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Abstract - The Real Estate (RE) industry is an essential part of many countries’ economies, and accurately forecasting housing
prices is beneficial to buyers, real estate agents, and the government. However, multiple factors influence the prices of RE
properties, which are difficult to measure; the relationship between housing prices and housing characteristics is complex and
nonlinear, requiring a flexible algorithm and tools. Three regression-based models were developed using Neural Network (NN),
Random Forest (RF), and Extreme Gradient Boosting (XGB) algorithms to predict house prices. Explainable Artificial
Intelligence (XAI) methods were deployed to explain the key factors influencing RE prices. The dataset used has 923,159 records,
available on Kaggle. The models were evaluated using four zip codes, and the house size influenced the price prediction for the
RF model. For efficient RE price performance evaluation, the following metrics were computed. squared (R?), Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). These metrics were applied to
evaluate the machine learning models adopted in the research, and the results show that the XGB model performed better with
R’ = 0.817011. The XGB model, SHapley Additive exPlanations (SHAP) plot showed that acre lot and bath are the most
influential determinants in predicting the price of houses, while the Individual Conditional Expectation (ICE) plots showed that

bath, by the traditional evaluation methods. The result promises a better decision support to potential RE buyers in selecting

houses that meet their specific needs.

Keywords - Explainable Al, Ensemble Learning, Housing Price Prediction, Random Forest, Gradient Boosting Analysis.

1. Introduction

The real estate sector represents a substantial share of
most national economies, and housing price prediction
remains a longstanding challenge. Buyers, sellers, agents, and
policymakers all benefit from reliable forecasts, yet housing
prices are shaped by multiple interacting factors, including
property features, location, and market demand. Classical
valuation approaches-such as cost analysis, sales comparison,
or income capitalization-have been widely used (Pagourtzi et
al., 2003). However, these methods often fail to capture
nonlinearities and high-dimensional feature interactions
(Zurada et al., 2006), leading to inconsistent or inaccurate
appraisals. Quantitative measurement of the benefits and
liabilities accruing from the ownership of RE is part of the
valuation process (Selim, 2009). The increasing availability of
large housing datasets has accelerated the adoption of
Machine Learning (ML) for real estate valuation. ML
techniques, especially ensemble learning, are better suited to
handle nonlinear relationships and uncover hidden patterns.

Recent work has demonstrated that ensemble approaches, RF,
and GBoosting achieve higher predictive accuracy than
traditional approaches (Varma et al., 2018; Teoh et al., 2022).
At the same time, interpretability remains critical. Without
transparency, predictive models risk becoming “black boxes”
that hinder trust and adoption (Gunning et al., 2019). As a
result, it becomes increasingly difficult for sellers and buyers
to have an efficient platform to determine the optimal price for
a property. Hence, there is a need for the adoption of
automated house appraisal methods. Many studies show that
Artificial Intelligence (Al), especially ML, provides a more
suitable method that approaches market values more (Naci,
2021). Explainable AI (XAI) addresses this challenge by
offering interpretability tools such as SHAP values and ICE
plots, which clarify how features contribute to predictions.
While prior studies have used these methods individually,
fewer have applied them in combination for housing price
prediction. This study, therefore, develops and compares RF
and XGB models for house price prediction while employing
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SHAP and ICE to identify the most influential features. The
goal is not only accurate prediction but also actionable
explanations that can inform decision-making. Today,
organizations and businesses are adopting intelligent data-
driven processes using Al techniques to enhance business
profitability (Fuster et al., 2020). Machine Learning (ML), as
a subset of Al, is intended to improve its performance from
previous experience. So far, ML techniques have been
successfully deployed in virtually all sectors, including
decision support systems, dynamic pricing, the banking
sector, etc. (Pratt, 2020; Ugochukwu and Elochukwu, 2022).
Recently, the RE industry has explored ML-driven house
appraisal, which surpasses conventional house appraisal
methods (Teoh et al., 2022). ML for predicting house prices
has been the subject of a lot of research (Park & Bae, 2015;
Manasa Gupta & Narahari, 2020; Varma et. al, 2018), but
currently, a few studies have used both the SHAP and ICE plot
XAi methods to explain the determinant features and identify
the determinant factors that influence housing price
prediction. XAi methods now enable users to understand,
trust, and better manage Al systems (Gunning et al., 2021),
making it possible to identify and describe factors that
influence house prices via ML techniques.

