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Abstract -  The research examines how L1, L2, and L1L2 weight regularization methods affect neural network performance, 

generalization, and sparsity using the CIFAR 10 dataset. A Convolutional Neural Network (CNN) trained with the same 

environment for each regularization method to evaluate test accuracy, weight sparsity, and computational speed. The study 

shows that L1 regularization produces sparse weights, which makes models more interpretable, and L2 regularization helps 

prevent overfitting while improving model generalization. The combination of L1L2 regularization enables individual image 

classification methods to reach test accuracy. The results indicate that the weight regularization plays a vital role in creating 

neural networks that are both stable and efficient. They are interpretable, and L2 regularization improves generalization and 

reduces overfitting. The combined L1L2 regularization achieves the balance between sparsity and performance, leading to higher 

test accuracy compared to individual techniques for image classification. The research results demonstrate that weight 

regularization stands as an essential factor for Creating Neural Networks that are robust, efficient, and interpretable, thus 

helping to enhance Deep Learning model performance. 

Keywords - Weight Regularization, L1 Regularization, L2 Regularization, L1L2 Regularization, Convolutional Neural Networks 

(CNN), Generalization, Overfitting, Deep Learning.

1. Introduction 
Neural networks have achieved a significant amount of 

success in various fields. They are also responsible for the 

successful applications of neural networks across domains, 

including image classification, natural language processing, 

and speech recognition. The problem that is dominant in 

training these networks is overfitting, when a model is good at 

training data but is not able to generalize to unseen data.  

This occurs when the model is so complex that all of the 

examples in the training set can be memorized instead of any 

underlying meaningful structure. Addressing the problem is 

required to realize strong and generalized neural networks, 

which are definitely helpful in building better neural network 

models. Regularization techniques help avoid overfitting in 

neural networks by introducing additional constraints during 

the training stage. Such techniques include regularization that 

penalizes the absolute weights (L1 regularization) and gives 

an increase in the weight sparsity; regularization that penalizes 

the squared weight values (L2) and gives an increase in the 

weight smoothness; and the combination of both L1 and L2 

regularization that gives an increase in the mixture of sparsity 

and smoothness. These not only improve generalization but 

also improve the interpretability of the model and reduce 

computational costs, reducing the weight parameters. The 

CIFAR-10 dataset consists of 60,000 images in 10 classes; it 

is the benchmark dataset within the domain of image 

classification. CIFAR-10 is fairly small and diverse in 

evaluating the impact of regularization.  

The use of CIFAR-10 for a side-by-side examination of 

how each regularization impacts model performance in terms 

of test accuracy, weight sparsification, and computational 

efficiency. This research provides a thorough review of the 

L1, L2, and L1L2 regularization techniques within the context 

of neural networks. Among the contributions of this study is a 

systematic analysis of the impact of L1, L2, and L1L2 

regularization methods on test accuracy and generalizability 

performance. The examination of the computational tradeoffs 

between different regularization methods and their 

contribution helps to design more computationally efficient 

and generalizable neural networks.   

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Related Work 
In the machine learning domain, weight regularization is 

one of the most critical and widely used techniques for 

generalizing models in an attempt to avoid unnecessarily 

complex solutions from potentially leading to overfitting. In 

the case of neural networks, the analysis of  L1 and L2 has 

been heavily pursued. L1 regularization, where the sum of the 

absolute values of the weights is penalized, induces sparsity 

and has gained significant application in feature selection and 

interpretability in both linear models and neural networks. In 

turn, L2 regularization is also known as weight decay, which 

constitutes penalization of the square of the weight, leading to 

smooth and stable solutions with good generalization power 

over the unseen data. Ng (2004) demonstrated that L2 

regularization is superior to L1 if the true underlying model 

has non-zero weights that are widely spread across features.  

Conversely, L1 regularization has performed well in 

sparse spaces, as shown by Tibshirani (1996), whereby the 

Lasso method was proposed. This is why the combination of 

L1 with L2 regularization has been referred to as Elastic Net 

regularization, to benefit from both approaches. A modified 

hybrid method was proposed in Zou and Hastie (2005), which 

is a notably efficient approach for high-dimensional problems 

where the data are prone to noise and redundancy. 

