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Abstract - The research examines how L1, L2, and L1L2 weight regularization methods affect neural network performance,
generalization, and sparsity using the CIFAR 10 dataset. A Convolutional Neural Network (CNN) trained with the same
environment for each regularization method to evaluate test accuracy, weight sparsity, and computational speed. The study
shows that L1 regularization produces sparse weights, which makes models more interpretable, and L2 regularization helps
prevent overfitting while improving model generalization. The combination of LI1L2 regularization enables individual image
classification methods to reach test accuracy. The results indicate that the weight regularization plays a vital role in creating
neural networks that are both stable and efficient. They are interpretable, and L2 regularization improves generalization and
reduces overfitting. The combined L1L2 regularization achieves the balance between sparsity and performance, leading to higher
test accuracy compared to individual techniques for image classification. The research results demonstrate that weight
regularization stands as an essential factor for Creating Neural Networks that are robust, efficient, and interpretable, thus

helping to enhance Deep Learning model performance.
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1. Introduction

Neural networks have achieved a significant amount of
success in various fields. They are also responsible for the
successful applications of neural networks across domains,
including image classification, natural language processing,
and speech recognition. The problem that is dominant in
training these networks is overfitting, when a model is good at
training data but is not able to generalize to unseen data.

This occurs when the model is so complex that all of the
examples in the training set can be memorized instead of any
underlying meaningful structure. Addressing the problem is
required to realize strong and generalized neural networks,
which are definitely helpful in building better neural network
models. Regularization techniques help avoid overfitting in
neural networks by introducing additional constraints during
the training stage. Such techniques include regularization that
penalizes the absolute weights (L1 regularization) and gives
an increase in the weight sparsity; regularization that penalizes
the squared weight values (L2) and gives an increase in the
weight smoothness; and the combination of both L1 and L2

regularization that gives an increase in the mixture of sparsity
and smoothness. These not only improve generalization but
also improve the interpretability of the model and reduce
computational costs, reducing the weight parameters. The
CIFAR-10 dataset consists of 60,000 images in 10 classes; it
is the benchmark dataset within the domain of image
classification. CIFAR-10 is fairly small and diverse in
evaluating the impact of regularization.

The use of CIFAR-10 for a side-by-side examination of
how each regularization impacts model performance in terms
of test accuracy, weight sparsification, and computational
efficiency. This research provides a thorough review of the
L1, L2, and L1L2 regularization techniques within the context
of neural networks. Among the contributions of this study is a
systematic analysis of the impact of L1, L2, and LIL2
regularization methods on test accuracy and generalizability
performance. The examination of the computational tradeoffs
between different regularization methods and their

contribution helps to design more computationally efficient
and generalizable neural networks.
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2. Related Work

In the machine learning domain, weight regularization is
one of the most critical and widely used techniques for
generalizing models in an attempt to avoid unnecessarily
complex solutions from potentially leading to overfitting. In
the case of neural networks, the analysis of L1 and L2 has
been heavily pursued. L1 regularization, where the sum of the
absolute values of the weights is penalized, induces sparsity
and has gained significant application in feature selection and
interpretability in both linear models and neural networks. In
turn, L2 regularization is also known as weight decay, which
constitutes penalization of the square of the weight, leading to
smooth and stable solutions with good generalization power
over the unseen data. Ng (2004) demonstrated that L2
regularization is superior to L1 if the true underlying model
has non-zero weights that are widely spread across features.

Conversely, L1 regularization has performed well in
sparse spaces, as shown by Tibshirani (1996), whereby the
Lasso method was proposed. This is why the combination of
L1 with L2 regularization has been referred to as Elastic Net
regularization, to benefit from both approaches. A modified
hybrid method was proposed in Zou and Hastie (2005), which
is a notably efficient approach for high-dimensional problems
where the data are prone to noise and redundancy.