Thus, this research aims to develop and compare two
regression-based Ensemble Machine Learning (EML) models
(RF and XGB) to predict housing prices based on the chosen
metrics. The significant determinant factors that influence
housing prices using two XAI methods (SHAP analysis and
ICE plots) will be identified and interpreted. Intelligent house
price predictions aid prospective home buyers in making
decisions, guide developers on setting house prices, and
enhance tax valuation, which boosts the overall nation’s
economy. Regression testing is essential in Machine Learning
(ML) to guarantee that changes to the model, data, or
environment do not negatively impact existing functionality
(Owoc & Stambulski, 2025). The paper is organized in the
following way: The theoretical analysis provides the
description of the ML models deployed in this work and the
XAi framework used. It is followed by the methodology,
describing the dataset used and model evaluation methods.
The next is the results, discussions, and summary of findings,
lastly, the conclusion and recommendations.

2. Theoretical Analysis

The prediction of housing prices has been widely studied
across economics, finance, and computer science. Earlier
approaches commonly used hedonic regression, where
housing prices are expressed as a function of property features,
geographic context, and neighbourhood conditions. While
these models provided interpretable insights, their linear
functional forms often limited their ability to capture the
complex, nonlinear dynamics of housing markets. The growth
of machine learning has introduced more powerful
alternatives. Decision-tree-based algorithms, particularly
ensemble methods, have demonstrated superior predictive
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accuracy in real estate valuation tasks. RF is widely
recognized for handling noisy, high-dimensional data
effectively, while boosting methods such as GBM-and more
recently XGBoost-have consistently ranked among the top
performers in structured prediction tasks. Interpretability has
also become a central concern. As machine learning models
grow in complexity, stakeholders demand transparency in
how predictions are formed. SHAP, grounded in Shapley
values from cooperative game theory, has become a standard
interpretability tool because it attributes portions of a
prediction to each feature in a consistent, additive way.
Similarly, ICE plots allow researchers to visualize
heterogeneous effects across different observations,
complementing global explanations with local nuance.

Recent studies applying these techniques in real estate
have shown that location, property size, and neighbourhood
characteristics consistently rank among the most influential
determinants of price. At the same time, interpretability tools
highlight that these effects are not uniform, underscoring the
importance of context-specific modelling. This body of work
provides the foundation for the present study, which combines
RF and XGB for prediction while employing SHAP and ICE
to enhance model transparency.

2.1. Understanding EML Models

EML is a particular form of machine learning paradigm
that uses a group of base learners, sometimes referred to as
weak learners, who are integrated and trained to evaluate and
resolve real-world problems. In contrast, conventional
learning methods construct only one learner from the training
data. An ensemble’s capacity for generalization is typically
significantly greater than that of its component learners. EML
techniques are also referred to as “meta-learning techniques”
because of their capacity to learn from base learners (Zhou,
2009; Zhang & Ma, 2012). EML may transform weak learners
into strong learners, who can predict outcomes far more
accurately than random guesses (Zhou, 2011). The EML
algorithms have the ability to capture nonlinear relationships,
high-order interactions between inputs, and can offer higher
prediction accuracy.

Within the past decade, EML methods have increasingly
drawn the attention of researchers and analysts who have
carried out a great number of ML experiments in research and
competitions on platforms like Kaggle, KDD-Cups, etc. EML
has achieved exceptionally satisfactory performance (Dong et
al.,, 2020). The determination of house prices is complex,
mostly nonlinear, and features dependent attributes.
Dependent. EML algorithms allow more flexibility by
combining individual models and averaging the results (Chen
et al., 2020). Therefore, EML algorithms are well-suited for
modelling housing prices. Figure 1 shows the EML process:
the ensemble formation and base learners, followed by the
pruning to exclude some functions from the previous step.
Lastly, the e integration to combine the chosen functions.
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Fig. 1 An EML process adapted from Zounemat-Kermani et al., (2021)

2.2. Details of EML Models Deployed

According to Zounemat-Kermani et al. (2021), bagging
and boosting are the most commonly used EML methods. The
major difference is that in the bagging, a number of models
are randomly trained in parallel using a subset of the data,
while in the boosting approach, models are sequentially
trained to learn from the mistakes made by the previous
model. Brief descriptions of both methods are provided below.

