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Abstract - The Real Estate (RE) industry is an essential part of many countries’ economies, and accurately forecasting housing 

prices is beneficial to buyers, real estate agents, and the government. However, multiple factors influence the prices of RE 

properties, which are difficult to measure; the relationship between housing prices and housing characteristics is complex and 

nonlinear, requiring a flexible algorithm and tools. Three regression-based models were developed using Neural Network (NN), 

Random Forest (RF), and Extreme Gradient Boosting (XGB) algorithms to predict house prices. Explainable Artificial 

Intelligence (XAI) methods were deployed to explain the key factors influencing RE prices. The dataset used has 923,159 records, 

available on Kaggle. The models were evaluated using four zip codes, and the house size influenced the price prediction for the 

RF model. For efficient RE price performance evaluation, the following metrics were computed: squared (R2), Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). These metrics were applied to 

evaluate the machine learning models adopted in the research, and the results show that the XGB model performed better with 

R2 = 0.817011. The XGB model, SHapley Additive exPlanations (SHAP) plot showed that acre lot and bath are the most 

influential determinants in predicting the price of houses, while the Individual Conditional Expectation (ICE) plots showed that 

bath, by the traditional evaluation methods. The result promises a better decision support to potential RE buyers in selecting 

houses that meet their specific needs. 

Keywords - Explainable AI, Ensemble Learning, Housing Price Prediction, Random Forest, Gradient Boosting Analysis.

1. Introduction  
The real estate sector represents a substantial share of 

most national economies, and housing price prediction 

remains a longstanding challenge. Buyers, sellers, agents, and 

policymakers all benefit from reliable forecasts, yet housing 

prices are shaped by multiple interacting factors, including 

property features, location, and market demand. Classical 

valuation approaches-such as cost analysis, sales comparison, 

or income capitalization-have been widely used (Pagourtzi et 

al., 2003). However, these methods often fail to capture 

nonlinearities and high-dimensional feature interactions 

(Zurada et al., 2006), leading to inconsistent or inaccurate 

appraisals. Quantitative measurement of the benefits and 

liabilities accruing from the ownership of RE is part of the 

valuation process (Selim, 2009). The increasing availability of 

large housing datasets has accelerated the adoption of 

Machine Learning (ML) for real estate valuation. ML 

techniques, especially ensemble learning, are better suited to 

handle nonlinear relationships and uncover hidden patterns. 

Recent work has demonstrated that ensemble approaches, RF, 

and GBoosting achieve higher predictive accuracy than 

traditional approaches (Varma et al., 2018; Teoh et al., 2022). 

At the same time, interpretability remains critical. Without 

transparency, predictive models risk becoming “black boxes” 

that hinder trust and adoption (Gunning et al., 2019). As a 

result, it becomes increasingly difficult for sellers and buyers 

to have an efficient platform to determine the optimal price for 

a property. Hence, there is a need for the adoption of 

automated house appraisal methods. Many studies show that 

Artificial Intelligence (AI), especially ML, provides a more 

suitable method that approaches market values more (Naci, 

2021). Explainable AI (XAI) addresses this challenge by 

offering interpretability tools such as SHAP values and ICE 

plots, which clarify how features contribute to predictions. 

While prior studies have used these methods individually, 

fewer have applied them in combination for housing price 

prediction. This study, therefore, develops and compares RF 

and XGB models for house price prediction while employing 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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SHAP and ICE to identify the most influential features. The 

goal is not only accurate prediction but also actionable 

explanations that can inform decision-making. Today, 

organizations and businesses are adopting intelligent data-

driven processes using AI techniques to enhance business 

profitability (Fuster et al., 2020). Machine Learning (ML), as 

a subset of AI, is intended to improve its performance from 

previous experience. So far, ML techniques have been 

successfully deployed in virtually all sectors, including 

decision support systems, dynamic pricing, the banking 

sector, etc. (Pratt, 2020; Ugochukwu and Elochukwu, 2022). 

Recently, the RE industry has explored ML-driven house 

appraisal, which surpasses conventional house appraisal 

methods (Teoh et al., 2022). ML for predicting house prices 

has been the subject of a lot of research (Park & Bae, 2015; 

Manasa Gupta & Narahari, 2020; Varma et. al, 2018), but 

currently, a few studies have used both the SHAP and ICE plot 

XAi methods to explain the determinant features and identify 

the determinant factors that influence housing price 

prediction. XAi methods now enable users to understand, 

trust, and better manage AI systems (Gunning et al., 2021), 

making it possible to identify and describe factors that 

influence house prices via ML techniques.  