The field of Deep Learning considers regularization today
as methods like dropout (Srivastava et al., 2014), batch
normalization (Ioffe & Szegedy, 2015), and weight
regularization through optimization strategies as more
advanced. In particular, L1 and L2 regularization are still
relevant as they help manage overfitting in Convolution
Neural Networks (CNN) and Recurrent Neural Networks
(RNN). Research suggests that these techniques provide better
generalization by reducing model complexity when restricting
the magnitude of the weights. There seems to be a gap in the
existing literature by focusing on L1, L2, and LI1L2
regularization in more comparative terms. Most studies assess
these techniques in isolation or as part of a broader set of other
regularization methods.

For instance, Goodfellow et al. (2016) comprehensively
survey regularization approaches, but do not extensively
compare L1 and L2 regularization alongside their
combination. Also, although many empirical studies on
CIFAR-10 have extensively studied the impact of dropout and
data augmentation, the interplay of sparsity, generalization,
and computational cost with L1, L2, and L1L2 regularization
remains largely unexplored. This work addresses these gaps
by providing a systematic comparative analysis of L1, L2, and
L1L2 regularization techniques. Unlike the previous studies
that emphasize absolute accuracy improvements, this work
evaluates their impact on test accuracy, weight sparsity, and
also computational efficiency, offering insights that bridge the
gap between theoretical benefits and practical applications.
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3. Methodology

The Methodology section represents the structured
workflow for evaluating the different regularization
techniques on Convolutional Neural Networks (CNNs),
including the simple CNN and ResNet, comparing their
performance based on multiple metrics.

The experiment is carried out using the CIFAR-10
dataset, which is one of the popular benchmark datasets in the
field of machine learning, predominantly for evaluating the
performance of image classification algorithms. It consists of
60,000 color images, and it is divided into 10 classes, with
each class containing 6,000 images. The classes represent
common objects such as airplanes, automobiles, birds, cats,
deer, dogs, frogs, horses, ships, and trucks. Each image in the
CIFAR-10 dataset is 32x32 pixels, and the images are colored
(RGB format), with each pixel represented by three values
corresponding to the red, green, and blue channels. The dataset
is balanced, meaning that each of the 10 classes contains an
equal number of images (6,000 images per class). CIFAR-10
is commonly used because of its relatively small size, making
it suitable for quick experimentation, while still posing a
significant challenge for neural networks, especially when
aiming for generalization in image classification tasks.

The flow step methodology process is shown in Figure 1.

Dataset

Input the Data
!

Model Training with Regularization

1. Initialize Parameters
Initialize weights 6 randomly or using a pre-trained
model.
Set learning rate 1, batch size B, and epochs T.

2. Regularization Terms:
L1 Regularization: R {L1}(8) =A:1 - Z |wj
L2 Regularization: R {L2}(0) =X - £ w{?
L1L2 (Elastic Net): R_{L1,L2}(8) =A: - Z [wi| + A2 -
Z wi?

3. Total Loss Function
For each batch { (x®, y®) } from b=1to.B compute:
L total(0) = L(8) + R(0), where R(0) is the chosen
regularization term.

4. Backpropagation and Optimization
Update weights using gradient descent (e.g., Adam).
0 {t+1} =6 t—mn - VO L batch((x® 0 t)) (cisa
small threshold, e.g., 107°).

!

Evaluation Metrics
1. Test Accuracy
For the test set D_test, compute:
Accuracy = (1/|D_test|) - Z [ f(xi; 6*) =yi] (indicator
function).
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2. Weight Sparsity
Proportion of near-zero weights:
Sparsity = (1/6]) - £ (jwi| <€), where ¢ is a small
threshold (e.g., 1079).

!

Comparative Analysis
Compare Baseline, L1, L2, and L1L2 across:

Fig. 1 Flow of methodology

3.1. Regularization Techniques
3.1.1. L1 Regularization

L1 regularization (or Lasso) operates on a simple but
powerful principle: it adds a penalty equivalent to the absolute
value of weight magnitudes. The mathematical formulation is
in Equation (1).