The Bagging algorithms have been applied to both
regression and classification problems to improve precision in
ML approaches and aid in reducing variance and increasing
robustness (Polikar, 2012; Wu et al., 2020). Notable bagging
algorithms include RF, Random Subspace Methods (RSM),
and Extremely Randomized Trees (ERT).

The Boosting algorithm is designed to improve the
accuracy and performance of ML algorithms. By sequentially
boosting weak learners (base learners) into strong ones, it can
reduce the overfitting of decision trees and decrease variance
and bias in an EML for greater prediction accuracy.

This technique also increases diversity within the primary
training data set through random sampling and replacement.

Here, the first model is created from the training dataset,
with subsequent models based on the performance of the
previous one (Schapire, 2003; Zounemat-Kermani et al.,
2021). Examples include Stochastic Gradient Boosting
(SGB), AdaBoost, and eXtreme Gradient Boosting (XGB).

In this study, two regression-based EML algorithms (RF
and XGB) were deployed to model housing prices; below is a
brief description of both models.

2.3. Extreme Gradient Boosting (XGB) Model

XGB is a flexible and extensible implementation of the
GBBoost framework by Friedman et al. (2000). It is a
supervised learning algorithm that implements the boosting
approach to yield more accurate models (Mitchell & Frank,
2017).
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Table 1. XGB model description

SYMBOL MEANING
n Total number of samples
m Total number of features
M Features; information of the i-th sample, xi €
13 Rm
Vi The actual label (or value) of the i-th sample
o The predicted label (or value) of the i-th
Vi sample
yi(t) The predicted value up to the t-th tree
Iy, ¥)) The loss function of the i-th sample
L(y,9) The loss function of the total sample
The regular term of the objective function to
Q(fi) prevent overfitting, where fi represents the
k-th decision tree.

Given a data set containing n samples and m features,
D ={(x,y) | x; € R™,y; €R} and x; = {xy1, Xiz, ", X |
i = 1,2,--+,n}. The XGB model is tasked with building ¢ trees
so that the predicted value. ﬁi(t)Up to the t™ tree satisfies
formula (1).

RO PPN CED , |

Y= Yk=1 f(x;) = Y; + fe(x:) (1

In each iteration of the gradient boosting algorithm, a
weak classifier f, (x;) (i.e., a decision tree) is generated, and

the predicted value f/i(t) The sum of the predicted value of the

previous iteration ﬁi(t_l) and the decision tree result of this
round f; (x;) (Li et al., 2020).

Shrinkage and column subsampling are two important
techniques introduced by the XGB method. In Shrinkage, the
impact of a tree decreases, and overfitting is addressed by
scaling new weights at each step of boosting. In column
subsampling, only a randomly chosen set of input features is
used to build a tree, in an effort to speed up the training process
(Meng et al., 2020; Sheridan et al., 2016; Yaman & Subasi,
2019). XGB makes better predictions than the RF model and
is comparable to deep neural nets (Sheridan et al., 2016),
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In contrast to simple gradient boosting algorithms, XGB
algorithms, unlike simple boosting, do not add weak learners
at each stage, but use a multi-threaded approach that better
uses the machine’s CPU core, thus improving performance
and speed.

2.4. Random Forest (RF) Model

According to Breiman (2001), RF is an EML algorithm
that uses decision trees as weak learners. It is possible to
employ RFs for both classification and regression problems
(Liaw & Wiener, 2002). RFs are seen as one of the leading
EML approaches that reduce over-fitting by computing the
outcome mean. The RF technique is composed of a number of
steps: First, random samples are selected from the dataset.
Next is the construction of a decision tree using each sample
to get a result, followed by voting to decide the most efficient
model as the final forecast (Breiman, 2001; Cutler et al., 2012;
Heddam, 2021). The RF forecast is the unweighted mean of
the collection (Segal, 2004). RF prediction is the unweighted
average over the collection, according to Segal (2004), as
given below:

h(x) = (1/K) Xk=1 h(x; 6;) 2
As k — oo the Law of Large Numbers ensures,
Exy(Y — h(X))? - Exy(Y — Egh(X; 6))? 3)

Where h(x;0), k = 1,....,K is a collection of tree
predictors, X represents the observed input (covariate) vector
of length p with associated random vector X, and the 6 are
independent and identically distributed random vectors.