Thus, this research aims to develop and compare two 

regression-based Ensemble Machine Learning (EML) models 

(RF and XGB) to predict housing prices based on the chosen 

metrics. The significant determinant factors that influence 

housing prices using two XAI methods (SHAP analysis and 

ICE plots) will be identified and interpreted. Intelligent house 

price predictions aid prospective home buyers in making 

decisions, guide developers on setting house prices, and 

enhance tax valuation, which boosts the overall nation’s 

economy. Regression testing is essential in Machine Learning 

(ML) to guarantee that changes to the model, data, or 

environment do not negatively impact existing functionality 

(Owoc & Stambulski, 2025). The paper is organized in the 

following way: The theoretical analysis provides the 

description of the ML models deployed in this work and the 

XAi framework used. It is followed by the methodology, 

describing the dataset used and model evaluation methods. 

The next is the results, discussions, and summary of findings, 

lastly, the conclusion and recommendations.  

2. Theoretical Analysis 
The prediction of housing prices has been widely studied 

across economics, finance, and computer science. Earlier 

approaches commonly used hedonic regression, where 

housing prices are expressed as a function of property features, 

geographic context, and neighbourhood conditions. While 

these models provided interpretable insights, their linear 

functional forms often limited their ability to capture the 

complex, nonlinear dynamics of housing markets. The growth 

of machine learning has introduced more powerful 

alternatives. Decision-tree-based algorithms, particularly 

ensemble methods, have demonstrated superior predictive 

accuracy in real estate valuation tasks. RF is widely 

recognized for handling noisy, high-dimensional data 

effectively, while boosting methods such as GBM-and more 

recently XGBoost-have consistently ranked among the top 

performers in structured prediction tasks. Interpretability has 

also become a central concern. As machine learning models 

grow in complexity, stakeholders demand transparency in 

how predictions are formed. SHAP, grounded in Shapley 

values from cooperative game theory, has become a standard 

interpretability tool because it attributes portions of a 

prediction to each feature in a consistent, additive way. 

Similarly, ICE plots allow researchers to visualize 

heterogeneous effects across different observations, 

complementing global explanations with local nuance. 

Recent studies applying these techniques in real estate 

have shown that location, property size, and neighbourhood 

characteristics consistently rank among the most influential 

determinants of price. At the same time, interpretability tools 

highlight that these effects are not uniform, underscoring the 

importance of context-specific modelling. This body of work 

provides the foundation for the present study, which combines 

RF and XGB for prediction while employing SHAP and ICE 

to enhance model transparency. 

2.1. Understanding EML Models 

EML is a particular form of machine learning paradigm 

that uses a group of base learners, sometimes referred to as 

weak learners, who are integrated and trained to evaluate and 

resolve real-world problems. In contrast, conventional 

learning methods construct only one learner from the training 

data. An ensemble’s capacity for generalization is typically 

significantly greater than that of its component learners. EML 

techniques are also referred to as “meta-learning techniques” 

because of their capacity to learn from base learners (Zhou, 

2009; Zhang & Ma, 2012). EML may transform weak learners 

into strong learners, who can predict outcomes far more 

accurately than random guesses (Zhou, 2011). The EML 

algorithms have the ability to capture nonlinear relationships, 

high-order interactions between inputs, and can offer higher 

prediction accuracy.  

Within the past decade, EML methods have increasingly 

drawn the attention of researchers and analysts who have 

carried out a great number of ML experiments in research and 

competitions on platforms like Kaggle, KDD-Cups, etc. EML 

has achieved exceptionally satisfactory performance (Dong et 

al., 2020). The determination of house prices is complex, 

mostly nonlinear, and features dependent attributes. 

Dependent. EML algorithms allow more flexibility by 

combining individual models and averaging the results (Chen 

et al., 2020). Therefore, EML algorithms are well-suited for 

modelling housing prices. Figure 1 shows the EML process: 

the ensemble formation and base learners, followed by the 

pruning to exclude some functions from the previous step. 

Lastly, the e integration to combine the chosen functions. 
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Fig. 1 An EML process adapted from Zounemat-Kermani et al., (2021) 

2.2. Details of EML Models Deployed 

According to Zounemat-Kermani et al. (2021), bagging 

and boosting are the most commonly used EML methods. The 

major difference is that in the bagging, a number of models 

are randomly trained in parallel using a subset of the data, 

while in the boosting approach, models are sequentially 

trained to learn from the mistakes made by the previous 

model. Brief descriptions of both methods are provided below.  

