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Abstract - Spiking Neural Networks (SNNs) represent the latest generation of neural computation, offering a brain-inspired
alternative to conventional Artificial Neural Networks (ANNs). Unlike ANNs, which depend on continuous-valued signals, SNNs
operate using distinct spike events, making them inherently more energy-efficient and temporally dynamic. This study presents a
comprehensive analysis of SNN design models, training algorithms, and multi-dimensional performance metrics, including
accuracy, energy consumption, latency, spike count, and convergence behavior. Key neuron models such as the Leaky Integrate-
and-Fire (LIF) and training strategies—including surrogate gradient descent, ANN-to-SNN conversion, and Spike-Timing
Dependent Plasticity (STDP)—are examined in depth. Results show that surrogate gradient-trained SNNs closely approximate
ANN accuracy (within 1-2%,), with faster convergence by the 20th epoch and latency as low as 10 milliseconds. Converted SNNs
also achieve competitive performance but require higher spike counts and longer simulation windows. STDP-based SNNs, though
slower to converge, exhibit the lowest spike counts and energy consumption (as low as 5 millijoules per inference), making them
optimal for unsupervised and low-power tasks. These findings reinforce the suitability of SNNs for energy-constrained, latency-
sensitive, and adaptive applications such as robotics, neuromorphic vision, and edge Al systems. While promising, challenges
persist in hardware standardization and scalable training. This study concludes that SNNs, with further refinement, are poised

to propel the next phase of neuromorphic computing.

Keywords - Artificial Intelligence, Brain-inspired computing, Energy efficiency, Neuromorphic computing, Spiking Neural
Network.

(RNNs) [7] and more sophisticated versions, such as Long
Short-Term Memory (LSTM) [8] and Gated Recurrent Units
(GRUs), are designed for sequential input; yet, they are
plagued by vanishing gradient issues and exhibit inefficiency
in modeling long-range relationships. More recent models, like
Transformers, have recently revolutionized natural language

1. Introduction

The advent of Artificial Intelligence (Al) has ushered in a
technological revolution that permeates virtually all aspects of
modern life, from healthcare and transportation to finance and
education. Central to this evolution are a class of computational
models collectively referred to as ANNs that have achieved

stunning results across an array of pattern recognition and
machine learning problems. Traditional ANNs, however, are
extremely energy inefficient and biologically unrealistic [1],
[2] despite their impressive performance. These are also
difficult to implement because they rely on continual signal and
large matrix multiplication, which are computationally
expensive and biologically unrealistic [3].

Various neural network architectures have been created to
address distinct computational challenges. The ANN is the
basic model for deep learning, but cannot be directly applied to
temporal data because of its computational complexity and
absence of memory [4, 5]. Convolutional Neural Networks
(CNNps) are engineered for spatial feature extraction in image
and video processing and are not directly applicable to
temporal or sequential data [6]. Recurrent Neural Networks

processing using attention mechanisms, but at the cost of
humongous memory and processing demands [10].

All these models have a basic property in common: they
depend on synchronous updates and on continuous activations.
This is not the case in the human brain, which is an
asynchronous system and communicates with discrete binary
spikes [11]. In addition, classic networks carry out millions of
operations per inference step, resulting in high power
consumption-a critical bottleneck in scenarios such as mobile
and edge computing [ 12]. Despite their success, these networks
are entirely based on dense and continuous computations and
lack biological realism, which renders them energy-inefficient
and not amenable to real-time, low-power applications, the
limitations that SNNs try to overcome [13]. SNNs, the most
recent evolution of neural network models, signify a
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transformative advancement in artificial intelligence by
mimicking the discrete and temporal firing patterns of
biological neurons. [14]. Unlike ANNs, which process
information in a synchronous and continuous fashion, SNNs
operate on sparse, event-driven spike trains, enabling them to
process spatiotemporal data with greater energy efficiency and
fidelity to brain-like computation. This bio-inspired method
closely resembles how actual neurons in the brain exchange
information by sending out short, timed electrical signals
known as spikes [15].