The field of Deep Learning considers regularization today 

as methods like dropout (Srivastava et al., 2014), batch 

normalization (Ioffe & Szegedy, 2015), and weight 

regularization through optimization strategies as more 

advanced. In particular, L1 and L2 regularization are still 

relevant as they help manage overfitting in Convolution 

Neural Networks (CNN) and Recurrent Neural Networks 

(RNN). Research suggests that these techniques provide better 

generalization by reducing model complexity when restricting 

the magnitude of the weights. There seems to be a gap in the 

existing literature by focusing on L1, L2, and L1L2 

regularization in more comparative terms. Most studies assess 

these techniques in isolation or as part of a broader set of other 

regularization methods.  

For instance, Goodfellow et al. (2016) comprehensively 

survey regularization approaches, but do not extensively 

compare L1 and L2 regularization alongside their 

combination. Also, although many empirical studies on 

CIFAR-10 have extensively studied the impact of dropout and 

data augmentation, the interplay of sparsity, generalization, 

and computational cost with L1, L2, and L1L2 regularization 

remains largely unexplored. This work addresses these gaps 

by providing a systematic comparative analysis of L1, L2, and 

L1L2 regularization techniques. Unlike the previous studies 

that emphasize absolute accuracy improvements, this work 

evaluates their impact on test accuracy, weight sparsity, and 

also computational efficiency, offering insights that bridge the 

gap between theoretical benefits and practical applications. 

3. Methodology 
The Methodology section represents the structured 

workflow for evaluating the different regularization 

techniques on Convolutional Neural Networks (CNNs), 

including the simple CNN and ResNet, comparing their 

performance based on multiple metrics.  

The experiment is carried out using the CIFAR-10 

dataset, which is one of the popular benchmark datasets in the 

field of machine learning, predominantly for evaluating the 

performance of image classification algorithms. It consists of 

60,000 color images, and it is divided into 10 classes, with 

each class containing 6,000 images. The classes represent 

common objects such as airplanes, automobiles, birds, cats, 

deer, dogs, frogs, horses, ships, and trucks. Each image in the 

CIFAR-10 dataset is 32x32 pixels, and the images are colored 

(RGB format), with each pixel represented by three values 

corresponding to the red, green, and blue channels. The dataset 

is balanced, meaning that each of the 10 classes contains an 

equal number of images (6,000 images per class). CIFAR-10 

is commonly used because of its relatively small size, making 

it suitable for quick experimentation, while still posing a 

significant challenge for neural networks, especially when 

aiming for generalization in image classification tasks. 

The flow step methodology process is shown in Figure 1. 

Dataset 

Input the Data 

↓ 

Model Training with Regularization 

1. Initialize Parameters 

Initialize weights θ randomly or using a pre-trained 

model. 

Set learning rate η, batch size B, and epochs T. 

2. Regularization Terms: 

L1 Regularization:  R_{L1}(θ) = λ₁ · Σ |wᵢ| 

L2 Regularization:  R_{L2}(θ) = λ₂ · Σ wᵢ² 

L1L2 (Elastic Net): R_{L1,L2}(θ) = λ₁ · Σ |wᵢ| + λ₂ · 

Σ wᵢ² 

3. Total Loss Function 

For each batch { (xᵇ, yᵇ) } from b=1to.B compute: 

L_total(θ) = L(θ) + R(θ), where R(θ) is the chosen 

regularization term. 

4. Backpropagation and Optimization 

Update weights using gradient descent (e.g., Adam). 

θ_{t+1} = θ_t − η · ∇θ L_batch((xᵇ; θ_t))  (ε is a 

small threshold, e.g., 10⁻⁵). 

↓ 

Evaluation Metrics 

1. Test Accuracy 

For the test set D_test, compute: 

Accuracy = (1/|D_test|) · Σ [ f(xᵢ; θ*) = yᵢ ]  (indicator 

function). 