The Bagging algorithms have been applied to both 

regression and classification problems to improve precision in 

ML approaches and aid in reducing variance and increasing 

robustness (Polikar, 2012; Wu et al., 2020). Notable bagging 

algorithms include RF, Random Subspace Methods (RSM), 

and Extremely Randomized Trees (ERT). 

The Boosting algorithm is designed to improve the 

accuracy and performance of ML algorithms. By sequentially 

boosting weak learners (base learners) into strong ones, it can 

reduce the overfitting of decision trees and decrease variance 

and bias in an EML for greater prediction accuracy.  

This technique also increases diversity within the primary 

training data set through random sampling and replacement.  

Here, the first model is created from the training dataset, 

with subsequent models based on the performance of the 

previous one (Schapire, 2003; Zounemat-Kermani et al., 

2021). Examples include Stochastic Gradient Boosting 

(SGB), AdaBoost, and eXtreme Gradient Boosting (XGB).  

In this study, two regression-based EML algorithms (RF 

and XGB) were deployed to model housing prices; below is a 

brief description of both models. 

2.3. Extreme Gradient Boosting (XGB) Model 

XGB is a flexible and extensible implementation of the 

GBBoost framework by Friedman et al. (2000). It is a 

supervised learning algorithm that implements the boosting 

approach to yield more accurate models (Mitchell & Frank, 

2017). 

Table 1. XGB model description 

SYMBOL MEANING 

𝑛 Total number of samples 

𝑚 Total number of features 

𝑥𝑖 
Features¡ information of the i-th sample, xi ∈ 

Rm 

𝑦𝑖  The actual label (or value) of the i-th sample 

𝑦̂𝑖 
The predicted label (or value) of the i-th 

sample 

𝑦̂𝑖
(𝑡)

 The predicted value up to the t-th tree 

𝑙(𝑦𝑖 , 𝑦̂𝑖) The loss function of the i-th sample 

𝐿(𝑦, 𝑦̂) The loss function of the total sample 

Ω(𝑓𝑘) 

The regular term of the objective function to 

prevent overfitting, where fk represents the 

k-th decision tree. 

Given a data set containing 𝑛 samples and 𝑚 features, 

𝐷 = {(𝑥𝑖 , 𝑦𝑖) ∣ 𝑥𝑖 ∈ 𝑅𝑚, 𝑦𝑖 ∈ 𝑅} and 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑚 ∣
𝑖 = 1,2, ⋯ , 𝑛}. The XGB model is tasked with building t trees 

so that the predicted value. 𝑦̂𝑖
(𝑡)

Up to the t-th tree satisfies 

formula (1). 

𝑦̂𝑖
(𝑡)

= ∑  𝑡
𝑘=1 𝑓𝑘(𝑥𝑖) = 𝑦̂𝑖

(𝑡−1)
+ 𝑓𝑡(𝑥𝑖)  (1)  

In each iteration of the gradient boosting algorithm, a 

weak classifier 𝑓𝑘(𝑥𝑖) (i.e., a decision tree) is generated, and 

the predicted value 𝑦̂𝑖
(𝑡)

 The sum of the predicted value of the 

previous iteration 𝑦̂𝑖
(𝑡−1)

 and the decision tree result of this 

round 𝑓𝑡(𝑥𝑖) (Li et al., 2020). 

Shrinkage and column subsampling are two important 

techniques introduced by the XGB method. In Shrinkage, the 

impact of a tree decreases, and overfitting is addressed by 

scaling new weights at each step of boosting. In column 

subsampling, only a randomly chosen set of input features is 

used to build a tree, in an effort to speed up the training process 

(Meng et al., 2020; Sheridan et al., 2016; Yaman & Subasi, 

2019). XGB makes better predictions than the RF model and 

is comparable to deep neural nets (Sheridan et al., 2016), 
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In contrast to simple gradient boosting algorithms, XGB 

algorithms, unlike simple boosting, do not add weak learners 

at each stage, but use a multi-threaded approach that better 

uses the machine’s CPU core, thus improving performance 

and speed. 

2.4. Random Forest (RF) Model 

According to Breiman (2001), RF is an EML algorithm 

that uses decision trees as weak learners. It is possible to 

employ RFs for both classification and regression problems 

(Liaw & Wiener, 2002). RFs are seen as one of the leading 

EML approaches that reduce over-fitting by computing the 

outcome mean. The RF technique is composed of a number of 

steps: First, random samples are selected from the dataset. 