2.5. Neural Network (NN)

A NN is a model tailored according to how the human
brain processes information and is widely used in Al and ML,
eg, predicting house prices, medical diagnosis, etc.

It is a system composed of connected nodes (neurons)
ordered into layers to learn patterns and relationships from
data, as shown in Figure 2.

Output
layer

Inputs layer

——

Hidden layer

Fig. 2 Artificial neural netwok architecture (Hounmenou et.al 2021)

2.6. The Mathematics of Neural Networks
2.6.1. Weighted Sum

The Neurons compute a weighted sum of inputs and the
bias term, which, when passed into the activation function,
introduces nonlinearity and output of the neuron. Then, a cost
function measures the difference between the predicted and
target value as the error. Then, applying the chain rule to
compute the gradient of error and bias. The forward pass, error
computation, and backward pass are repeated to minimize
error and increase prediction accuracy.

Mathematically, it is expressed as (Garcia, 2022):

z = Z?zlwixi +b
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a=f(z)

Where:

z = weighted sum(linear part),
wi = xi feature weight

xi = neuron input features,

b = biasterm

n = next layer inputs

1 = counter

f(z) = activation function

a = the neuron output

2.6.2. Activation Functions
There are many ways neurons make regarding f(z). This
includes:
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Rectified Linear Units (ReLU) to ensure the output is not
less than zero. This is given as: f(z) = max(0, z), the Tanh:
given as: f(z) = tanh(z) and the Sigmoid activation: f(x) = 1/
(1 + e™(-1*z)). The range is (0, 1).

2.6.3. Neural Network for Real Estate Price Prediction
Real estate prices depend on many factors, such as:

Location (urban vs. rural, proximity to schools, roads,
hospitals, etc.)

Size (length & width, number of bedrooms, bathrooms),
condition, and maintenance of the property,

Prevailing demand (consumer behaviour)

Amenities (swimming pool, garage, garden, etc.)

A Neural Network (NN) can capture nonlinear
relationships between these features, so it’s well-suited for this

task in property price.

Input Layer: Each feature (location score, size, number of

rooms, etc.) is represented as an input neuron.
Example:
xj=size (m?), x,=number of bedrooms and

x3=location index
A neural network has 3 main types of layers:

Hidden Layers: The network processes these inputs
through one or more layers of neurons that pass through an
activation function (like ReLU, sigmoid, or tanh). The Output
Layer then produces a single value as the predicted house
price.

2.7. Explainable AI (XAi)

Even though ML models variously proved reliable,
efficient, and most importantly, accurate, their dominance
comes with the cost of complexity (Guidotti et al., 2018).

However, accuracy against interpretation is a major issue
(Gunning et al, 2019). The contribution of various
determinants is difficult to measure. The XAi, however, was
formulated to increase understanding and transparency
(Gunning et al., 2021; Adadi & Berrada, 2018).

The concept of explainability sits at the forefront of Al,
focusing, according to Hagras (2018) on:

e Transparency: end-users of ML models deserve to follow
a model operation (Weller, 2017).

Determinants: explore the possibilities of obtaining

additional information from ML models, like the

explanations for some underlying phenomena.

e Bias: ensures balanced models in the training data or
objective function.

e Fairness: ensures objectivity.

e Safety: certifies the dependability and veracity of ML

models.

In this paper, we used two different XAl-based Graphic
Interpretation Tools: SHAP analysis and ICE plots for our
determinant analysis of the models.

2.8. SHAP

SHAP as a method for explaining the predictions of a
specific instance (Lundberg et. al., 2017). It has become a
popular tool for interpreting natural and social phenomena
(Stoji¢, 2019; Janizek, 2018), finding solid theoretical ground
in game theory. SHAP attempts to interpret a model at each
point x. The function thus defines the expectation value for a
conditional distribution in a subset of S, and is given as:

es = E[f(x) | xs = x5] 4

As described by Holzinger et al. (2022), the contribution
of a variable j is denoted by ¢; and calculated as the weighted
average over all possible subsets S:

¢j (Val) = ZSQ{Xl,...,Xp\\{Xj} w (Val (S v {Xj}) -
val (S)) )

Where p = the number of features, S = a subset of features,
X = an instance of feature values in the model being explained,
and val(S) = feature value predicted in the set S.