Deepa S et al.  / IJETT, 73(10), 107-116, 2025 

 

109 

2. Weight Sparsity 

Proportion of near-zero weights: 

Sparsity = (1/|θ|) · Σ (|wᵢ| < ε),  where ε is a small 

threshold (e.g., 10⁻⁵). 

↓ 

Comparative Analysis 

Compare Baseline, L1, L2, and L1L2 across: 

 

Fig. 1 Flow of methodology 

3.1. Regularization Techniques 

3.1.1. L1 Regularization 

L1 regularization (or Lasso) operates on a simple but 

powerful principle: it adds a penalty equivalent to the absolute 

value of weight magnitudes. The mathematical formulation is 

in Equation (1). 

L1=λi∑∣wi∣ (1) 

where _wi is the regularization hyperparameter, which 

controls the strength of the penalty, while wi represents the 

weight of each parameter. This penalty is imposed to foster 

some of the weights to decrease towards zero, and as a result, 

certain parameters are shrunk exactly to zero. The remaining 

set of weights is sparse with a greatly reduced number of non-

zero weights, a matrix with minimally important features.  

In essence, the sparsity assisted by L1 regularization 

brings attention to model interpretability. As sparse models 

focus only on a selected set of features, they become easier to 

analyze and understand, which makes them a favorable feature 

selection. In addition, L1 regularization helps high-

dimensional problems where a great many features are 

irrelevant or redundant, which improves the efficiency of the 

model and captures overfitting. 

3.1.2. L2 Regularization 

L2 regularization, commonly referred to as weight decay, 

penalizes the sum of the squared values of the weights in the 

model. The regularization term for L2 is in Equation (2). 

L2 = λ∑wi
2 (2) 

In this case, wi represents the weight parameters, and λ is 

the regularization strength. Unlike L1, the L2 regularization 

does not result in sparsity but instead promotes smoothness in 

the learned weights. By adding the squared penalty, the model 

is encouraged to use smaller weights, which reduces the 

complexity of the model and helps prevent overfitting. L2 

regularization improves the generalization capability of the 

model by forcing the model to depend on all available features 

in a balanced way. It reduces more values of the weights and 

does not allow a single weight to dominate the learning 

process, which leads to more stable and reliable predictions on 

test data. 

3.1.3. L1L2 Regularization 

L1L2 regularization is also known as the  Elastic Net 

regularization, which combines the penalties of both L1 and 

L2 regularization. The regularization term for L1L2 is in 

Equation (3). 

L1L2= λ1∑∣wi∣ + λ2 ∑wi
2 (3) 

The two regularization hyperparameters λ1 and λ2 relate 

to the strength of the L1 and L2 penalties, respectively. This 

hybrid approach combines the advantages of both L1 and L2 

regularization. L1 drives certain weights to zero and hence 

increases sparsity, whereas the L2 smoothens overall weight 

magnitudes. The primary advantage of L1L2 regularization is 

that it offers the tradeoff between sparsity and smoothness, 

which is beneficial for generalization in many cases. Take the 

scenario where the data has a large number of irrelevant 

features. In those cases, L1L2 regularization helps remove 

these features while maintaining the model's structure because 

of L2 smoothing. This balance can enhance the performance 

in high-dimensional or noisy datasets, where both methods of 

regularization are most beneficial. With L1 and L2 together, 

L1L2 regularization addresses the flexibility needed for the 

balance between complexity, sparsity, and generalization, 

resulting in model flexibility. Such features are important for 

the model, as they need to be interpretable because of sparsity, 

yet robust due to smoothness. 

4. Results and Discussions 
The experiments are carried out using the CIFAR-10 

dataset, which contains 60,000 color images of size 32×32 

pixels across 10 balanced classes. The standard preprocessing 

steps include normalization of pixel values to the [0,1] range 

and data augmentation (random horizontal flips and small 

shifts) to progress strength. The CNN neural network 

architecture  With Two convolutional layers (3×3 filters, 

ReLU activation), Max-pooling layers for dimensionality 

reduction, two fully connected layers, followed by a softmax 

output layer. Experiments were performed with the same 

architecture for all regularization settings to ensure 

comparability. 