Next is the construction of a decision tree using each sample 

to get a result, followed by voting to decide the most efficient 

model as the final forecast (Breiman, 2001; Cutler et al., 2012; 

Heddam, 2021). The RF forecast is the unweighted mean of 

the collection (Segal, 2004). RF prediction is the unweighted 

average over the collection, according to Segal (2004), as 

given below: 

ℎ(x) = (1/𝐾) ∑  𝐾
𝑘=1 ℎ(x; 𝜃𝑘) (2) 

As k → ∞ the Law of Large Numbers ensures, 

𝐸X,𝑌(𝑌 − ℎ(X))2 → 𝐸X,𝑌(𝑌 − 𝐸𝜃ℎ(X; 𝜃))2 (3) 

Where ℎ(x; 𝜃𝑘), 𝑘 = 1,…., 𝐾 is a collection of tree 

predictors, x represents the observed input (covariate) vector 

of length p with associated random vector X, and the θk are 

independent and identically distributed random vectors. 

2.5. Neural Network (NN)  

A NN is a model tailored according to how the human 

brain processes information and is widely used in AI and ML, 

eg, predicting house prices, medical diagnosis, etc.  

It is a system composed of connected nodes (neurons) 

ordered into layers to learn patterns and relationships from 

data, as shown in Figure 2. 

 
Fig. 2 Artificial neural netwok architecture (Hounmenou et.al 2021) 

2.6. The Mathematics of Neural Networks 

2.6.1. Weighted Sum 

The Neurons compute a weighted sum of inputs and the 

bias term, which, when passed into the activation function, 

introduces nonlinearity and output of the neuron. Then, a cost 

function measures the difference between the predicted and 

target value as the error. Then, applying the chain rule to 

compute the gradient of error and bias. The forward pass, error 

computation, and backward pass are repeated to minimize 

error and increase prediction accuracy.  

Mathematically, it is expressed as (García, 2022): 

𝓏 =  ∑ 𝓌𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1   

a=f(z) 

Where: 

z = weighted sum(linear part), 

wi  = xi feature weight  

xi  = neuron input features, 

b  = bias term 

n  = next layer inputs 

I = counter 

f(z) = activation function 

a = the neuron output 

2.6.2. Activation Functions 

There are many ways neurons make regarding f(z). This 

includes: 
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Rectified Linear Units (ReLU) to ensure the output is not 

less than zero. This is given as: f(z) = max(0, z),  the Tanh: 

given as: f(z) = tanh(z) and the Sigmoid activation: f(x) = 1 / 

(1 + e^(-1*z)). The range is (0, 1). 

2.6.3. Neural Network for Real Estate Price Prediction 

Real estate prices depend on many factors, such as: 

Location (urban vs. rural, proximity to schools, roads, 

hospitals, etc.) 

Size (length & width, number of bedrooms, bathrooms), 

condition, and maintenance of the property, 

Prevailing demand (consumer behaviour) 

Amenities (swimming pool, garage, garden, etc.) 

A Neural Network (NN) can capture nonlinear 

relationships between these features, so it’s well-suited for this 

task in property price. 

Input Layer: Each feature (location score, size, number of 

rooms, etc.) is represented as an input neuron. 

Example: 

x1=size (m2), x2=number of bedrooms and 

x3=location index  

A neural network has 3 main types of layers: 

Hidden Layers: The network processes these inputs 

through one or more layers of neurons that pass through an 

activation function (like ReLU, sigmoid, or tanh). The Output 

Layer then produces a single value as the predicted house 

price. 

2.7. Explainable AI (XAi) 

Even though ML models variously proved reliable, 

efficient, and most importantly, accurate, their dominance 

comes with the cost of complexity (Guidotti et al., 2018).  

However, accuracy against interpretation is a major issue 

(Gunning et al., 2019). The contribution of various 

determinants is difficult to measure. The XAi, however, was 

formulated to increase understanding and transparency 

(Gunning et al., 2021; Adadi & Berrada, 2018). 

The concept of explainability sits at the forefront of AI, 

focusing, according to Hagras (2018) on: 

• Transparency: end-users of ML models deserve to follow 

a model operation (Weller, 2017). 

• Determinants: explore the possibilities of obtaining 

additional information from ML models, like the 

explanations for some underlying phenomena.  

• Bias: ensures balanced models in the training data or 

objective function. 

• Fairness: ensures objectivity. 

• Safety: certifies the dependability and veracity of ML 

models. 

In this paper, we used two different XAI-based Graphic 

Interpretation Tools: SHAP analysis and ICE plots for our 

determinant analysis of the models. 