The Shapley approach accounts for the contribution of
each determinant using various combinations of explanatory
variables to evaluate each contribution (Teoh et al., 2022).

The value of absolute Shapley per characteristic is
computed as global importance given below:

L= 3n,of)| (6)

Where Cb;i) = the SHAP value of the j-th feature for
instance i.

SHAP was implemented in Python using the XGBoost
and SHAP packages.

2.9. ICE Plots
An ICE plot of the actual prediction functions f, rather
than the means. It provides a visualization disaggregation of
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typical PDPs. The plot shows a range of independent variables
on the x-axis and forecasts on the y-axis. Every line represents
one expectation (Jordan, Paul, & Philips, 2022).

“This study considered a set of observations
{(Xgi, X))} V,, and studied the response function f.

There are two types of ICE plots: a “centred” ICE plot, or
c-ICE (Goldstein et al. 2015, Jordan, Paul, & Philips, 2022),
that chooses some location x* along xs and forces such lines
to run along the point. The c¢-ICE plots for mapping each
explanatory variable are:

Face=f -1f(xx,) (7

Where f @ = the given ICE curve and f (x, xj)represent
the forecast value x" for the i observation. An ICE plot is

best when computing a heterogeneous relationship between
features (Jordan, Paul, & Philips, 2022).

2.10. The Hyperparameters of RF and XGBoost

RF and XGBoost are both ensemble methods based on
decision trees, but they differ in their approach and thus have
distinct sets of important hyperparameters.

2.11. Random Forest Hyperparameters
RF builds multiple independent decision trees and
combines their predictions. Key hyperparameters include: the

n_estimators, which specify the number of decision trees; a
bigger number improves performance but increases
processing cost. Other parameters include: x_depth; depth
reduction to prevent overfitting, min samples_split,
min_samples leaf, max_ features for randomness and
decorrelation, and bootstrap; usually set to True in RF.

2.12. XGBoost Hyperparameters

XGBoost forms trees sequentially; previous errors are
corrected by the new tree. It has an extensive set of
hyperparameters, categorized into general, booster, and
learning task parameters, which are usually set to refine/tune
the model performance:

3. Materials and Methods
3.1. Research Flow

Figure 3 provides a high-level display of the research
process. The first phase is data pre-processing to clean and get
the data ready for analysis (Jadhav et al., 2019). This is
followed by the Exploratory Data Analysis (EDA), which
explains data patterns and provides understanding via
statistical and visual displays. Thirdly, we transform the data
to remove noise and reduce the skewness. In the second phase,
we train, evaluate, and compare the results of the models.
Then, finally, in the third phase, we use SHAP to explain a
particular prediction by quantifying each feature’s
contribution and ICE to explain a specific feature’s value
influence on house prices for each mode.

Phase 1 4'( Phase 2 Phase 3
7 v
4
Data Cleaning & Model Selection Deterngnant Analysis
Preprocessing 'I with SHAP
4 XGB Model
EDA Determinant Analysis
. RF Model 1 — with ICE Plots
. A 4
Feature Scaling
Model Evaluation

Fig. 3 Flow of the experiment

3.2. Details of the Dataset
3.2.1. Data Source

We use a large-scale dataset obtained from Kaggle, which
contains more than 900,000 property entries described by 12
variables. These variables include property-specific features
(e.g., size, number of bedrooms, and bathrooms), lot

characteristics, geographic identifiers, and financial details
such as sale price. The dataset covers a wide range of
properties across different U.S. regions, offering both scale
and diversity for robust modelling. It is available at:
https://www .kaggle.com/datasets/ahmedshahriarsakib/usa-
real-estate-dataset/) as described in Table 2.

Table 2. Dataset description

Type Name Description Class
Status House Status (on sale, sold, or other options) Categorical
Bed No of Bedrooms Numeric
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Bath No of baths Numeric

Acre lot The lot size of the house Numeric
Predictor Variables Full address House location Categorical
Street Street name Categorical
City City name Categorical
State City State Categorical

Zip_code The house location Zip code Numeric

House size House in square feet Numeric

Sold date Sold Date (If sold) Date
Target Variable Price Price of a house in USD Numeric

3.3. Data Preprocessing

Data cleaning was performed to handle missing entries
and remove extreme outliers that could bias the models.
Categorical variables such as location were encoded into
numeric form, and continuous variables were standardized
where necessary. Randomly, the dataset was divided into
training and test subsets to ensure unbiased evaluation. Data
preparation, according to Famili et al. (1997), is crucial to any
knowledge discovery project. This aims at handling missing
information and cleaning out unnecessary or noisy aspects of
the data (Jadhav et al., 2019).

