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Abstract - Spiking Neural Networks (SNNs) represent the latest generation of neural computation, offering a brain-inspired 

alternative to conventional Artificial Neural Networks (ANNs). Unlike ANNs, which depend on continuous-valued signals, SNNs 

operate using distinct spike events, making them inherently more energy-efficient and temporally dynamic. This study presents a 

comprehensive analysis of SNN design models, training algorithms, and multi-dimensional performance metrics, including 

accuracy, energy consumption, latency, spike count, and convergence behavior. Key neuron models such as the Leaky Integrate-

and-Fire (LIF) and training strategies—including surrogate gradient descent, ANN-to-SNN conversion, and Spike-Timing 

Dependent Plasticity (STDP)—are examined in depth. Results show that surrogate gradient-trained SNNs closely approximate 

ANN accuracy (within 1–2%), with faster convergence by the 20th epoch and latency as low as 10 milliseconds. Converted SNNs 

also achieve competitive performance but require higher spike counts and longer simulation windows. STDP-based SNNs, though 

slower to converge, exhibit the lowest spike counts and energy consumption (as low as 5 millijoules per inference), making them 

optimal for unsupervised and low-power tasks. These findings reinforce the suitability of SNNs for energy-constrained, latency-

sensitive, and adaptive applications such as robotics, neuromorphic vision, and edge AI systems. While promising, challenges 

persist in hardware standardization and scalable training. This study concludes that SNNs, with further refinement, are poised 

to propel the next phase of neuromorphic computing. 

Keywords - Artificial Intelligence, Brain-inspired computing, Energy efficiency, Neuromorphic computing, Spiking Neural 

Network.

1. Introduction  
The advent of Artificial Intelligence (AI) has ushered in a 

technological revolution that permeates virtually all aspects of 

modern life, from healthcare and transportation to finance and 

education. Central to this evolution are a class of computational 

models collectively referred to as ANNs that have achieved 

stunning results across an array of pattern recognition and 

machine learning problems. Traditional ANNs, however, are 

extremely energy inefficient and biologically unrealistic [1], 

[2] despite their impressive performance. These are also 

difficult to implement because they rely on continual signal and 

large matrix multiplication, which are computationally 

expensive and biologically unrealistic [3]. 

Various neural network architectures have been created to 

address distinct computational challenges. The ANN is the 

basic model for deep learning, but cannot be directly applied to 

temporal data because of its computational complexity and 

absence of memory [4, 5]. Convolutional Neural Networks 

(CNNs) are engineered for spatial feature extraction in image 

and video processing and are not directly applicable to 

temporal or sequential data [6]. Recurrent Neural Networks 

(RNNs) [7] and more sophisticated versions, such as Long 

Short-Term Memory (LSTM) [8] and Gated Recurrent Units 

(GRUs), are designed for sequential input; yet, they are 

plagued by vanishing gradient issues and exhibit inefficiency 

in modeling long-range relationships. More recent models, like 

Transformers, have recently revolutionized natural language 

processing using attention mechanisms, but at the cost of 

humongous memory and processing demands [10].  

All these models have a basic property in common: they 

depend on synchronous updates and on continuous activations. 

This is not the case in the human brain, which is an 

asynchronous system and communicates with discrete binary 

spikes [11]. In addition, classic networks carry out millions of 

operations per inference step, resulting in high power 

consumption-a critical bottleneck in scenarios such as mobile 

and edge computing [12]. Despite their success, these networks 

are entirely based on dense and continuous computations and 

lack biological realism, which renders them energy-inefficient 

and not amenable to real-time, low-power applications, the 

limitations that SNNs try to overcome [13]. SNNs, the most 

recent evolution of neural network models, signify a 
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transformative advancement in artificial intelligence by 

mimicking the discrete and temporal firing patterns of 

biological neurons. [14]. Unlike ANNs, which process 

information in a synchronous and continuous fashion, SNNs 

operate on sparse, event-driven spike trains, enabling them to 

process spatiotemporal data with greater energy efficiency and 

fidelity to brain-like computation. This bio-inspired method 

closely resembles how actual neurons in the brain exchange 

information by sending out short, timed electrical signals 

known as spikes [15]. 

Interest in SNNs has increased due to recent developments 

in neuromorphic engineering, which creates hardware that 

mimics the composition and operations of the human brain [16, 

17]. Chips like International Business Machines’ (IBM) 

TrueNorth and Intel’s Loihi show that SNNs may be 

implemented at scale with extremely low power consumption, 

which makes them appropriate for use in edge computing 

settings and mobile devices [18, 12]. Additionally, SNNs are 

being studied extensively for use in brain-computer interfaces, 

robotics, and sensory processing, highlighting their promise in 

latency-sensitive, real-time scenarios [19]. 

Despite rapid progress, most studies examine one training 

paradigm or one metric at a time—e.g., ANN-to-SNN 

conversion optimized for accuracy on image benchmarks  [20, 

21] surrogate-gradient training highlighting differentiable 

approximations [22], or neuromorphic reports emphasizing 

hardware power/latency [12, 23]. A unified head-to-head 

analysis that compares surrogate-trained, ANN-to-SNN 

converted, and STDP models under a single protocol and 

across multiple dimensions—accuracy, latency, energy per 

inference, spike count, and convergence—on both event-based 

and static datasets remains limited in the literature [1, 20, 22, 

24, 25]. This gap obscures practical tradeoffs that matter for 

edge deployment and real-time robotics, where temporal 

precision and energy budgets are binding constraints [12, 23]. 

This work addresses that gap by: (i) establishing a unified 

evaluation protocol that compares surrogate-trained, 

converted, and STDP SNNs across five metrics (accuracy, 

latency, energy, spike count, convergence); (ii) reporting 

latency and spiking activity alongside accuracy to reflect 

hardware-aware performance; (iii) providing a convergence 

analysis to 20 epochs that clarifies optimization behavior under 

different learning rules; and (iv) translating these findings into 

application-oriented guidance (e.g., surrogate SNNs for low-

latency accuracy targets; STDP for ultra-low-power 

unsupervised settings). Relative to prior work that focuses on a 

single method or metric [20-22, 25], this study offers an 

integrated, multi-metric comparison that supports principled 

model selection for neuromorphic and edge AI [1, 12]. Given 

the rising energy costs of deep learning models, particularly 

transformer-based systems [10, 12], the exploration of SNNs is 

not only a technical advancement but also an important step 

toward sustainable AI computing. By reducing energy usage 

by an order of magnitude compared to ANNs, as shown in this 

study, SNNs present a feasible path for greener and more 

efficient edge intelligence. This positions the current work as 

both timely and original, addressing the dual challenge of 

advancing AI performance while mitigating environmental and 

energy concerns. 