2.8. SHAP 

SHAP as a method for explaining the predictions of a 

specific instance (Lundberg et. al., 2017). It has become a 

popular tool for interpreting natural and social phenomena 

(Stojić, 2019; Janizek, 2018), finding solid theoretical ground 

in game theory. SHAP attempts to interpret a model at each 

point x. The function thus defines the expectation value for a 

conditional distribution in a subset of S, and is given as:  

𝑒𝑆 = 𝐸[𝑓(𝑥) ∣ 𝑥𝑆 = 𝑥𝑆
∗] (4) 

As described by Holzinger et al. (2022), the contribution 

of a variable j is denoted by 𝜙j and calculated as the weighted 

average over all possible subsets S: 

𝜙j(val) = ∑  S⊆{x1,…,xp∖∖{xj}
|S|!(p−|S|−1)!

p!
(val (S ∪ {xj}) −

val (S)) (5) 

Where p = the number of features, S = a subset of features, 

x = an instance of feature values in the model being explained, 

and val(S) = feature value predicted in the set S. 

The Shapley approach accounts for the contribution of 

each determinant using various combinations of explanatory 

variables to evaluate each contribution (Teoh et al., 2022). 

The value of absolute Shapley per characteristic is 

computed as global importance given below: 

𝐼𝑗 =  ∑ |Φ𝑗
(𝑖)

|𝑛
𝑖=1   (6) 

Where Φ𝑗
(𝑖)

= the SHAP value of the j-th feature for 

instance i.  

SHAP was implemented in Python using the XGBoost 

and SHAP packages. 

2.9. ICE Plots 

An ICE plot of the actual prediction functions f(i), rather 

than the means. It provides a visualization disaggregation of 
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typical PDPs. The plot shows a range of independent variables 

on the x-axis and forecasts on the y-axis. Every line represents 

one expectation (Jordan, Paul, & Philips, 2022). 

“This study considered a set of observations 

{(𝑋𝑠𝑖 , 𝑋𝑐𝑖)} 𝑖=1
𝑁 , and studied the response function f.  

There are two types of ICE plots: a “centred” ICE plot, or 

c-ICE (Goldstein et al. 2015, Jordan, Paul, & Philips, 2022), 

that chooses some location x* along xs  and forces such lines 

to run along the point. The c-ICE plots for mapping each 

explanatory variable are:  

                           …….. (7) 

Where f (i) = the given ICE curve and f (x., xci)represent 

the forecast value  x* for the ith observation. An ICE plot is 

best when computing a heterogeneous relationship between 

features (Jordan, Paul, & Philips, 2022). 

2.10. The Hyperparameters of RF and XGBoost 

RF and XGBoost are both ensemble methods based on 

decision trees, but they differ in their approach and thus have 

distinct sets of important hyperparameters. 

2.11. Random Forest Hyperparameters 

RF builds multiple independent decision trees and 

combines their predictions. Key hyperparameters include: the 

n_estimators, which specify the number of decision trees; a 

bigger number improves performance but increases 

processing cost. Other parameters include: x_depth; depth 

reduction to prevent overfitting, min_samples_split, 

min_samples_leaf, max_features for randomness and 

decorrelation, and bootstrap; usually set to True in RF. 

2.12. XGBoost Hyperparameters 

XGBoost forms trees sequentially; previous errors are 

corrected by the new tree. It has an extensive set of 

hyperparameters, categorized into general, booster, and 

learning task parameters, which are usually set to refine/tune 

the model performance: 

3. Materials and Methods 
3.1. Research Flow 

Figure 3 provides a high-level display of the research 

process. The first phase is data pre-processing to clean and get 

the data ready for analysis (Jadhav et al., 2019). This is 

followed by the Exploratory Data Analysis (EDA), which 

explains data patterns and provides understanding via 

statistical and visual displays. Thirdly, we transform the data 

to remove noise and reduce the skewness. In the second phase, 

we train, evaluate, and compare the results of the models. 

Then, finally, in the third phase, we use SHAP to explain a 

particular prediction by quantifying each feature’s 

contribution and ICE to explain a specific feature’s value 

influence on house prices for each mode. 

 
Fig. 3 Flow of the experiment 

3.2. Details of the Dataset 

3.2.1. Data Source 

We use a large-scale dataset obtained from Kaggle, which 

contains more than 900,000 property entries described by 12 

variables. These variables include property-specific features 

(e.g., size, number of bedrooms, and bathrooms), lot 

characteristics, geographic identifiers, and financial details 

such as sale price. The dataset covers a wide range of 

properties across different U.S. regions, offering both scale 

and diversity for robust modelling. It is available at: 

https://www.kaggle.com/datasets/ahmedshahriarsakib/usa-

real-estate-dataset/) as described in Table 2.  