On initial analysis, we discovered that the dataset
contained 809,370 duplicate records out of the 923,159
available records, i.e., 87.67% of the data were duplicates, and
after removal, we were left with 113,789 records, i.e., 12.33%
of the initial data. Further analysis showed that the data still
contained lots of null/missing values. At this stage, we used a
data imputation approach to replace the missing values with
the sample median or mode based on the distribution of the
data. Furthermore, we dropped some columns like sold date,
street, status, and full address since they would have no impact
on our prediction model. Finally, we converted our categorical
data into numerical data using Scikit-learn LabelEncoder.

3.4 Exploratory Data Analysis (EDA)

EDA is an important stage in data preprocessing that must
be carried out before building an ML model. The goal of EDA
is to explore the dataset to uncover anomalies, test hypotheses,
and verify assumptions.

The information gained from EDA helps researchers
choose appropriate ML approaches to solving the needed
problem (Patil, 2018). Table 3 is the summary of the features;
one can observe that it is right-skewed, with the bulk of the
outliers lying in the final quartile. The Correlation Matrix
Heatmap Figure 4 shows that no strong correlation exists
between the various independent variables.

Note: Each record shows the Pearson correlation
coefficient: green colours represent a positive correlation,
while other colours indicate a mild or negative correlation.
Furthermore, the house location is important in determining
the price of the house.

Using a boxplot in Figure 5, we explored the dataset’s
range of house prices in various states. The data shows that
South Carolina is the least expensive locality, while New York
is the most expensive.

Table 3. Statistical summary of the features

Features Mean STD. Min. Q1 (25%) 1\(/Ise0(1i/il)n Q3 (75%) Max.
price | 9.0953365%5 | 3.418652¢%% | 0.000000<% | 2.500000¢75 | 4.499000¢%5 | 8.000000¢5 | 8.750000¢8
bed 3.261255 1.712655 1.000000 | 2.000000 3.000000 4.000000 123.000000
bath 2.446537 1.612504 1.000000 | 2.000000 2.000000 3.000000 198.000000
acre_lot | 12.958765 | 836.871860 | 0.000000 0.150000 0.260000 0.570000 10000%'00000
zip_code | 8267.006670 | 4580.863932 | 601.000000 | 6010.000000 | 8005.000000 10301(')00000 99999.000000
houzsee—Si 2.002986°*% | 4.824839¢*%3 | 1.000000°°2 | 1.376000°°% | 1.664000¢ | 2.035000¢° | 1.450112¢%06
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Correlation Matrix
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Fig. 4 Correlation plot of the dataset

3.5. Experiment Setup
Two ensemble
implemented:

machine learning models were

Random Forest (RF): In RF, numerous trees are grown
from resampled training subsets, with each split restricted to a
randomly chosen set of predictors, producing diverse trees
whose results are later aggregated.

Extreme Gradient Boosting (XGB): XGBoost builds trees
in a forward, stage-wise manner, where a new tree is
optimized to reduce residual errors left by earlier ones.
Regularization terms, column sampling, and learning-rate
shrinkage are incorporated to prevent overfitting and enhance
generalization.

Both models were tuned using grid search and cross-
validation to identify optimal hyperparameters. The Python
libraries on Jupyter Notebook on an Intel(R) HD Graphics
5500 GPU, a 2.60-GHz Intel(R) Core(TM) i7-5600U CPU,
and 8GB DDR3 RAM were used to perform our experiments.
First, feature scaling was applied to the data via Power
Transformer scaling to make the distribution more Gaussian-
like.

This technique finds an optimal scaling factor that
stabilizes variance as well as minimizes skewness through
maximum likelihood estimation (Roy, 2022). Figure 6 shows
a scatter plot of the normalized data. The next step was to
divide the normalized data into training (70%) and testing
(30%) subsets for model training and validation, respectively.