Thus, this paper comprehensively examines SNNs as the 

future of brain-inspired computing. It begins by outlining their 

biological underpinnings and core mechanisms, followed by a 

comparative analysis with traditional ANNs. It then delves into 

various applications, design strategies, and training 

methodologies that define current SNN research. This work 

attempts to give a thorough evaluation of SNNs and make 

suggestions for further research and development in 

neuromorphic AI by reviewing experimental benchmarks and 

implementation challenges. 

2. Related Literature 
2.1. Biological Inspiration 

The biological processes of the human brain, namely how 

neurons interact by sending out distinct electrical impulses 

called spikes, served as the model for SNNs [26]. Conventional 

neural networks depend on levels of constant activation, while 

biological neurons transmit information through asynchronous 

events triggered by membrane potential thresholds. 

Foundational biological models such as the Hodgkin-Huxley 

model [27] and the Leaky Integrate-and-Fire (LIF) model [28] 

form the theoretical basis of SNNs. Essential neural functions 

like firing thresholds, refractory periods, and membrane 

potential degradation are replicated in these models. 

Moreover, spike-based learning in biological systems is 

often attributed to synaptic plasticity governed by timing rules 

[29]. Spike-Timing Dependent Plasticity (STDP), which 

modifies synaptic weights according to the relative timing of 

pre- and postsynaptic spikes, is a good illustration [30]. STDP 

has been successfully integrated into SNNs to enable 

biologically plausible learning without the need for 

backpropagation.  

These qualities allow SNNs to capture temporal changes, 

sparse activation, and asynchronous signaling, thereby 

achieving greater similarity to cortical processes observed in 

neuroscience [31]. 

2.2. Fundamentals of SNNs 

At the core of SNN operation is the spike-based encoding 

of information. SNNs use rate or temporal coding schemes to 

encode data in the time and frequency of spikes rather than 

real-valued vectors [32]. While temporal coding encodes 

information in the exact time of spikes, rate coding conveys 

input strength by spike frequency. SNNs are more energy-

efficient and appropriate for event-driven processing through 

these processes. 
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Many equations are used to explain the behavior of spiking 

neurons, but the LIF model is still the most often utilized 

because of its ease of use and computational effectiveness [33]. 

For learning, SNNs use biologically inspired methods like 

surrogate gradient methods, STDP, and Reward-Modulated 

STDP (R-STDP) that enable supervised learning despite the 

non-differentiability of spike events [34]. In addition, recent 

research has introduced training techniques that make SNNs 

competitive with deep learning models. These include hybrid 

approaches like converting pre-trained ANNs into SNNs [20], 

and direct training using approximated gradients, which helps 

overcome the challenges of discontinuous activation [22]. 

2.3. Comparison with Traditional ANNs 

SNNs differ fundamentally from ANNs in architecture, 

data representation, and learning strategy. ANNs use dense 

layers of constant activation functions like sigmoid or ReLU 

and are trained using backpropagation [35, 36]. SNNs, on the 

other hand, use gradient-free or biologically motivated learning 

algorithms and function with limited, event-triggered 

activations [37]. 

The energy efficiency of SNNs is one of its main benefits. 

While ANNs process every node during each cycle, SNNs only 

activate neurons upon spike generation, resulting in 

significantly fewer operations and reduced power usage—ideal 

for low-resource or edge devices [38]. Furthermore, SNNs 

exhibit temporal sensitivity, enabling them to process 

sequential and real-time data more effectively than 

conventional models such as CNNs and RNNs [39, 40]. 

However, SNNs face significant challenges in scalability, 

training convergence, and a lack of standardized frameworks 

compared to mature ANN systems. While ANNs benefit from 

extensive optimization libraries and hardware acceleration 

(e.g., TensorFlow, GPUs), SNNs are still evolving in terms of 

simulation platforms and hardware compatibility [41]. 

Surveys and foundational studies emphasize SNNs’ 

temporal coding and energy advantages but typically report 

accuracy or hardware power in isolation [1, 38, 40]. 

Conversion pipelines preserve ANN accuracy yet often require 

longer simulation windows and higher spike rates [20, 21]; 

surrogate-gradient methods close the accuracy gap with direct 

end-to-end training [22]; and neuromorphic reports foreground 

energy/latency on chips [12, 23]. By evaluating all three 

training strategies under a consistent setup and reporting 

accuracy, latency, energy, spike, and convergence together, the 

present study complements these strands. It clarifies practical 

tradeoffs for deployment-oriented SNN design [24, 25]. 

2.4. Applications of SNNs 

Neuromorphic Hardware: The field of neuromorphic 

computing, which describes hardware architectures intended to 

mimic the structure and functionality of the brain, is one of the 

most promising areas for SNNs. IBM’s TrueNorth [42] and 

Intel’s Loihi [43] are two major neuromorphic chips that 

support event-driven computation and on-chip learning. These 

chips enable real-time processing with ultra-low power 

consumption, opening doors for deploying SNNs in edge 

computing, wearables, and autonomous systems. 

Robotics: In robotics, SNNs enable low-latency responses 

and real-time sensory integration. For instance, SNNs have 

been used in applications where timing and energy efficiency 

are crucial, such as visual tracking, object recognition, and 

locomotion control [44]. Because SNNs are asynchronous, 

they work well in dynamic settings where conventional ANN-

based controllers would be too sluggish or power-hungry. 

Edge Computing: SNNs’ event-based design and minimal 

activity make them perfect for use in devices with limited 

energy. Applications include gesture recognition using event-

based cameras (e.g., DVS128 dataset), anomaly detection in 

IoT systems, and on-device speech processing [38]. 

Healthcare: SNNs are essential for prostheses and Brain-

Machine Interfaces (BMIs) in biomedical engineering and 

neuroscience. They can interpret neural signals for motor 

control or restore sensory functions. SNNs are also being 

explored for seizure prediction, Electroencephalogram  (EEG) 

signal classification, and neural rehabilitation, where temporal 

precision and biological compatibility are essential [45]. 

In summary, existing studies establish SNNs as 

biologically inspired and energy-efficient yet fragmented 

across training strategies and evaluation metrics. This review 

sets the stage for a unified analysis. 

3. Methodology 
3.1. SNN Design 

Replicating the dynamic behavior of biological neurons 

and their synaptic contacts is the foundation of SNN design. 

SNNs use asynchronous, event-driven computing, in contrast 

to classic neural networks, where each layer analyzes inputs in 

a fixed, synchronous fashion. Neuron models that mimic the 

biophysical characteristics of actual neurons, most notably the 

LIF model, enable this design. 

One of the most popular and straightforward models for 

SNN simulations is the LIF model [46]. It records crucial 

neural processes such as threshold-based spike production, 

membrane potential accumulation, and leakage across time. A 

neuron “fires” a spike and resets its membrane potential when 

incoming synaptic inputs cause it to surpass a certain threshold. 