Table 2. Dataset description 

Type Name Description Class 

 

 

Status House Status (on sale, sold, or other options) Categorical 

Bed No of Bedrooms Numeric 

Phase 1 

Data Cleaning & 

Preprocessing 

EDA 

Feature Scaling 

Determinant Analysis 

with SHAP 

Determinant Analysis 

with ICE Plots 

Phase 3 

  

Phase 2 

XGB Model 

RF Model 

Model Evaluation 

Model Selection 
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Predictor Variables 

Bath No of baths Numeric 

Acre_lot The lot size of the house Numeric 

Full_address House location Categorical 

Street Street name Categorical 

City City name Categorical 

State City State Categorical 

Zip_code The house location Zip code Numeric 

House_size House in square feet Numeric 

Sold_date Sold Date (If sold) Date 

Target Variable Price Price of a house in USD Numeric 

3.3. Data Preprocessing 

Data cleaning was performed to handle missing entries 

and remove extreme outliers that could bias the models. 

Categorical variables such as location were encoded into 

numeric form, and continuous variables were standardized 

where necessary. Randomly, the dataset was divided into 

training and test subsets to ensure unbiased evaluation. Data 

preparation, according to Famili et al. (1997), is crucial to any 

knowledge discovery project. This aims at handling missing 

information and cleaning out unnecessary or noisy aspects of 

the data (Jadhav et al., 2019).  

On initial analysis, we discovered that the dataset 

contained 809,370 duplicate records out of the 923,159 

available records, i.e., 87.67% of the data were duplicates, and 

after removal, we were left with 113,789 records, i.e., 12.33% 

of the initial data. Further analysis showed that the data still 

contained lots of null/missing values. At this stage, we used a 

data imputation approach to replace the missing values with 

the sample median or mode based on the distribution of the 

data. Furthermore, we dropped some columns like sold date, 

street, status, and full address since they would have no impact 

on our prediction model. Finally, we converted our categorical 

data into numerical data using Scikit-learn LabelEncoder. 

3.4 Exploratory Data Analysis (EDA) 

EDA is an important stage in data preprocessing that must 

be carried out before building an ML model. The goal of EDA 

is to explore the dataset to uncover anomalies, test hypotheses, 

and verify assumptions.  

The information gained from EDA helps researchers 

choose appropriate ML approaches to solving the needed 

problem (Patil, 2018). Table 3 is the summary of the features; 

one can observe that it is right-skewed, with the bulk of the 

outliers lying in the final quartile. The Correlation Matrix 

Heatmap Figure 4 shows that no strong correlation exists 

between the various independent variables.  

Note: Each record shows the Pearson correlation 

coefficient: green colours represent a positive correlation, 

while other colours indicate a mild or negative correlation. 

Furthermore, the house location is important in determining 

the price of the house.  

Using a boxplot in Figure 5, we explored the dataset’s 

range of house prices in various states. The data shows that 

South Carolina is the least expensive locality, while New York 

is the most expensive. 

 

Table 3. Statistical summary of the features 

Features Mean STD. Min. Q1 (25%) 
Median 

(50%) 
Q3 (75%) Max. 

price 9.095336e+05 3.418652e+06 0.000000e+00 2.500000e+05 4.499000e+05 8.000000e+05 8.750000e+08 

bed 3.261255 1.712655 1.000000 2.000000 3.000000 4.000000 123.000000 

bath 2.446537 1.612504 1.000000 2.000000 2.000000 3.000000 198.000000 

acre_lot 12.958765 836.871860 0.000000 0.150000 0.260000 0.570000 
100000.00000

0 

zip_code 8267.006670 4580.863932 601.000000 6010.000000 8005.000000 
10301.00000

0 
99999.000000 

house_si

ze 
2.002986e+03 4.824839e+03 1.000000e+02 1.376000e+03 1.664000e+03 2.035000e+03 1.450112e+06 
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Fig. 4 Correlation plot of the dataset 

3.5. Experiment Setup  

Two ensemble machine learning models were 

implemented: 

Random Forest (RF): In RF, numerous trees are grown 

from resampled training subsets, with each split restricted to a 

randomly chosen set of predictors, producing diverse trees 

whose results are later aggregated. 

Extreme Gradient Boosting (XGB): XGBoost builds trees 

in a forward, stage-wise manner, where a new tree is 

optimized to reduce residual errors left by earlier ones. 

Regularization terms, column sampling, and learning-rate 

shrinkage are incorporated to prevent overfitting and enhance 

generalization. 

Both models were tuned using grid search and cross-

validation to identify optimal hyperparameters. The  Python 

libraries on Jupyter Notebook on an Intel(R) HD Graphics 

5500 GPU, a 2.60-GHz Intel(R) Core(TM) i7-5600U CPU, 

and 8GB DDR3 RAM were used to perform our experiments. 