Highest City House Prizes Ranking by Median

10M

o fers =w

M

6M

M

M

New York
Wyoming
Georgia
New Jersey
Delaware

-
=
2
=
o
2
g
=]
]
9]

Rhode Island

price
(=]
Virginia :d
Massachusetts Pmuu
-
Hi—
SNt B By 0 ¢

New Hampshire

state

Boem e
.
-

EEEESeeR st Wi 0w
|-
|
{
"

State

[7] Puerto Rico

{71 Virgin Islands

[-1 Massachusetts

{71 Connecticut
New Hampshire

[ Vermont

{1 New Jersey
New York
South Carolina
Tennessee

[7] Rhode Island

71 Virginia

1 Wyoming

- 2] Maine

- Georgia

Pennsylvania

M09 WER e o
> -
L. NN N
P @ Nl Sl » a0

Vermont
Maine
Tennessee

Pennsylvania
Virgin Islands

Puerto Rico
West Virginia

South Carolina

Fig. 5 House price range across various states in the dataset dataset
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3.6. Model Evaluation

Performance was assessed using the coefficient of
determination (R?), RMSE, and MAPE. These metrics capture
complementary aspects of accuracy, ensuring that results
reflect both overall fit and predictive ability. Still, it is difficult
sometimes to predict the exact value of a regression model,;
hence, we aimed at showing the closeness of the forecast
values to the actual values. The R? is a good metric to evaluate
the fitting of the model; it examines the percentage of the
predicted price explained by the features via a regression
relationship.

The MSE calculates an absolute measure of goodness of
fit; hence, it is often utilized for evaluating regression models.
To accurately reflect prediction errors, MAE was calculated,
being the average value of absolute errors.

Additionally, the MAPE calculates error in terms of
percentage. Reading below 10% for MAPE reflects high-
quality predictive modelling. Ideally, model MAE and RMSE
scores of near 0, and an R? score of near 1/100% is adjudged
the best possible outcome and informs performance accuracy
of the model.

The metrics are illustrated as follows:

Given n samples, let/be the i prediction of the sample and
yi the actual value, and let 7 be the mean value of the sample.

Flg 6 Scatter plot of the data after scallng

1 2
RMSE = P52, (- 7) ©
1
MAE = ~31; |(vi = ¥/) (10)
n yi-yf
MAPE =23, |(*25)| « 100 (11)

4. Results and Discussion
4.1. Model Performance

Both RF and XGB achieved strong predictive accuracy,
with RF performing slightly better with 0.817011, as shown in
Table 4.

The RF, XGB, and Neural Network models’ residual
plots were plotted in Figures 7, 8, and 9, respectively.

The Residuals Plot and prediction error visualizations
confirmed a balanced model behaviour, with errors distributed
symmetrically and predictions aligning closely with actual
values.

The Prediction error plot for RF and XGB was
demonstrated in Figures 9 and 10, respectively.

Figure 11 presents the comparison of neural networks
with other Models.

Table 4 shows the model’s performance comparison (R-

R?=1- %, where y = %Z?zl Vi (8) squared).
Table 4. Prediction result
Model R? score MAE RMSE MAPE %
XGB 0.81701 87739.69504 157851.4610 16.09018
RF 0.8150 87739.6950 157851.4610 16.09018
NN 0.53116 165454.32413 251331.94010 34.34042
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Fig. 11 Prediction error plot for XGB model

4.1.1. Comparison of Neural Networks and Other Models

XGBoost

Random Forest

Model

Neural Network

R-squared Score Comparison of Regression Models

o
e
=

R-squared Score

0.9

Fig. 12 The models comparison with neural networks model

4.2. Determinant Analysis

SHAP summary plots highlighted lot size (acre lot) and
number of bathrooms as the strongest predictors in the XGB
model. For RF, ICE plots revealed that bathrooms, house size,
and zip code played major roles in price determination. These
interpretability tools reinforce that both structural features and
geographic identifiers drive housing values.

Figure 13 provides an understanding of the nature of the
relationships. The XGB model, for bath, house size, and
acre_lot, observes that an increase in feature value increases
the SHAP values.