4.1. Hyperparameters 

Optimizer: Adam  

Learning rate: 0.001 

Batch size: 64 

Regularization strengths: λ values tuned via grid search 

4.2. Hardware Setup 

The experiments were carried out on an NVIDIA GPU 

with CUDA support, 16 GB RAM, and an Intel i7 CPU. 

Training times were recorded to assess computational cost 
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differences among regularization methods. The evaluation 

metrics included accuracy, loss, weight sparsity (percentage 

of near-zero weights), and computational efficiency (time per 

epoch). 

4.3. Baseline Model: Performance  

Figure 2 indicates the training and validation accuracy 

trends across 12 epochs.  

The training accuracy rises consistently throughout the 

epochs, culminating at around 85%. Validation accuracy 

grows significantly at the beginning, reaching a plateau of 

around 65-70% after a couple of epochs. Training and 

validation accuracy diverge, which could be a sign of 

overfitting. This pattern indicates that the model will 

memorize the training set without any provision for forcing 

generalization. 

 
Fig. 2 Baseline regularizer - accuracy 

 
Fig. 3 Baseline regularizer - loss 

Figure 3 shows the trends in loss for the training and 

validation sets. The loss in training goes down consistently, 

demonstrating efficient optimization of the model parameters 

on the training set. The validation loss also goes down 

initially, but it begins to plateau and rise a little towards the 

later stages of training. This is a sign of overfitting, where the 

model picks up noise or certain patterns in the training data 

that are not well-generalizable to the unseen data. The model 

performs well in terms of training accuracy and minimal 

training loss, indicating good learning. The growing 
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difference between the training and validation metrics 

highlights the poor generalization, which can be attributed to 

the lack of regularization. These results provide the baseline 

for comparing with regularized models. 

Figure 4 plot shows training and validation accuracy 

patterns for twenty epochs for a model trained using L1 

regularization, where the absolute values of the model weights 

are penalized in order to promote sparsity. The training 

accuracy begins at 44% and rises consistently to 

approximately 73% through the 20 epochs. This gradual 

improvement over the baseline (no regularization) is a 

manifestation of the effect of L1 regularization, which restricts 

the model's ability to reduce overfitting. The validation 

accuracy starts slightly lower than the training accuracy and 

rises progressively. The observed fact that validation accuracy 

is consistently slightly lower than training accuracy is an 

indication of better generalization as a result of L1 

regularization. Both curves plot towards the same levels of 

accuracy, indicating L1 regularization benefits learning 

balance over training and validation sets. The improvement of 

training accuracy, although slower, indicates that the penalty 

of sparsity enforcement is confirmed by the general proximity 

of the training and validation accuracies to one another. This 

plot showcases the strength of L1 regularization in obtaining 

an optimal balance between training performance and 

generalization on unseen data. 

 
Fig. 4  L1 regularizer - accuracy  

 
Fig. 5 L1 regularization loss 
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The above plot shows the loss of the model trained using 

L1 regularization on the training and validation set over three 

epochs. The x-axis is for the number of epochs, while the y-

axis is for the loss values, with lower values for better model 

performance. The blue line follows the training loss, 

beginning high at around 1.5 and falling sharply to around 

0.73 by epoch 20, indicating fast learning in the early epochs.  

The validation loss and the training loss slowly fall close 

to the training loss in the last epoch. This convergence of 

training and validation losses indicates that the model is 

generalizing well without overfitting. L1 regularization 

penalizes the absolute weights, promoting sparsity and model 

interpretability. In general, the steady decline and 

convergence of both losses show that L1 regularization is 

well-balancing learning and generalization. Training accuracy 

begins at approximately 0.42, as shown in Figure 6, which is 

quite low, as would be expected for an untrained model. 

Training Accuracy begins slightly higher at about 0.52, 

possibly suggesting that the training dataset contains features 

that are more easily predictable by the model early on. 