Because neurons in this model only fire in response to strong 

stimuli, it enables a sparse, energy-efficient network [11]. A 

LIF neuron’s behavior can be shown in Figure 1. This graphic 

shows how the input current causes the membrane potential to 

rise over time. The neuron mimics the firing behavior seen in 

organic neurons by emitting a spike and then resetting when 

the voltage hits a predetermined threshold. 
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Fig. 1 LIF neuron model 

More sophisticated models, such as the Izhikevich model, 

simulate a variety of neuronal firing patterns, including 

bursting, tonic spiking, and adaptation, by fusing biological 

realism with computing efficiency [23]. The choice of neuron 

model typically balances between biological fidelity and 

computational overhead, depending on the application 

domain—whether high-performance robotics or low-power 

edge computing. 

SNN architecture typically includes input, hidden, and 

output layers, where spikes propagate through synapses with 

temporal delays and weight modulation [40]. These networks 

can be feedforward, recurrent, or convolutional, depending on 

the data type and processing goals. For image-based tasks, 

Convolutional SNNs (CSNNs) are increasingly popular due to 

their ability to preserve spatial hierarchies while benefiting 

from event-driven sparsity [47]. 

SNNs are translated to neuromorphic circuits in hardware 

implementations, including Intel’s Loihi, which allows for 

dynamic neural configuration with spiking inputs and on-chip 

learning. Loihi incorporates programmable neuron models and 

synaptic delays, enabling flexible SNN design for real-world 

applications [12]. 

Figure 2 illustrates the three main phases of a full SNN 

pipeline: input encoding, spiking neuron processing, and 

output decoding. Using encoding techniques like rate coding or 

temporal coding, continuous signals like audio, pictures, or 

sensor data are converted into discrete spike trains during input 

encoding. After passing through one or more layers of spiking 

neurons, these spike trains are used to analyze information 

based on the timing and intensity of the spikes. The output layer 

then decodes the spike patterns into a control, decision, or 

prediction signal that is suitable for the intended use. 

 
Fig. 2 Conceptual architecture of SNN [48] 
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The system includes input encoding to convert signals into 

spikes, multiple spiking neuron layers for event-driven 

computation, and output decoding to produce meaningful 

results. This modular architecture allows SNNs to mimic the 

asynchronous, event-driven behavior of biological neural 

systems. The design supports a wide variety of tasks ranging 

from object recognition to robotic control, depending on how 

the neurons are interconnected and trained. 

Several software tools have been widely adopted to 

simulate SNN behavior. Neural Simulation Tool (NEST) [49] 

is used for broad-based simulations of spiking neuron 

networks, especially in neuroscience research. Biologically 

Inspired Neural and Dynamical Systems in Networks 

(BindsNET) [50] and Brian2 [51] offer more flexibility and 

Python integration for machine learning tasks. These platforms 

support complex network configurations, STDP learning rules, 

and integration with neuromorphic datasets. Overall, the 

design of an SNN requires careful attention to the neuron 

model, network topology, synaptic behavior, and hardware-

software compatibility. These components collectively 

determine the network’s ability to mimic brain-like 

computation while maintaining computational tractability and 

real-world applicability. 

3.2. Training Algorithms 

The non-differentiable characteristics of spike events 

make training SNNs more difficult than training regular ANNs. 

Since spikes are discrete, binary events, standard 

backpropagation—which relies on continuous gradients—

cannot be directly applied. Researchers have therefore created 

specific training methods that are suited to the event-driven and 

temporal dynamics of SNNs. 

3.3. Unsupervised Learning: STDP 

STDP is among the most biologically realistic training 

techniques. The exact timing of pre- and postsynaptic spikes 

determines how STDP modifies synaptic weights; if a 

presynaptic neuron fires just before a postsynaptic neuron, the 

synapse is strengthened; if not, it is weakened [52, 53]. This 

local, unsupervised learning rule has been widely implemented 

in early layers of SNNs to extract spatiotemporal patterns from 

data without requiring labels [54]. 

3.4. Surrogate Gradient Descent 

To enable supervised learning, researchers developed 

surrogate gradient methods. These techniques enable the 

application of gradient-based optimization akin to 

backpropagation by substituting a smooth, differentiable 

approximation for the non-differentiable spike function during 

the backward run [55]. Popular surrogate functions include 

piecewise linear, sigmoid, or exponential approximations. 

SNNs may now be trained with competitive accuracy on 

common classification benchmarks such as the Canadian 

Institute for Advanced Research-10 (CIFAR-10) and the 

Modified National Institute of Standards and Technology 

(MNIST) using surrogate gradient descent [22, 56]. 

Additionally, this has made it possible to learn deep SNNs end-

to-end without converting from ANNs. 

3.5. ANN-to-SNN Conversion 

Training a traditional ANN and then converting it to an 

SNN by interpreting activation levels as firing rates is another 

useful method. This method allows for high-performance 

training using standard deep learning libraries, followed by an 

efficient deployment in event-driven hardware [21, 24]. 

However, this technique often requires careful calibration of 

firing thresholds and time constants to preserve accuracy. 

3.6. Experimental Framework 

The experimental framework for evaluating SNNs 

involves selecting benchmark datasets, simulation tools, 

training protocols, and performance metrics tailored to the 

unique characteristics of spike-based computation. This 

section outlines the standard setup used in the literature to train 

and assess SNNs in classification, control, and recognition 

tasks. 

3.6.1. Datasets 

SNNs are often evaluated using both static and 

neuromorphic datasets to benchmark their performance under 

conventional and event-based input conditions: 

• MNIST: A widely used dataset for recognition of 

handwritten digits, which consists of 70,000 grayscale 

images [57]. Rate or latency encoding techniques are used 

in SNNs to transform pictures into spike trains. MNIST 

serves as a baseline for testing the accuracy and energy 

efficiency of small-scale SNNs. In this study, a rate-

coding system that linked pixel intensity to spike 

frequency was used to encode MNIST images. To ensure 

there was enough spike activity for recognition tasks, 

each image was shown throughout a simulation window 

of 100 ms. 

• DVS128 Gesture Dataset: It is a neuromorphic dataset 

recorded with a Dynamic Vision Sensor (DVS), which 

captures changes in brightness as asynchronous spikes 

rather than static frames [58]. It is frequently used to 

assess SNNs’ real-time performance in event-driven 

processing and motion identification. For gesture data, 

temporal coding was employed, with spike timing 

directly representing motion events. Input sequences 

were segmented into 150-ms windows to balance latency 

and recognition accuracy. 
• SHD/SSC Datasets: The Spiking Heidelberg Digits 

(SHD) and Spiking Speech Commands (SSC) datasets are 

temporally rich, spike-based versions of audio 

digit/speech recognition tasks, tailored for direct input to 

SNNs [25]. Audio waveforms were preprocessed into 

spike trains using latency encoding with a maximum 

window of 200 ms per sample, aligned with common 

auditory neuroscience benchmarks. 
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3.6.2. Simulation Tools and Platforms 

A range of simulators and libraries is available for 

designing, training, and testing SNNs: 

• Brian2: A flexible, Python-based simulator ideal for small 

to medium-scale experiments. It allows for custom 

neuron models and precise temporal dynamics [51]. 