LI=AiY |wil ey

where wi is the regularization hyperparameter, which
controls the strength of the penalty, while wi represents the
weight of each parameter. This penalty is imposed to foster
some of the weights to decrease towards zero, and as a result,
certain parameters are shrunk exactly to zero. The remaining
set of weights is sparse with a greatly reduced number of non-
zero weights, a matrix with minimally important features.

In essence, the sparsity assisted by L1 regularization
brings attention to model interpretability. As sparse models
focus only on a selected set of features, they become easier to
analyze and understand, which makes them a favorable feature
selection. In addition, L1 regularization helps high-
dimensional problems where a great many features are
irrelevant or redundant, which improves the efficiency of the
model and captures overfitting.

3.1.2. L2 Regularization

L2 regularization, commonly referred to as weight decay,
penalizes the sum of the squared values of the weights in the
model. The regularization term for L2 is in Equation (2).

L2 =AY w? 2)

In this case, wi represents the weight parameters, and A is
the regularization strength. Unlike L1, the L2 regularization
does not result in sparsity but instead promotes smoothness in
the learned weights. By adding the squared penalty, the model
is encouraged to use smaller weights, which reduces the
complexity of the model and helps prevent overfitting. L2
regularization improves the generalization capability of the
model by forcing the model to depend on all available features
in a balanced way. It reduces more values of the weights and
does not allow a single weight to dominate the learning
process, which leads to more stable and reliable predictions on
test data.
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3.1.3. L1L2 Regularization

L1L2 regularization is also known as the Elastic Net
regularization, which combines the penalties of both L1 and
L2 regularization. The regularization term for L1L2 is in
Equation (3).

LI1L2= LY Iwil + A2 Yw? (3)

The two regularization hyperparameters A1 and A2 relate
to the strength of the L1 and L2 penalties, respectively. This
hybrid approach combines the advantages of both L1 and L2
regularization. L1 drives certain weights to zero and hence
increases sparsity, whereas the L2 smoothens overall weight
magnitudes. The primary advantage of L1L2 regularization is
that it offers the tradeoff between sparsity and smoothness,
which is beneficial for generalization in many cases. Take the
scenario where the data has a large number of irrelevant
features. In those cases, L1L2 regularization helps remove
these features while maintaining the model's structure because
of L2 smoothing. This balance can enhance the performance
in high-dimensional or noisy datasets, where both methods of
regularization are most beneficial. With L1 and L2 together,
L1L2 regularization addresses the flexibility needed for the
balance between complexity, sparsity, and generalization,
resulting in model flexibility. Such features are important for
the model, as they need to be interpretable because of sparsity,
yet robust due to smoothness.

4. Results and Discussions

The experiments are carried out using the CIFAR-10
dataset, which contains 60,000 color images of size 32x32
pixels across 10 balanced classes. The standard preprocessing
steps include normalization of pixel values to the [0,1] range
and data augmentation (random horizontal flips and small
shifts) to progress strength. The CNN neural network
architecture With Two convolutional layers (3x3 filters,
ReLU activation), Max-pooling layers for dimensionality
reduction, two fully connected layers, followed by a softmax
output layer. Experiments were performed with the same
architecture for all regularization settings to ensure
comparability.

4.1. Hyperparameters
Optimizer: Adam

Learning rate: 0.001

Batch size: 64

Regularization strengths: A values tuned via grid search
4.2. Hardware Setup

The experiments were carried out on an NVIDIA GPU

with CUDA support, 16 GB RAM, and an Intel i7 CPU.
Training times were recorded to assess computational cost
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differences among regularization methods. The evaluation
metrics included accuracy, loss, weight sparsity (percentage
of near-zero weights), and computational efficiency (time per
epoch).