First, feature scaling was applied to the data via Power 

Transformer scaling to make the distribution more Gaussian-

like.  

This technique finds an optimal scaling factor that 

stabilizes variance as well as minimizes skewness through 

maximum likelihood estimation (Roy, 2022). Figure 6 shows 

a scatter plot of the normalized data. The next step was to 

divide the normalized data into training (70%) and testing 

(30%) subsets for model training and validation, respectively. 

 
Fig. 5 House price range across various states in the dataset dataset 
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Fig. 6 Scatter plot of the data after scaling 

3.6. Model Evaluation 

Performance was assessed using the coefficient of 

determination (R²), RMSE, and MAPE. These metrics capture 

complementary aspects of accuracy, ensuring that results 

reflect both overall fit and predictive ability. Still, it is difficult 

sometimes to predict the exact value of a regression model; 

hence, we aimed at showing the closeness of the forecast 

values to the actual values. The R2 is a good metric to evaluate 

the fitting of the model; it examines the percentage of the 

predicted price explained by the features via a regression 

relationship.  

The MSE calculates an absolute measure of goodness of 

fit; hence, it is often utilized for evaluating regression models. 

To accurately reflect prediction errors, MAE was calculated, 

being the average value of absolute errors.  

Additionally, the MAPE calculates error in terms of 

percentage. Reading below 10% for MAPE reflects high-

quality predictive modelling. Ideally, model MAE and RMSE 

scores of near 0, and an R2 score of near 1/100% is adjudged 

the best possible outcome and informs performance accuracy 

of the model. 

The metrics are illustrated as follows:  

Given 𝑛 samples, let/be the 𝑖 prediction of the sample and 

yi the actual value, and let 𝑟 be the mean value of the sample. 

𝑅2 = 1 −
∑  𝑛

𝑖=1 (𝑦𝑖−𝑦𝑖)2

∑  𝑛
𝑖=1 (𝑦𝑖−𝑦̅)2 , where 𝑦̅ =

1

𝑛
∑  𝑛

𝑖=1 𝑦𝑖  (8) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖
𝑝

)
2
 (9) 

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛

𝑖=1 |(𝑦𝑖 − 𝑦𝑖
𝑝

)| (10) 

MAPE =
1

𝑛
∑  𝑛

𝑖=1 |(
𝑦𝑖−𝑦𝑖

𝑝

𝑦𝑖
)| ∗ 100 (11) 

4. Results and Discussion 
4.1. Model Performance 

Both RF and XGB achieved strong predictive accuracy, 

with RF performing slightly better with 0.817011, as shown in 

Table 4. 

The RF, XGB, and Neural Network models’ residual 

plots were plotted in Figures 7, 8, and 9, respectively.  

The Residuals Plot and prediction error visualizations 

confirmed a balanced model behaviour, with errors distributed 

symmetrically and predictions aligning closely with actual 

values. 

The Prediction error plot for RF and XGB was 

demonstrated in Figures 9 and 10, respectively.  

Figure 11 presents the comparison of neural networks 

with other Models.  

Table 4 shows the model’s performance comparison (R-

squared). 

Table 4. Prediction result 

Model R2 score MAE RMSE MAPE  % 

XGB 0.81701 87739.69504 157851.4610 16.09018 

RF 0.8150 87739.6950 157851.4610 16.09018 

NN 0.53116 165454.32413 251331.94010 34.34042 
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Fig. 7 RF model residual plot 

 
Fig. 8 XGB model residual plot 

 
Fig. 9 Neural network residual plot model residual plot 

 
Fig. 10 Prediction error plot for RF model 
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Fig. 11 Prediction error plot for XGB model 

4.1.1. Comparison of Neural Networks and Other Models 

 
Fig. 12 The models comparison with neural networks model 

4.2. Determinant Analysis 

SHAP summary plots highlighted lot size (acre_lot) and 

number of bathrooms as the strongest predictors in the XGB 

model. For RF, ICE plots revealed that bathrooms, house size, 

and zip code played major roles in price determination. These 

interpretability tools reinforce that both structural features and 

geographic identifiers drive housing values.  

Figure 13 provides an understanding of the nature of the 

relationships. The XGB model, for bath, house_size, and 

acre_lot, observes that an increase in feature value increases 

the SHAP values.  

An indication that larger values for the features will lead 

to a higher predicted price for the RE property. Furthermore, 

it is observed that the zip code and city where the RE property 

is located also serve as major determinant factors for the house 

prices. Additionally, comparing the curves of distinct 

instances is made simpler by the centre ICE plots. When we 

want to see the difference between a prediction and a fixed 

point in the feature range rather than the absolute change of a 

predicted value, this can be useful.  