Interest in SNNs has increased due to recent developments
in neuromorphic engineering, which creates hardware that
mimics the composition and operations of the human brain [16,
17]. Chips like International Business Machines’ (IBM)
TrueNorth and Intel’s Loihi show that SNNs may be
implemented at scale with extremely low power consumption,
which makes them appropriate for use in edge computing
settings and mobile devices [18, 12]. Additionally, SNNs are
being studied extensively for use in brain-computer interfaces,
robotics, and sensory processing, highlighting their promise in
latency-sensitive, real-time scenarios [19].

Despite rapid progress, most studies examine one training
paradigm or one metric at a time—e.g., ANN-to-SNN
conversion optimized for accuracy on image benchmarks [20,
21] surrogate-gradient training highlighting differentiable
approximations [22], or neuromorphic reports emphasizing
hardware power/latency [12, 23]. A unified head-to-head
analysis that compares surrogate-trained, ANN-to-SNN
converted, and STDP models under a single protocol and
across multiple dimensions—accuracy, latency, energy per
inference, spike count, and convergence—on both event-based
and static datasets remains limited in the literature [1, 20, 22,
24, 25]. This gap obscures practical tradeoffs that matter for
edge deployment and real-time robotics, where temporal
precision and energy budgets are binding constraints [12, 23].

This work addresses that gap by: (i) establishing a unified
evaluation protocol that compares surrogate-trained,
converted, and STDP SNNs across five metrics (accuracy,
latency, energy, spike count, convergence); (ii) reporting
latency and spiking activity alongside accuracy to reflect
hardware-aware performance; (iii) providing a convergence
analysis to 20 epochs that clarifies optimization behavior under
different learning rules; and (iv) translating these findings into
application-oriented guidance (e.g., surrogate SNNs for low-
latency accuracy targets; STDP for ultra-low-power
unsupervised settings). Relative to prior work that focuses on a
single method or metric [20-22, 25], this study offers an
integrated, multi-metric comparison that supports principled
model selection for neuromorphic and edge Al [1, 12]. Given
the rising energy costs of deep learning models, particularly
transformer-based systems [10, 12], the exploration of SNNs is
not only a technical advancement but also an important step
toward sustainable Al computing. By reducing energy usage
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by an order of magnitude compared to ANNs, as shown in this
study, SNNs present a feasible path for greener and more
efficient edge intelligence. This positions the current work as
both timely and original, addressing the dual challenge of
advancing Al performance while mitigating environmental and
energy concerns.

Thus, this paper comprehensively examines SNNs as the
future of brain-inspired computing. It begins by outlining their
biological underpinnings and core mechanisms, followed by a
comparative analysis with traditional ANNS. It then delves into
various applications, design strategies, and training
methodologies that define current SNN research. This work
attempts to give a thorough evaluation of SNNs and make
suggestions for further research and development in
neuromorphic Al by reviewing experimental benchmarks and
implementation challenges.

2. Related Literature
2.1. Biological Inspiration

The biological processes of the human brain, namely how
neurons interact by sending out distinct electrical impulses
called spikes, served as the model for SNN5s [26]. Conventional
neural networks depend on levels of constant activation, while
biological neurons transmit information through asynchronous
events triggered by membrane potential thresholds.
Foundational biological models such as the Hodgkin-Huxley
model [27] and the Leaky Integrate-and-Fire (LIF) model [28]
form the theoretical basis of SNNs. Essential neural functions
like firing thresholds, refractory periods, and membrane
potential degradation are replicated in these models.

Moreover, spike-based learning in biological systems is
often attributed to synaptic plasticity governed by timing rules
[29]. Spike-Timing Dependent Plasticity (STDP), which
modifies synaptic weights according to the relative timing of
pre- and postsynaptic spikes, is a good illustration [30]. STDP
has been successfully integrated into SNNs to enable
biologically plausible learning without the need for
backpropagation.

