Support Vector
Machine (SVM) demonstrated exceptional performance,
achieving an accuracy rate of 95.25%. On the other hand,
KNN and Naive Bayes demonstrated a lesser level of
performance, with 83.75% and 70.5%, respectively. In
contrast, the Deep Learning with Temporal Wavelet Feature
Representation (DLTWEFD) technique, which was suggested,
achieved an accuracy of 98.20%, significantly outperforming
the previous methodologies.

This represents an improvement of 3.95% compared to
MobileNet V2, an increase of 7.9% compared to VGG16, and
a 2.03% improvement over Random Forest, which was the
conventional model that performed the best. As an additional
point of interest, the suggested strategy achieved a higher F1-
score (98.05), indicating improved overall classification
consistency.

Table 5. Comparison of DLTWFD with traditional CVD detection schemes

Authors Methods Accuracy (%) Recall Precision F1-score
Mhamdi et al. [38] MobileNet V2 95 94 97.5 94.2
Mhamdi et al. [38] VGG16 91 90.5 91.2 90.5

Naive bayes 70.5 71 71.25 70.75

Linear SVM 95.25 94.25 95.5 94.25

Bhangale et al. [39] KNN 83.75 84.25 84.25 83.5
Random Forest 96.25 96.25 96.25 96.25

Proposed method DLTWFD 98.20 98.20 98.10 98.05

By integrating the hierarchical, unique characteristics and
complex patterns derived from the raw ECG images with the
distinctive texture and shape features generated from MLTP,
HOG, and morphological features, the proposed DLTWFD
can provide a more accurate portrayal of the ECG for the
identification of CVD. To provide a greater connection and
correlation between the local and global patterns of the ECG,
the innovative MLTP facilitates the detection of both fine and
coarse alterations in the ECG pattern. By including
irregularities in the form of the ECG that are caused by CVDs,
the HOG and morphological aspects help to enhance the
individuality of the findings. Both the two-class and the four-
class classifications provide encouraging findings and
demonstrate a high level of classification accuracy. On the
other hand, the system's usefulness can be limited by the issue

of class imbalance and the small size of the initial dataset. Due
to the availability of 2D-DCNN and 1D-DCNN in two arms,
the manual parameter adjustment of the DLTWFD presents a
degree of difficulty.

5. Conclusion and Future Scopes

Advanced diagnostic methods are required to diagnose
cardiovascular disease in a timely and reliable manner, since
it continues to be a significant worry for the health of people
all over the world.

This research presents a framework for DLTWFD that
utilizes both two-dimensional and one-dimensional DCNNs to
enhance the identification of CVD using ECG images. By
integrating raw ECG image analysis with 2-D DCNN and
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feature extraction through 1-D DCNN, using MLTP and HOG The fact that this strategy achieved an accuracy of
features, a comprehensive understanding of local and global 98.20%, recall of 98.20%, precision of 98.10%, and F1-score
alterations in ECG patterns caused by CVD is provided. The of 98.05% demonstrates that it is more successful than the
suggested DLTWFD enhances feature distinctiveness, approaches currently considered state-of-the-art. Refining the
resulting in improved classification performance. This is model, improving its computational efficiency, and
accomplished by efficiently merging deep properties from raw investigating its potential applications in clinical settings will

ECG pictures with texture and shape features. be the primary focus of future research.
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