Training accuracy rises again to about 0.7, somewhat better 

than validation accuracy. 

 
Fig. 6 L2 regularization accuracy 

 
Fig. 7 L2 regularizer loss 
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The L2 regularizer is used to penalize large weights, 

which prevents overfitting. The proximity of training and 

validation accuracies indicates that the model is learning well 

without overfitting. The slightly higher training accuracy 

compared to validation accuracy could occur if the validation 

dataset is simpler or more representative than the training data. 

This is not a concern unless it persists significantly. Both 

training and validation accuracies improve steadily with each 

epoch, showing that the model is learning effectively without 

stagnation or instability. The model shows good learning 

dynamics with regularization, as indicated by increasing and 

closely matching accuracy curves. It is able to balance fitting 

the training data while preserving generalization to validation 

data. Figure 7 shows the training and validation loss curves for 

a model trained using L2 regularization over three epochs. The 

x-axis is the epochs, and the y-axis is the loss values. The 

training loss starts at around 1.5 at epoch zero and gradually 

decreases to around 0.7 by epoch 20, indicating steady 

improvement in how well the model can reduce error while 

training. The orange line, representing the validation loss, 

begins at a lower point around 1.5 and gradually drops to 

overlap closely with the training loss around 0.7 in the last 

epoch. This tight correlation between the training loss and 

validation loss underscores the fact that the model is learning 

well without much overfitting. L2 regularization, which 

penalizes the square magnitude of weights, keeps model 

complexity in check and adds stability, as evident from the 

smooth converging loss traces. 

 
Fig. 8 L1L2 regularizer -accuracy 

Training Accuracy begins at 0.45, as shown in Figure 8; 

Validation Accuracy begins at a lower rate than training at 

0.42, which can be a function of model initialization or the 

distribution of the validation dataset itself. The training 

accuracy increases noticeably, which indicates that the model 

is learning from the training data. The validation accuracy also 

increases to 37%, demonstrating that the model is generalizing 

better to new data. The training accuracy further increases to 

0.74, demonstrating the improvement in learning. The 

validation accuracy is also.  

The L1L2 regularizer prevents the model from overfitting 

by imposing penalties on large weights. The close alignment 

between the training and validation accuracies across epochs 

suggests that the model is generalizing well without 

overfitting.Both training and validation accuracies improve 

consistently, which is a positive indicator that the regularizer 

and the training process are working effectively. Training 

Loss begins at a high point, as shown in Figure 9, typically at 

the start of training when the model has not yet been trained. 

Validation Loss begins significantly the same as the training 

loss, potentially reflecting the same performance on the 

validation set. The training loss drops precipitously. This 

means fast learning because the model is adapting its 

parameters to the training data. The validation loss also 

reduces slightly, indicating better generalization.  

The training loss keeps falling and meets the validation 

loss. This convergence indicates that the model is not 

overfitting but generalizing very well. The L1L2 regularizer 

imposes penalties on large weights and prevents overfitting.  

The steep decline in training loss between epochs 0 and 1 

shows that the model quickly learns key patterns in the data. 

The gradual decrease in validation loss suggests that the model 

is improving its generalization without overfitting. 
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Fig. 9 L1L2 regularizer -loss 

 
Fig. 10 Comparative analysis -accuracy 

The Figure 10 graph plots the training and validation 

accuracy against different regularization methods: Baseline 

(regularization turned off), L1, L2, and L1L2 combined. 

Baseline model has the highest training accuracy of over 80%, 

while its validation accuracy is much lower, reflecting 

overfitting. In L1 regularization, training and validation 

accuracies are both considerably lower but almost the same, 

reflecting that although overfitting is brought under control, 

the overall performance takes a hit. L2 regularization, on the 

other hand, achieves higher and closely matched training and 

validation accuracies compared to L1, showing good 

generalization without overfitting. The L1L2 regularization 

brings training and validation accuracies lower than L2 but 

still closely matched, which shows a balance between sparsity 

and model complexity. In general, L2 regularization is the best 

approach to obtaining a good balance between training and 

validation accuracy, whereas the Baseline model overfits, and 

L1 regularization gives up some performance for simplicity. 