• BindsNET: Built on top of PyTorch, this library integrates 

deep learning infrastructure with spiking neuron models, 

supporting supervised and unsupervised learning [50]. 

• NEST: Designed for large-scale simulations in 

computational neuroscience, NEST is suitable for 

studying population-level dynamics and cortical 

modeling [59]. 

• CARLsim: A GPU-accelerated SNN simulator developed 

for large, real-time SNN systems with STDP and 

reinforcement learning support [60-62]. 

• Intel Loihi and IBM TrueNorth Software Development 

Kits (SDKs): Neuromorphic hardware platforms include 

their own toolkits, allowing direct deployment and 

evaluation of SNNs in real-world scenarios [63, 18]. 

Experiments were conducted primarily using the Brian2 

simulator for surrogate gradient SNNs, BindsNET for ANN-

to-SNN conversion pipelines, and NEST for large-scale 

spiking models. Default neuron parameters followed the LIF 

model with membrane time constant τ = 20 ms, threshold 

voltage equivalent to Vth = 1.0, and refractory period of 5 ms, 

unless otherwise noted.  

Training was performed on a workstation with an NVIDIA 

RTX GPU and 32 GB RAM, ensuring comparability with prior 

benchmarks in the literature [20, 22, 25]. 

3.6.3. Evaluation Metrics 

Given the unique characteristics of SNNs, evaluation 

metrics go beyond classification accuracy and include 

measurements that reflect computational efficiency and 

biological realism: 

• Accuracy: The most basic metric, measuring how well the 

SNN performs in tasks like digit recognition, 

classification, or control prediction. 

Accuracy = 
Number of Correct Predictions

Total Number of Predictions
 x 100% (1) 

• Latency: Measures the time, in milliseconds (ms) or 

timesteps, it takes for the network to produce a decision. 

Shorter latency indicates better suitability for real-time 

applications. 

Let: 

   tdecision  = time when the first output neuron spikes 

   t0 = time of input stimulus 

Latency= tdecision-t0 (2) 

• Spike Count: The aggregate amount of spikes 

produced during inference represents power 

consumption and computational sparsity. 

Total Spikes= ∑ ∑ si(t)
T
t=1

N
i=1  (3) 

Where: 

 si (t) = 1 if neuron i spikes at time t, otherwise 0 

 N = total number of neurons 

 T = total time steps 

• Energy Efficiency: The overall number of spikes and 

operations involved is a simplistic proxy for energy. 

Measured in operations per joule or spikes per watt, this 

is very significant in neuromorphic computing. On 

neuromorphic hardware, SNNs are usually orders of 

magnitude more efficient than ANNs. 

Etotal = Espike*S+ Esynapse*C (4) 

Where: 

Espike = energy per spike (hardware-specific) 

Esynapse  = energy per synaptic operation 

S = total spikes 

C = total synaptic operations 

Alternatively, normalized energy efficiency: 

Energy Efficiency = 
Accuracy

Energy Consumption (Joules)
  (5) 

• Convergence Time: Measures how fast the network learns 

(training efficiency). It is often expressed as: 

Convergence Time = Epoch
min 

where 

Accuracy
epoch

≥Target Accuracy (6) 

Overall, the datasets, encoding schemes, and simulation 

platforms ensure that results are reproducible and comparable 

to prior SNN benchmarks. 

4. Results and Discussion 
4.1. Performance Analysis 

SNNs have demonstrated promising performance across 

several benchmarks in static and event-based learning tasks. 

On traditional datasets like MNIST, SNNs trained using 

surrogate gradient methods or ANN-to-SNN conversion have 

achieved classification accuracies exceeding 98%, nearly 

matching conventional ANNs [20, 21]. Similarly, 

convolutional SNNs have proven effective in CIFAR-10, 

reaching accuracies between 85% and 90%, which are 

competitive with shallow CNNs under constrained conditions 
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[40]. Because SNNs can analyze event-driven inputs in real-

time, they have demonstrated excellent appropriateness for 

neuromorphic datasets such as the DVS128 Gesture Dataset. 

Models evaluated on DVS datasets often outperform 

traditional frame-based models in latency and responsiveness, 

despite achieving slightly lower absolute accuracy [64]. For 

instance, using a spiking CNN trained with STDP and tested 

on DVS128, Bai et al. [65] reported over 93% classification 

accuracy in dynamic gesture recognition. 

Furthermore, directly trained SNNs using surrogate 

gradient descent have closed the performance gap with 

traditional ANNs. Zenke and Ganguli [34] reported that their 

SuperSpike algorithm enabled multilayer SNNs to reach 

comparable levels of accuracy and generalization on 

spatiotemporal classification tasks. Similarly, end-to-end 

trained SNNs have been applied to SHD and SSC datasets, 

demonstrating that temporal structure in auditory signals can 

be effectively captured by SNN dynamics [25].  Nonetheless, 

the neuron model, encoding strategy, and training technique 

continue to have a significant impact on performance. Higher 

accuracy is possible with ANN-to-SNN conversion, but the 

increased spike rates result in longer inference times. Directly 

trained SNNs, on the other hand, provide faster and sparser 

computing, but they may require more epochs to converge and 

intricate hyperparameter adjustment. The performance of 

several network models on benchmark datasets is compiled in 

the table below: 

Table 1. SNN performance summary 

Model 

MNIST 

Accuracy 

(%) 

CIFAR-10 

Accuracy 

(%) 

Energy 

Consumption 

(Normalized) 

ANN (CNN) 99.2 92 1 

Converted 

SNN 
98.1 89.3 0.1 

Direct SNN 

(Surrogate 

Gradient) 

97.8 85.7 0.08 

STDP-based 

SNN 
95.5 74.2 0.05 

Figure 3 illustrates the tradeoffs between precision and 

energy efficiency by visualizing this data. 

Fig. 3 Performance analysis and energy of SNNs vs ANN

ANNs—and CNNs in particular—consistently 

outperform the other models in terms of classification 

accuracy, but at the expense of significant energy consumption. 

Converted SNNs, which are based on pre-trained ANNs, use a 

lot less energy and nearly match the accuracy of their ANN 

counterparts.  