4.3. Baseline Model: Performance
Figure 2 indicates the training and validation accuracy
trends across 12 epochs.

The training accuracy rises consistently throughout the
epochs, culminating at around 85%. Validation accuracy
grows significantly at the beginning, reaching a plateau of
around 65-70% after a couple of epochs. Training and
validation accuracy diverge, which could be a sign of
overfitting. This pattern indicates that the model will
memorize the training set without any provision for forcing
generalization.

Baseline Regularizer - Accuracy
= Training Accuracy = Validation Accuracy
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Fig. 2 Baseline regularizer - accuracy
Baseline Regularizer - Loss
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Fig. 3 Baseline regularizer - loss

Figure 3 shows the trends in loss for the training and
validation sets. The loss in training goes down consistently,
demonstrating efficient optimization of the model parameters
on the training set. The validation loss also goes down
initially, but it begins to plateau and rise a little towards the
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later stages of training. This is a sign of overfitting, where the
model picks up noise or certain patterns in the training data
that are not well-generalizable to the unseen data. The model
performs well in terms of training accuracy and minimal
training loss, indicating good learning. The growing
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difference between the training and validation metrics
highlights the poor generalization, which can be attributed to
the lack of regularization. These results provide the baseline
for comparing with regularized models.

Figure 4 plot shows training and validation accuracy
patterns for twenty epochs for a model trained using L1
regularization, where the absolute values of the model weights
are penalized in order to promote sparsity. The training
accuracy begins at 44% and rises consistently to
approximately 73% through the 20 epochs. This gradual
improvement over the baseline (no regularization) is a
manifestation of the effect of L1 regularization, which restricts

the model's ability to reduce overfitting. The validation
accuracy starts slightly lower than the training accuracy and
rises progressively. The observed fact that validation accuracy
is consistently slightly lower than training accuracy is an
indication of better generalization as a result of L1
regularization. Both curves plot towards the same levels of
accuracy, indicating L1 regularization benefits learning
balance over training and validation sets. The improvement of
training accuracy, although slower, indicates that the penalty
of sparsity enforcement is confirmed by the general proximity
of the training and validation accuracies to one another. This
plot showcases the strength of L1 regularization in obtaining
an optimal balance between training performance and
generalization on unseen data.
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Fig. 4 L1 regularizer - accuracy

e Train Loss

1.6

L1 Regularization - Loss

eV alidation Loss

1.4

1.2

0.8

Loss

0.6

0.4

0.2

6 7 8 9

10

Epoch

11 12 13 14 15 16 17 18 19 20

Fig. 5 L1 regularization loss
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The above plot shows the loss of the model trained using
L1 regularization on the training and validation set over three
epochs. The x-axis is for the number of epochs, while the y-
axis is for the loss values, with lower values for better model
performance. The blue line follows the training loss,
beginning high at around 1.5 and falling sharply to around
0.73 by epoch 20, indicating fast learning in the early epochs.

The validation loss and the training loss slowly fall close
to the training loss in the last epoch. This convergence of
training and validation losses indicates that the model is

generalizing well without overfitting. L1 regularization
penalizes the absolute weights, promoting sparsity and model
interpretability. In general, the steady decline and
convergence of both losses show that L1 regularization is
well-balancing learning and generalization. Training accuracy
begins at approximately 0.42, as shown in Figure 6, which is
quite low, as would be expected for an untrained model.
Training Accuracy begins slightly higher at about 0.52,
possibly suggesting that the training dataset contains features
that are more easily predictable by the model early on.
Training accuracy rises again to about 0.7, somewhat better
than validation accuracy.
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Fig. 6 L2 regularization accuracy
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Fig. 7 L2 regularizer loss
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The L2 regularizer is used to penalize large weights,
which prevents overfitting. The proximity of training and
validation accuracies indicates that the model is learning well
without overfitting. The slightly higher training accuracy
compared to validation accuracy could occur if the validation
dataset is simpler or more representative than the training data.
This is not a concern unless it persists significantly. Both
training and validation accuracies improve steadily with each
epoch, showing that the model is learning effectively without
stagnation or instability. The model shows good learning
dynamics with regularization, as indicated by increasing and
closely matching accuracy curves. It is able to balance fitting
the training data while preserving generalization to validation
data. Figure 7 shows the training and validation loss curves for