Figure 11, Training vs Validation Loss, compares the loss for 

models trained using various regularization methods: Baseline 

(no regularization), L1, L2, and L1L2 (Elastic Net). The 

baseline model exhibits overfitting, where training loss drops 

steeply while validation loss plateaus or rises. L1 

regularization decreases overfitting by imposing sparsity and 
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results in progressively decreasing training loss but constant 

validation loss. L2 regularization imposes smoothness, 

resulting in both training and validation loss reducing 

progressively and also improving the generalization. L1L2 

regularization combines the strengths of both L1 and L2  with 

the optimal tradeoff through highly correlated training as well 

as validation loss, indicating good generalization with 

minimal overfitting. This directs the need for regularization to 

improve the model performance, with L1L2 offering the best 

balanced solution. 

 
Fig. 11 Comparative analysis -loss 

This section explains the experiments comparing L1, L2, 

and L1L2 regularization using the CIFAR-10 data, 

demonstrating their tradeoffs. L1 regularization encourages 

sparsity, making models more interpretable and also simpler, 

but possibly reducing accuracy by over-penalizing important 

features. L2 regularization smooths weight sizes, improving 

generalization and reducing overfitting, though not inducing 

sparsity, which may result in leaving models more complex.  

L1L2 regularization (Elastic Net) compromises between 

sparsity and smoothness, yielding the best generalization, 

though at slightly higher computational cost due to mixed 

penalties. For CIFAR-10, L1 regularization is poor as it over-

penalizes the features, while L2 regularization works well 

with the convolutional models by having the weights that are 

well-balanced.  

L1L2 regularization is ideal for CIFAR-10 as it 

incorporates the best of both methods and works well with its 

diverse features. The biggest challenge is selecting the optimal 

regularization coefficients since incorrect values can lead to 

underfitting or overfitting. L1 regularization is susceptible to 

training instability due to abrupt weight changes, and 

introducing both L1 and L2 penalties increases computational 

expense, especially in larger models. The choice of 

regularization then depends on model and dataset 

requirements, with L1L2 offering the best tradeoff for CIFAR-

10. The experiment results are consistent with earlier insights 

from Ng (2004) and Zou and Hastie (2005), but we extend 

their relevance to CNN-based image classification. Unlike 

much of the previous work that mainly focuses on accuracy, 

we draw attention to interpretability and efficiency as equally 

important factors in designing deep learning models. While 

modern architectures such as ResNet and DenseNet achieve 

higher absolute accuracy on CIFAR-10, our study offers a 

different perspective: it shows that classical regularization 

methods still play a crucial role in balancing accuracy with 

practical tradeoffs during neural network training. 

5. Conclusion and Future Work 
The study verifies the gain in performance by several 

regularization techniques. L1 regularization sparsifies and 

makes models more interpretable, but reduces accuracy as too 

many weights are being eliminated. L2 regularization ensures 

smooth weight variations that improve generalization without 

sacrificing accuracy. L1L2 regularization (Elastic Net) 

introduces the best blend, providing sparsity as well as 

generalizability to an optimal degree.  

All regularization techniques achieve effective reduction 

of overfitting compared to the baseline model, with L1L2 

achieving the lowest training vs validation performance gap. 

Regularization is most important for small datasets such as 

CIFAR-10, where overfitting is a big problem, and the 

selection of the technique depends on the model and dataset in 

question. For practitioners, choosing the appropriate 

regularization technique requires thinking about dataset size, 
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feature complexity, and available computational resources. L1 

regularization is best suited for interpretability-intensive tasks, 

whereas L2 or L1L2 regularization is advised for overall 

performance gain. Hyperparameter optimization, e.g., grid 

search or random search, needs to be done in order to optimize 

regularization coefficients. Subsequent research can utilize 

these techniques on large datasets such as ImageNet to 

experiment with scalability and stability. 
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