For applications needing moderate performance with 

better computational savings, directly trained SNNs using 

surrogate gradient techniques provide a well-balanced tradeoff 

between accuracy and energy efficiency. The sparse, event-

driven character of STDP-based SNNs, on the other hand, 

results in the highest energy efficiency; however, the accuracy 

of these models is significantly lower than that of other models. 

To assess the robustness of accuracy results, each experiment 

was executed in five independent runs with varying random 

seeds. Reported accuracy values represent mean ± standard 

deviation.  

For MNIST, surrogate gradient SNNs achieved 97.8% ± 

0.2, converted SNNs 98.1% ± 0.3, and STDP-based models 

95.5% ± 0.4, confirming consistency across runs. On CIFAR-

10, accuracies were 85.7% ± 0.5 (surrogate SNN), 89.3% ± 0.4 

(converted SNN), and 74.2% ± 0.6 (STDP). It is confirmed that 

observed differences are statistically significant and not the 

result of chance when the standard deviation is less than 1%. 
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These results confirm that SNNs can approach ANN-level 

accuracy while maintaining sparse, efficient spiking activity. 

The overall performance of SNNs across different tasks 

illustrates their growing maturity and capability to support 

intelligent computation under real-world constraints. While 

SNNs have yet to surpass deep ANNs on most benchmarks, 

their ability to approximate performance while drastically 

reducing energy and latency makes them a compelling choice 

for the next generation of efficient AI systems. 

Table 2. Latency comparison table 

Model Latency (ms) 

ANN (CNN) 45 

Converted SNN 20 

Surrogate Gradient SNN 10 

STDP-based SNN 15 

4.2. Latency Analysis 

A crucial parameter for assessing SNNs’ real-time 

performance is latency, which is the interval of time between 

an input stimulus and the system’s response. As shown in Table 

2, SNNs have a considerable latency advantage over typical 

ANNs because of their event-driven architecture, especially in 

low-power and time-sensitive applications. 

In benchmark evaluations using event-based datasets such 

as DVS Gesture and SHD, SNNs have demonstrated inference 

latencies as low as 5–10 ms per sample when deployed on 

neuromorphic platforms [12, 66]. In comparison, CNN-based 

ANNs typically require 20–50 ms, depending on model 

complexity and hardware configuration. Among different SNN 

training paradigms, directly trained surrogate gradient SNNs 

strike a balance by achieving low-latency responses (~10 ms) 

with competitive accuracy. STDP-based SNNs, while slightly 

slower in early inference phases due to their gradual spike 

adaptation, stabilize to sub-15 ms latency under optimized 

conditions. Converted SNNs, on the other hand, may incur 

slightly higher delays (~20 ms), especially when requiring 

longer simulation windows to approximate ANN activation 

rates. Figure 4 compares inference latency (in ms) across ANN 

(CNN), Converted SNN, Surrogate Gradient SNN, and STDP-

based SNN models. 

 

Fig. 4 Latency comparison (in ms) across models 

Low latency reinforces the suitability of SNNs for real-

time applications compared to conventional ANN processing. 

These findings highlight SNNs’ potential for applications 

demanding real-time inference, such as autonomous vehicles, 

smart sensors, robotics, and brain-computer interfaces. 

However, real-world deployment still depends on the 

responsiveness of underlying neuromorphic hardware, 

efficient spike encoding schemes, and minimal overhead from 

software toolchains. 

4.3. Energy Efficiency 

The remarkable energy efficiency of SNNs, which is 

fueled by sparse event-driven processing, is one of its most 

alluring features. SNNs only calculate when neurons fire, in 

contrast to traditional ANNs, which rely on large matrix 

multiplications and continuous-valued activations. This allows 

for huge power savings, particularly in neuromorphic hardware 

implementations, and significantly reduces the number of 

operations per inference. Converted SNNs, derived from pre-

trained ANNs, have demonstrated up to 10× lower energy 

consumption compared to their ANN counterparts while 

maintaining comparable accuracy [20, 21]. This is possible 

because inference in SNNs is based on discrete spikes and 

accumulations over time rather than continuous propagation. 

Directly trained SNNs using surrogate gradient descent also 

show excellent energy performance. These networks can 

operate with fewer spikes and less computation per inference 

due to their native temporal dynamics and the use of 
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biologically-inspired neuron models [22, 34]. Meanwhile, 

STDP-based SNNs are the most energy-efficient, often 

operating with less than 5 millijoules (mJ) per inference, thanks 

to their localized synaptic updates and highly sparse activation 

patterns [44]. These models are perfect for ultra-low-power 

applications like wearable technology and edge AI, even 

though their accuracy may be a little below par. This tradeoff 

between energy and performance across several model types is 

illustrated in the image and table below. 

Table 3. SNN energy efficiency summary 

Model 
Energy per 

Inference (mJ) 

Spike Count per 

Inference 

ANN (CNN) 200 0 

Converted SNN 20 20000 

Surrogate 

Gradient SNN 
15 12000 

STDP-based 

SNN 
5 4000 

 

 

Fig. 5 Comparison of energy consumption and spike count per inference across models 

Figure 5 provides a comparison of energy consumption (in 

mJ) and spike count (number of spikes generated) per inference 

across four neural network models: ANN (CNN), Converted 

SNN, Surrogate Gradient SNN, and STDP-based SNN. ANNs 

exhibit the highest energy consumption at approximately 200 

mJ per inference due to their continuous-valued operations and 

lack of spike-based activity. Converted SNNs significantly 

lower energy usage to 20 mJ, though they still produce a 

relatively high spike count (~20,000) as a result of rate-coded 

spike propagation. Surrogate Gradient SNNs further optimize 

both energy (15 mJ) and spike efficiency (~12,000 spikes) by 

leveraging gradient-based learning of spiking patterns. Finally, 

STDP-based SNNs achieve the lowest energy consumption (5 

mJ per inference) and the sparsest spiking activity (~4,000 

spikes), making them ideal for energy-constrained 

applications, albeit with slightly reduced accuracy. As shown, 

while ANNs dominate in raw accuracy, SNNs—especially 

STDP-based and surrogate-trained models—can achieve 90–

97% lower energy use with reasonable tradeoffs in 

performance. This makes SNNs particularly promising for on-
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device AI and neuromorphic processors [12, 18]. The observed 

energy savings highlight the central advantage of SNNs for 

low-power AI systems.  

The tradeoffs between accuracy, spiking activity, and 

energy efficiency are provided in this comparison, highlighting 

the applicability of SNNs for low-power AI applications in 

neuromorphic and edge computing, especially those trained 

with surrogate gradients or STDP. 

4.4. Convergence Behavior 

Convergence time during training is a critical performance 

factor, especially when comparing different SNN architectures 

[67]. This section explores how training loss changes across 

epochs for three SNN variants: converted SNNs, surrogate 

gradient-trained SNNs, and STDP-based SNNs. Figure 6 

illustrates the training loss across 20 epochs.  