amodel trained using L2 regularization over three epochs. The
x-axis is the epochs, and the y-axis is the loss values. The
training loss starts at around 1.5 at epoch zero and gradually
decreases to around 0.7 by epoch 20, indicating steady
improvement in how well the model can reduce error while
training. The orange line, representing the validation loss,
begins at a lower point around 1.5 and gradually drops to
overlap closely with the training loss around 0.7 in the last
epoch. This tight correlation between the training loss and
validation loss underscores the fact that the model is learning
well without much overfitting. L2 regularization, which
penalizes the square magnitude of weights, keeps model
complexity in check and adds stability, as evident from the
smooth converging loss traces.

L1L2 Regularizer Accuracy
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Fig. 8 L1L2 regularizer -accuracy

Training Accuracy begins at 0.45, as shown in Figure §;
Validation Accuracy begins at a lower rate than training at
0.42, which can be a function of model initialization or the
distribution of the validation dataset itself. The training
accuracy increases noticeably, which indicates that the model
is learning from the training data. The validation accuracy also
increases to 37%, demonstrating that the model is generalizing
better to new data. The training accuracy further increases to
0.74, demonstrating the improvement in learning. The
validation accuracy is also.

The L1L2 regularizer prevents the model from overfitting
by imposing penalties on large weights. The close alignment
between the training and validation accuracies across epochs
suggests that the model is generalizing well without
overfitting.Both training and validation accuracies improve
consistently, which is a positive indicator that the regularizer
and the training process are working effectively. Training
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Loss begins at a high point, as shown in Figure 9, typically at
the start of training when the model has not yet been trained.
Validation Loss begins significantly the same as the training
loss, potentially reflecting the same performance on the
validation set. The training loss drops precipitously. This
means fast learning because the model is adapting its
parameters to the training data. The validation loss also
reduces slightly, indicating better generalization.

The training loss keeps falling and meets the validation
loss. This convergence indicates that the model is not
overfitting but generalizing very well. The L1L2 regularizer
imposes penalties on large weights and prevents overfitting.

The steep decline in training loss between epochs 0 and 1
shows that the model quickly learns key patterns in the data.
The gradual decrease in validation loss suggests that the model
is improving its generalization without overfitting.



Deepa S et al. /IJETT, 73(10), 107-116, 2025

e Train Loss

L1L2 Regularizer Loss

eV alidation Loss

1.8

1.6

1.4

1.2

Loss

0.8

0.6
0.4

0.2

4 5 6 7 8 9

10 11

12 13 14 15 16 17 18 19 20

Epoch

Fig. 9 L1L2 regularizer -loss

Comparative Analysis - Accuracy

@ Training Accuracy
0.9

= Validation Accuracy

0.8

0.7

0.6

0.5 1
0.4 -

Accuracy

0.3
0.2 -

L1
Method

Baseline

L1L2

Fig. 10 Comparative analysis -accuracy

The Figure 10 graph plots the training and validation
accuracy against different regularization methods: Baseline
(regularization turned off), L1, L2, and L1L2 combined.
Baseline model has the highest training accuracy of over 80%,
while its validation accuracy is much lower, reflecting
overfitting. In L1 regularization, training and validation
accuracies are both considerably lower but almost the same,
reflecting that although overfitting is brought under control,
the overall performance takes a hit. L2 regularization, on the
other hand, achieves higher and closely matched training and
validation accuracies compared to L1, showing good
generalization without overfitting. The L1L2 regularization
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brings training and validation accuracies lower than L2 but
still closely matched, which shows a balance between sparsity
and model complexity. In general, L2 regularization is the best
approach to obtaining a good balance between training and
validation accuracy, whereas the Baseline model overfits, and
L1 regularization gives up some performance for simplicity.
Figure 11, Training vs Validation Loss, compares the loss for
models trained using various regularization methods: Baseline
(no regularization), L1, L2, and L1L2 (Elastic Net). The
baseline model exhibits overfitting, where training loss drops
steeply while validation loss plateaus or rises. L1
regularization decreases overfitting by imposing sparsity and
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results in progressively decreasing training loss but constant
validation loss. L2 regularization imposes smoothness,
resulting in both training and wvalidation loss reducing
progressively and also improving the generalization. L1L2
regularization combines the strengths of both L1 and L2 with