An indication that larger values for the features will lead
to a higher predicted price for the RE property. Furthermore,
it is observed that the zip code and city where the RE property
is located also serve as major determinant factors for the house
prices. Additionally, comparing the curves of distinct

instances is made simpler by the centre ICE plots. When we
want to see the difference between a prediction and a fixed
point in the feature range rather than the absolute change of a
predicted value, this can be useful.

Figure 14 reveals that, on average, the dataset features for
bath, zip_code, and house_size were the major determining
factors that influenced the price prediction. While on average,
the bed, acre _lot, and city features remained constant. Finally,
the SHAP summary plot and the ICE plot depict the impact of
features on the outcome.

A house feature selection function can be provided by RE
trading platforms to customers based on the ranking of feature
importance and their impact on the RE price. This makes it
easier for RE customers to select houses according to their
needs.
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4.3. Feature Importance contribution. This means that house grade is the highest
Figures 15, 16, and 17 present the top ten model feature  determinant of the house price prediction, while bedroom is
importance from high (Grade) to low(bedrooms) order of  the tenth feature.

Random Forest Feature Importances

grade
sqft_living
lat

sqft livingl5
waterfront
sqft_above
view
bathrooms
sqft basement
floors
bedrooms

Feature

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Importance
Fig. 15 Random Forest feature importance
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4.4. How Metrics Impact Real-World Decisions on Estate
Price Prediction

The study adopted some common metrics for house price
prediction, including MAE, MSE /RMSE, R? (coefficient of
determination), and ror (MAPE.

Metrics affect real-world decisions as follows:

Mortgage Lending & Risk Management: Banks use
predictions to decide loan amounts. If MAE is too high,
borrowers may be over-lent or under-lent. If RMSE is
minimized, the bank avoids catastrophic losses on luxury
properties.

Property Taxation: Governments often rely on predicted
market values for setting property taxes. High bias in
predictions could lead to unfair taxation (over-taxing poorer
neighborhoods, under-taxing wealthy ones).

Real Estate Investment: Investors look at predictions to
decide when/where to buy properties. Low R? means the
model does not capture market drivers (risky investments).

91

MAPE helps investors compare errors across cities or
countries.

Urban Planning & Policy: City planners use models to
forecast housing affordability and plan infrastructure. If
residuals show systemic bias (e.g., always undervaluing rural
houses), policies may favour cities over rural communities.

The results demonstrate that ensemble models,
particularly RF, offer reliable predictions of housing prices in
large, diverse datasets. Integrating SHAP and ICE allowed us
to move beyond accuracy metrics to understand why
predictions were made. For instance, the positive influence of
bathrooms and lot size aligns with conventional expectations
of property valuation but provides a quantified, data-driven
confirmation.

This combination of predictive accuracy and
interpretability has practical implications. Buyers can use such
models to evaluate properties against their budgets,
developers can benchmark pricing strategies, and
policymakers can better assess regional housing market
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dynamics. Moreover, the results show that explainable ML MANFIS. These methods may enhance predictive power
can bridge the gap between high-performing algorithms and further, particularly for high-value properties or emerging

stakeholder trust markets. In many developing economies, lack of transparency
in the RE market, legal infrastructure, expert personnel,
5. Conclusion and Future Works knowledge and experience in valuation, data bank, and

We applied RF, XGB, and NN models to predict housing ~ deficiencies in the economy are factors that cause RE
prices using a large U.S. real estate dataset, which was  valuation to be poorly conducted. The use of more advanced

evaluated with standard regression metrics. RF slightly methods will enhance the evaluation accuracy of the valuation
outperformed XGB, achieving an R? of 0.817011. SHAP and ~ eports to various stakeholders.

ICE analyses revealed that bathrooms, lot size, and house size

are among the most significant determinants of price. The 5.1. Limitations

findings contribute a dual benefit: robust predictive The Kaggle housing datasets used in the study (e.g., USA
performance and transparent explanations of model ~ real estate dataset) are location-specific, capturing features
behaviour. This framework can inform decision-making for ~ like neighborhood, proximity to schools, lot size, or zoning

efficiency in real estate markets. generalizability of findings because the geographic insights

from that dataset may not transfer to other regions or contexts.

Future research should expand to multimodal data  Generalizability of findings may also be affected by regional

sources (e.g., images, socio-economic indicators) and explore economic factors, cultural and social preferences, and policy
deep learning approaches such as ANN, ANFIS, and and regulation.
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