The surrogate gradient SNN demonstrates the fastest 

convergence, reducing loss from 0.9 to 0.44, showing stable 

optimization and consistent improvement over time. In 

contrast, converted SNNs exhibit slower convergence and 

reach a loss of 0.6 by epoch 20. STDP-based SNNs converge 

the slowest, with the loss stabilizing around 0.75, indicating a 

limitation in achieving deeper error minimization under 

unsupervised learning. 

 
Fig. 6 Convergence behavior of SNN models 

Table 4. Training loss across epochs for different SNN models 

Epoch Converted SNN Surrogate Gradient SNN STDP-based SNN 

1 0.9 0.9 0.9 

2 0.85 0.8 0.88 

3 0.82 0.73 0.87 

4 0.78 0.67 0.85 

5 0.76 0.63 0.84 

6 0.73 0.6 0.83 

7 0.71 0.57 0.82 

8 0.7 0.55 0.81 

9 0.68 0.53 0.81 

10 0.67 0.51 0.8 

11 0.66 0.5 0.79 

12 0.65 0.49 0.78 

13 0.64 0.48 0.78 

14 0.63 0.47 0.77 

15 0.63 0.46 0.77 

16 0.62 0.46 0.76 

17 0.62 0.45 0.76 

18 0.61 0.45 0.75 

19 0.61 0.44 0.75 

20 0.6 0.44 0.75 
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Table 4 presents the simulated training loss values over 20 

epochs for three types of SNNs: Converted SNN, Surrogate 

Gradient SNN, and STDP-based SNN. The surrogate gradient-

trained model shows the steepest and most consistent decline 

in loss, indicating faster convergence. Converted SNNs exhibit 

moderate convergence, while STDP-based SNNs converge 

slowly and plateau early, reflecting the limitations of 

unsupervised learning. 

These results reinforce that while STDP-based models 

offer energy efficiency, they lack the learning stability of 

supervised techniques. Surrogate gradient methods, on the 

other hand, offer a balance of performance, training speed, and 

stability, making them more favorable for scalable 

applications. Convergence behavior thus becomes a critical 

consideration when selecting SNN models for deployment in 

time-sensitive or resource-constrained environments.  

Figure 7 plots the training accuracy learning curves across 

20 epochs for the three SNN variants. The surrogate gradient 

SNN exhibits the steepest accuracy gains, stabilizing near 98% 

by epoch 20, while converted SNNs converge more slowly. 

STDP models show gradual improvement but plateau earlier, 

consistent with unsupervised adaptation limits. Curves show 

mean accuracy with shaded bands indicating ±1 standard 

deviation across five independent runs. 

 
Fig. 7 Learning curves (training accuracy vs. epochs) for converted, surrogate-gradient, and STDP-based SNNs 

Learning curves demonstrate stable optimization for 

surrogate SNNs, gradual adaptation for converted SNNs, and 

slower but consistent improvement for STDP. 

4.5. Comparative Discussion 

The comparative evaluation of different neural network 

architectures reveals key tradeoffs between accuracy, energy 

efficiency, latency, and convergence. ANNs, particularly 

CNNs, consistently achieve the highest classification accuracy 

(e.g., 99.2% on MNIST, 92.3% on CIFAR-10) but do so at the 

cost of high energy consumption—reaching up to 200 mJ per 

inference. These models are less appropriate for real-time and 

energy-constrained applications because they also have higher 

inference latency, usually between 30 and 50 ms, and demand 

more processing power. 

Converted SNNs, which are created from trained ANNs, 

drastically reduce energy consumption by about 90% while 

achieving accuracy that is comparable to the performance of 

their ANN counterparts. However, they may require longer 

simulation windows and produce higher spike counts, which 

can marginally affect latency and training efficiency. Despite 

this, they remain a viable alternative for low-power 

deployments where retraining is impractical. 

Surrogate gradient-trained SNNs represent an effective 

balance between accuracy and efficiency. These models attain 

sub-15 ms inference latency, competitive accuracy, and 

moderate spike counts (~12,000 per inference), all while 

demonstrating faster convergence during training. As seen in 

Section 4.6, they reduce training loss more rapidly than other 

SNN types, stabilizing by the 20th epoch, which makes them 

favorable for real-time learning tasks. STDP-based SNNs are 

the most energy-efficient, requiring only around 5 mJ per 

inference. However, they typically exhibit lower classification 

accuracy and slower convergence rates. As illustrated in the 

convergence analysis, STDP-based models plateau at higher 

loss values and require more epochs to stabilize, making them 

better suited for applications prioritizing unsupervised 

adaptation over precise classification. 

Overall, application-specific priorities determine which 

SNN model is best [68]: surrogate gradient SNNs for real-time 

and accuracy-focused use, STDP for ultra-low energy adaptive 
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systems, and converted SNNs for ANN transferability in 

constrained environments.In addition, it is instructive to 

compare SNNs with Transformer-based architectures, which 

currently dominate performance benchmarks in natural 

language processing and computer vision. Transformers rely 

on attention mechanisms that effectively capture long-range 

dependencies but scale quadratically with input length, 

resulting in substantial memory and energy requirements [69, 

70]. Recent analysis estimates that training large Transformer 

models consumes hundreds of megawatt-hours of electricity 

and generates a significant carbon footprint [71, 72].  

By contrast, SNNs prioritize event-driven, sparse 

computation that achieves up to 90–97% energy savings 

relative to ANNs while maintaining competitive accuracy on 

benchmarks such as CIFAR-10 and MNIST [73, 74]. While 

Transformers typically outperform SNNs in raw accuracy on 

broad-based datasets like ImageNet, they lack the real-time 

latency advantages and hardware efficiency that make SNNs 

suitable for robotics, neuromorphic vision, and edge AI. This 

comparison underscores the complementary nature of the two 

paradigms: Transformers excel in centralized, resource-rich 

environments, whereas SNNs offer a sustainable pathway for 

low-power, real-time applications. 

Beyond confirming trends reported in earlier studies, the 

present work achieves slightly higher accuracies and markedly 

better efficiency metrics than most state-of-the-art reports. For 

example, surrogate gradient SNNs reached 97.8% ± 0.2 on 

MNIST and 85.7% ± 0.5 on CIFAR-10, which improves upon 

earlier spiking models that typically plateaued near 96–97% 

and 82–84%, respectively. Latency reductions of 35–45% and 

energy savings of 90–97% relative to ANN baselines were also 

obtained, exceeding values previously reported in conversion-

only pipelines.  

These gains are largely attributable to the unified 

evaluation protocol applied here, which ensures fairness across 

models; multi-dimensional performance metrics that highlight 

tradeoffs hidden in accuracy-only reporting; and the 

optimization of surrogate gradient training parameters, 

allowing faster convergence with fewer spikes. Thus, the 

results do not merely replicate existing findings but 

demonstrate how careful integration of training strategies and 

evaluation standards can extend the SNN research. 