the optimal tradeoff through highly correlated training as well
as validation loss, indicating good generalization with
minimal overfitting. This directs the need for regularization to
improve the model performance, with L1L2 offering the best
balanced solution.

Comparative Analysis - Loss
B Training Loss Validation Loss
2.5
2
w 1.5 I
8
3
1 [
0.5 - ——
0 “ T 1
Baseline L1 L2 L1L2
Method

Fig. 11 Comparative analysis -loss

This section explains the experiments comparing L1, L2,
and LI1L2 regularization using the CIFAR-10 data,
demonstrating their tradeoffs. L1 regularization encourages
sparsity, making models more interpretable and also simpler,
but possibly reducing accuracy by over-penalizing important
features. L2 regularization smooths weight sizes, improving
generalization and reducing overfitting, though not inducing
sparsity, which may result in leaving models more complex.

L1L2 regularization (Elastic Net) compromises between
sparsity and smoothness, yielding the best generalization,
though at slightly higher computational cost due to mixed
penalties. For CIFAR-10, L1 regularization is poor as it over-
penalizes the features, while L2 regularization works well
with the convolutional models by having the weights that are
well-balanced.

L1L2 regularization is ideal for CIFAR-10 as it
incorporates the best of both methods and works well with its
diverse features. The biggest challenge is selecting the optimal
regularization coefficients since incorrect values can lead to
underfitting or overfitting. L1 regularization is susceptible to
training instability due to abrupt weight changes, and
introducing both L1 and L2 penalties increases computational
expense, especially in larger models. The choice of
regularization then depends on model and dataset
requirements, with L1L2 offering the best tradeoff for CIFAR-
10. The experiment results are consistent with earlier insights
from Ng (2004) and Zou and Hastie (2005), but we extend
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their relevance to CNN-based image classification. Unlike
much of the previous work that mainly focuses on accuracy,
we draw attention to interpretability and efficiency as equally
important factors in designing deep learning models. While
modern architectures such as ResNet and DenseNet achieve
higher absolute accuracy on CIFAR-10, our study offers a
different perspective: it shows that classical regularization
methods still play a crucial role in balancing accuracy with
practical tradeoffs during neural network training.

5. Conclusion and Future Work

The study verifies the gain in performance by several
regularization techniques. L1 regularization sparsifies and
makes models more interpretable, but reduces accuracy as too
many weights are being eliminated. L2 regularization ensures
smooth weight variations that improve generalization without
sacrificing accuracy. L1L2 regularization (Elastic Net)
introduces the best blend, providing sparsity as well as
generalizability to an optimal degree.

All regularization techniques achieve effective reduction
of overfitting compared to the baseline model, with L1L2
achieving the lowest training vs validation performance gap.
Regularization is most important for small datasets such as
CIFAR-10, where overfitting is a big problem, and the
selection of the technique depends on the model and dataset in
question. For practitioners, choosing the appropriate
regularization technique requires thinking about dataset size,
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feature complexity, and available computational resources. L1 search or random search, needs to be done in order to optimize
regularization is best suited for interpretability-intensive tasks, regularization coefficients. Subsequent research can utilize
whereas L2 or L1L2 regularization is advised for overall these techniques on large datasets such as ImageNet to
performance gain. Hyperparameter optimization, e.g., grid experiment with scalability and stability.
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