Figure 14 reveals that, on average, the dataset features for 

bath, zip_code, and house_size were the major determining 

factors that influenced the price prediction. While on average, 

the bed, acre_lot, and city features remained constant. Finally, 

the SHAP summary plot and the ICE plot depict the impact of 

features on the outcome. 

A house feature selection function can be provided by RE 

trading platforms to customers based on the ranking of feature 

importance and their impact on the RE price. This makes it 

easier for RE customers to select houses according to their 

needs. 
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Fig. 13 SHAP summary plot for XGB model 

 
Fig. 14 ICE plot for RF model 

4.3. Feature Importance 

Figures 15, 16, and 17 present the top ten model feature 

importance from high (Grade) to low(bedrooms) order of 

contribution. This means that house grade is the highest 

determinant of the house price prediction, while bedroom is 

the tenth feature.  

 
Fig. 15  Random Forest feature importance 
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Fig. 16 XGB feature importance 

 
Fig. 17 Neural network feature importance 

4.4. How Metrics Impact Real-World Decisions on Estate 

Price Prediction  

The study adopted some common metrics for house price 

prediction, including MAE, MSE /RMSE, R² (coefficient of 

determination), and ror (MAPE. 

Metrics affect real-world decisions as follows:  

Mortgage Lending & Risk Management: Banks use 

predictions to decide loan amounts. If MAE is too high, 

borrowers may be over-lent or under-lent. If RMSE is 

minimized, the bank avoids catastrophic losses on luxury 

properties. 

Property Taxation: Governments often rely on predicted 

market values for setting property taxes. High bias in 

predictions could lead to unfair taxation (over-taxing poorer 

neighborhoods, under-taxing wealthy ones). 

Real Estate Investment: Investors look at predictions to 

decide when/where to buy properties. Low R² means the 

model does not capture market drivers (risky investments). 

MAPE helps investors compare errors across cities or 

countries. 

Urban Planning & Policy: City planners use models to 

forecast housing affordability and plan infrastructure. If 

residuals show systemic bias (e.g., always undervaluing rural 

houses), policies may favour cities over rural communities. 

The results demonstrate that ensemble models, 

particularly RF, offer reliable predictions of housing prices in 

large, diverse datasets. Integrating SHAP and ICE allowed us 

to move beyond accuracy metrics to understand why 

predictions were made. For instance, the positive influence of 

bathrooms and lot size aligns with conventional expectations 

of property valuation but provides a quantified, data-driven 

confirmation. 

This combination of predictive accuracy and 

interpretability has practical implications. Buyers can use such 

models to evaluate properties against their budgets, 

developers can benchmark pricing strategies, and 

policymakers can better assess regional housing market 
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dynamics. Moreover, the results show that explainable ML 

can bridge the gap between high-performing algorithms and 

stakeholder trust 

5. Conclusion and Future Works 
We applied RF, XGB, and NN models to predict housing 

prices using a large U.S. real estate dataset, which was 

evaluated with standard regression metrics. RF slightly 

outperformed XGB, achieving an R² of 0.817011. SHAP and 

ICE analyses revealed that bathrooms, lot size, and house size 

are among the most significant determinants of price. The 

findings contribute a dual benefit: robust predictive 

performance and transparent explanations of model 

behaviour. This framework can inform decision-making for 

buyers, sellers, and regulators, helping to improve trust and 

efficiency in real estate markets.  

Future research should expand to multimodal data 

sources (e.g., images, socio-economic indicators) and explore 

deep learning approaches such as ANN, ANFIS, and 

MANFIS. These methods may enhance predictive power 

further, particularly for high-value properties or emerging 

markets. In many developing economies, lack of transparency 

in the RE market, legal infrastructure, expert personnel, 

knowledge and experience in valuation, data bank, and 

deficiencies in the economy are factors that cause RE 

valuation to be poorly conducted. The use of more advanced 

methods will enhance the evaluation accuracy of the valuation 

reports to various stakeholders. 

5.1. Limitations 

The Kaggle housing datasets used in the study (e.g., USA 

real estate dataset) are location-specific, capturing features 

like neighborhood, proximity to schools, lot size, or zoning 

regulations in one city/region. The dataset is not good for the 

generalizability of findings because the geographic insights 

from that dataset may not transfer to other regions or contexts. 

Generalizability of findings may also be affected by regional 

economic factors, cultural and social preferences, and policy 

and regulation.  
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