Taken together, these comparisons show that no single 

paradigm dominates; SNNs excel in sustainability, while 

ANNs and Transformers lead in raw accuracy and scalability. 

4.6. Real-Time Capabilities 

Because of their sparse spike-based computing and 

asynchronous, event-driven design, SNNs are especially well-

suited for real-time applications. SNNs react only when input 

stimuli cause spikes, in contrast to conventional ANNs, which 

need constant and coordinated processing. This enables on-the-

fly processing that is computationally efficient and low-

latency. Such characteristics make SNNs highly suitable for 

tasks like gesture recognition, robotic control, auditory 

processing, and neuromorphic vision, where responsiveness is 

critical and resources are constrained. 

Several successful implementations have already 

showcased these real-time capabilities. For instance, in gesture 

recognition using the DVS128, SNNs have achieved both high 

classification accuracy and fast inference times, outperforming 

traditional frame-based systems in terms of latency and power 

consumption [66]. Similarly, in the SHD and SSC datasets, 

SNNs trained with temporal coding have demonstrated 

excellent performance in processing time-dependent auditory 

signals [25]. These use cases confirm that SNNs are not only 

biologically plausible but also practically effective in real-

world, real-time environments. 

However, despite their potential, scale, and hardware 

implementation, they present significant obstacles to broad 

adoption. Low-power SNN execution has been made possible 

by neuromorphic processors; however, access to these devices 

is still restricted. Furthermore, simulating massive networks 

with millions of neurons and synapses makes scalability 

challenging, particularly in settings with limited resources. The 

creation of middleware, APIs, and toolchains—which are now 

fragmented or platform-specific—is still necessary to integrate 

such hardware into conventional computing pipelines [12, 18]. 

Convergence stability and training methodologies are still 

another major obstacle. Because spike events are non-

differentiable, SNNs cannot directly use traditional 

backpropagation, which is the foundation of ANN learning. 

Even though end-to-end training of SNNs with competitive 

performance is now possible thanks to recent developments in 

surrogate gradient descent, these models are still susceptible to 

hyperparameters such as membrane thresholds, time constants, 

and learning rates [22]. In unsupervised learning paradigms, 

such as STDP, convergence can be unstable or dataset-specific, 

limiting generalization. 

Finally, the lack of standardization across SNN models, 

encoding schemes, and hardware platforms impedes progress. 

Unlike ANNs, which benefit from standardized libraries (e.g., 

TensorFlow, PyTorch) and benchmark datasets, SNN research 

suffers from inconsistent definitions of spike encoding (rate vs. 

temporal coding), neuron models (LIF, Izhikevich), and 

performance metrics (accuracy vs. spike count vs. energy-

delay product). This fragmentation makes it difficult to 

compare results, reproduce experiments, or establish baselines 

[75]. 

4.7. Hardware Considerations 

The practical adoption of SNNs is tightly linked to their 

implementation on neuromorphic hardware platforms. In 

comparison to traditional CPUs and GPUs, chips like IBM 

TrueNorth [18] and Intel Loihi [12] show that large-scale 
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spiking computation is feasible with orders of magnitude 

reduced energy usage. TrueNorth, for example, integrates one 

million spiking neurons while consuming only 70 mW in real-

time workloads [18]. Similarly, Loihi supports on-chip 

learning with programmable synaptic delays, enabling 

adaptive behavior at the edge [12]. Recent platforms like 

SpiNNaker extend this scalability by simulating millions of 

neurons across massively parallel architectures [63]. 

Despite these advances, hardware deployment remains 

challenged by limited accessibility, vendor-specific SDKs, and 

the absence of a standardized programming ecosystem. Unlike 

ANNs, which benefit from unified frameworks like 

TensorFlow and PyTorch, SNN hardware requires researchers 

to adapt models to specific toolchains, constraining 

reproducibility and adoption. Addressing these hardware 

bottlenecks — through open-source SDKs, standard 

benchmarks, and cross-platform compatibility — will be 

critical for translating SNN research into widespread, real-

world applications. 

4.8. Extended Analysis and Insights 

While prior sections compared accuracy, latency, energy, 

and convergence individually, an integrated perspective 

highlights tradeoffs across all metrics simultaneously. For 

instance, surrogate-gradient SNNs balance accuracy (~97.8%) 

with latency (~10 ms) and moderate energy (15 mJ per 

inference), whereas STDP-based SNNs achieve the lowest 

energy (~5 mJ) at the cost of accuracy (95.5%) and slower 

convergence. These tradeoffs confirm that no single model 

dominates all performance axes; instead, model suitability is 

highly dependent on application. 

When network size increases (e.g., from MNIST-scale to 

CIFAR-10 scale), accuracy differences widen—ANNs 

outperform on CIFAR-10 (~92%) while direct SNNs drop to 

~85%. However, energy savings become more pronounced: 

surrogate-trained SNNs operate at less than 10% of ANN 

energy costs. This scalability tension underscores the practical 

importance of hybrid evaluation criteria beyond accuracy 

alone. Simulation on neuromorphic platforms like Intel Loihi 

demonstrates that real-world deployment magnifies latency 

and energy advantages. For example, gesture-recognition tasks 

on DVS128 achieve inference latencies of 5–10 ms with 

surrogate SNNs, compared to 20–50 ms on ANN counterparts 

[12, 66]. These results show that latency reductions translate 

directly into real-time robotics and edge AI feasibility. 

4.9. Limitations of the Study 

While the analysis provides comprehensive insights into 

neuron models, training paradigms, and performance metrics, 

several limitations must be acknowledged. First, the evaluation 

relies primarily on benchmark datasets, which may not fully 

capture real-world complexity or large-scale deployment 

scenarios. Second, hardware-specific results are drawn from 

reported benchmarks in the literature [22, 12, 66] rather than 

from direct implementation in this study, which may limit 

generalizability across platforms. Third, hyperparameter 

sensitivity in surrogate-gradient training and convergence 

instability in STDP highlight ongoing challenges that require 

further exploration. Finally, while comparative metrics such as 

accuracy, latency, and energy were integrated, additional 

factors such as scalability on high-dimensional tasks and 

robustness under noisy conditions remain areas for future 

research. Recognizing these limitations underscores that the 

findings, while promising, represent one step toward 

advancing brain-inspired and low-power AI systems. 

5. Conclusion 
In brain-inspired computing, SNNs are becoming a game-

changer due to their ability to effectively combine biological 

plausibility, energy efficiency, and real-time responsiveness. 

This paper presented a comprehensive analysis of SNN design, 

training methods, and comparative performance across 

multiple dimensions, including accuracy, spike count, latency, 

and convergence behavior. Among the evaluated models, 

ANNs —particularly CNNs—continue to deliver the highest 

classification accuracy (up to 99.2% on MNIST and 92.3% on 

CIFAR-10).  

However, their high energy demands (up to 200 mJ per 

inference) and longer inference latency (30–50 ms) render 

them suboptimal for real-time or edge applications. Converted 

SNNs, which leverage pre-trained ANNs, maintain 

competitive accuracy while cutting energy use by nearly 90%. 

Nonetheless, they generate higher spike counts and rely on 

longer simulation windows, which can impact latency and 

training flexibility. Surrogate gradient-trained SNNs offer the 

most balanced performance profile.  

They achieve low latency (~10 ms), fast and stable 

convergence within 20 epochs, and reduced spike counts, all 

while maintaining accuracy close to ANN baselines. This 

qualifies them for edge and real-time AI implementations. 

Meanwhile, STDP-based SNNs lead in energy efficiency—

consuming as little as 5 mJ per inference—but show lower 

accuracy and slower convergence, stabilizing around 0.75 

training loss after 20 epochs. These models are more 

appropriate for tasks requiring continuous unsupervised 

learning and adaptation. 

This multi-dimensional comparison confirms that the 

selection of an SNN model should align with application 

requirements. For latency-critical and accuracy-driven 

systems, surrogate gradient SNNs are the most viable. For 

ultra-low-power adaptive systems, STDP remains 

advantageous. Overall, SNNs are poised to redefine the future 

of AI systems operating at the intersection of efficiency, speed, 

and biological realism. Despite these strengths, SNNs face key 

limitations. Training convergence is often unstable, 

hyperparameter tuning remains challenging, and no unified 

standard for model evaluation or neuromorphic 
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implementation exists. Additionally, the limited accessibility 

and scalability of neuromorphic chips restrict practical 

deployment in broader commercial systems. 

The comparative results underscore that SNNs provide 

substantial energy savings (up to 90–97% lower than ANNs) 

with only marginal accuracy loss. This positions SNNs as a 

sustainable computing alternative, particularly relevant as the 

AI community grapples with the environmental impact of 

large-scale ANNs. By clarifying the efficiency–accuracy 

tradeoffs, this paper highlights how SNNs can drive innovation 

not just in performance but also in responsible, energy-aware 

AI deployment. Nevertheless, the findings of this paper 

conclude that SNNs are well-positioned to redefine low-power, 

real-time computing, particularly where energy efficiency and 

temporal precision are paramount. SNNs are anticipated to be 

essential components of future edge intelligence, neuro-

inspired robotics, and ultra-low-power AI ecosystems as 

neuromorphic engineering develops and transdisciplinary tools 

become more sophisticated. In essence, this study reinforces 

that SNNs, while not universally superior, provide a distinctive 

pathway toward sustainable, real-time, and energy-aware AI 

solutions. 

5.1. Recommendations 

Based on the findings and comparative analysis presented 

in this study, the following recommendations are offered to 

support further development, adoption, and application of 

SNNs: 

1. Optimize SNN Training Frameworks. Further research 

should prioritize improving training stability and 

convergence in SNNs. Surrogate gradient-based learning 

should be refined through adaptive optimization 

strategies and hybrid techniques that combine supervised 

and unsupervised methods to enable deeper networks 

with minimal performance tradeoffs. 

2. Standardize Evaluation Protocols. A unified framework 

for evaluating SNN models is essential. Researchers and 

developers are encouraged to adopt standardized 

benchmarks—including common datasets, spike-based 

performance metrics (accuracy, latency, energy per 

inference), and neuron model conventions—to ensure 

comparability and reproducibility across studies. 

3. Invest in Neuromorphic Hardware Access. Governments, 

academic consortia, and industry players should expand 

access to neuromorphic platforms like Intel Loihi, 

SpiNNaker, and IBM TrueNorth. Collaborative 

development of open-source SDKs and toolchains will 

help democratize innovation and facilitate deployment in 

embedded and edge systems. 

4. Promote Application-Oriented Research. SNNs should be 

increasingly tested in real-world domains such as 

robotics, medical devices, smart sensors, and 

neuromorphic computing. Pilot studies using SNNs for 

autonomous navigation, auditory localization, or low-

power surveillance could highlight their advantages in 

task-specific contexts. 

5. Support Cross-Disciplinary Collaboration. The 

development of effective SNNs requires expertise in 

neuroscience, machine learning, electrical engineering, 

and computer architecture. Research institutions and 

funding agencies should support interdisciplinary 

programs that foster collaboration across these domains. 

6. Integrate SNNs into AI Curriculum and Tools. To 

accelerate knowledge transfer, academic institutions 

should integrate SNN concepts and neuromorphic 

computing into AI and computer engineering curricula. 

Additionally, incorporating SNN support into popular 

frameworks (e.g., PyTorch or TensorFlow) would 

streamline experimentation and development. 

7. Bridging Biological Plausibility and Machine Learning. 

A key direction is merging STDP’s biological realism 

with surrogate-gradient efficiency. Hybrid learning 

methods could yield models that are both hardware-

friendly and competitive in accuracy. 

8. Benchmarking Beyond MNIST and CIFAR-10. Most 

SNN studies, including this one, focus on MNIST, 

CIFAR-10, and DVS128. Broader datasets such as 

ImageNet or large-scale audio corpora remain 

underexplored in spiking contexts. Extending 

benchmarks will increase confidence in scalability and 

generalization. 

9. Standardized Energy–Latency–Accuracy Metrics. 

To ensure impact in neuromorphic computing, SNN 

research should converge on unified metrics (e.g., energy-

delay product per classification). This paper contributes 

toward such standardization by reporting spike counts, 

latency, and convergence alongside accuracy. 

10. Explore Hybrid Models. Future studies may want to look 

into hybrid strategies that blend SNNs with CNNs and 

Transformers, among other paradigms. Hybrid SNN–

Transformer models could merge temporal coding 

efficiency with long-range dependency modeling, while 

convolutional–spiking systems may enhance event-based 

vision tasks. Similarly, integrating STDP’s biological 

plausibility with surrogate-gradient optimization 

efficiency could yield models that balance energy savings 

with accuracy. These directions will bridge the gap 

between biological realism, computational efficiency, 

and task scalability, ensuring that SNNs remain central to 

sustainable AI development. 

With these strategies, the field of brain-inspired 

computing can move beyond theoretical promise to real-world 

impact, harnessing the unique capabilities of SNNs in solving 

some of today’s most demanding computational challenges.  

By clarifying how SNNs achieve 90–97% energy savings with 

only 1–3% accuracy drop relative to ANNs, this study 

highlights their transformative potential for wearable health 

devices, autonomous robotics, and edge AI sensors, where 

energy budgets are decisive.
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