These qualities allow SNNs to capture temporal changes,
sparse activation, and asynchronous signaling, thereby
achieving greater similarity to cortical processes observed in
neuroscience [31].

2.2. Fundamentals of SNNs

At the core of SNN operation is the spike-based encoding
of information. SNNs use rate or temporal coding schemes to
encode data in the time and frequency of spikes rather than
real-valued vectors [32]. While temporal coding encodes
information in the exact time of spikes, rate coding conveys
input strength by spike frequency. SNNs are more energy-
efficient and appropriate for event-driven processing through
these processes.
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Many equations are used to explain the behavior of spiking
neurons, but the LIF model is still the most often utilized
because of its ease of use and computational effectiveness [33].
For learning, SNNs use biologically inspired methods like
surrogate gradient methods, STDP, and Reward-Modulated
STDP (R-STDP) that enable supervised learning despite the
non-differentiability of spike events [34]. In addition, recent
research has introduced training techniques that make SNNs
competitive with deep learning models. These include hybrid
approaches like converting pre-trained ANNs into SNNs [20],
and direct training using approximated gradients, which helps
overcome the challenges of discontinuous activation [22].

2.3. Comparison with Traditional ANNs

SNNs differ fundamentally from ANNs in architecture,
data representation, and learning strategy. ANNs use dense
layers of constant activation functions like sigmoid or ReLU
and are trained using backpropagation [35, 36]. SNNs, on the
other hand, use gradient-free or biologically motivated learning
algorithms and function with limited, event-triggered
activations [37].

The energy efficiency of SNNs is one of its main benefits.
While ANNSs process every node during each cycle, SNNs only
activate neurons upon spike generation, resulting in
significantly fewer operations and reduced power usage—ideal
for low-resource or edge devices [38]. Furthermore, SNNs
exhibit temporal sensitivity, enabling them to process
sequential and real-time data more effectively than
conventional models such as CNNs and RNNs [39, 40].

However, SNNs face significant challenges in scalability,
training convergence, and a lack of standardized frameworks
compared to mature ANN systems. While ANNs benefit from
extensive optimization libraries and hardware acceleration
(e.g., TensorFlow, GPUs), SNNs are still evolving in terms of
simulation platforms and hardware compatibility [41].

Surveys and foundational studies emphasize SNNs’
temporal coding and energy advantages but typically report
accuracy or hardware power in isolation [1, 38, 40].
Conversion pipelines preserve ANN accuracy yet often require
longer simulation windows and higher spike rates [20, 21];
surrogate-gradient methods close the accuracy gap with direct
end-to-end training [22]; and neuromorphic reports foreground
energy/latency on chips [12, 23]. By evaluating all three
training strategies under a consistent setup and reporting
accuracy, latency, energy, spike, and convergence together, the
present study complements these strands. It clarifies practical
tradeoffs for deployment-oriented SNN design [24, 25].

2.4. Applications of SNNs

Neuromorphic Hardware: The field of neuromorphic
computing, which describes hardware architectures intended to
mimic the structure and functionality of the brain, is one of the
most promising areas for SNNs. IBM’s TrueNorth [42] and
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Intel’s Loihi [43] are two major neuromorphic chips that
support event-driven computation and on-chip learning. These
chips enable real-time processing with ultra-low power
consumption, opening doors for deploying SNNs in edge
computing, wearables, and autonomous systems.

Robotics: In robotics, SNNs enable low-latency responses
and real-time sensory integration. For instance, SNNs have
been used in applications where timing and energy efficiency
are crucial, such as visual tracking, object recognition, and
locomotion control [44]. Because SNNs are asynchronous,
they work well in dynamic settings where conventional ANN-
based controllers would be too sluggish or power-hungry.

Edge Computing: SNNs’ event-based design and minimal
activity make them perfect for use in devices with limited
energy. Applications include gesture recognition using event-
based cameras (e.g., DVS128 dataset), anomaly detection in
IoT systems, and on-device speech processing [38].

Healthcare: SNNs are essential for prostheses and Brain-
Machine Interfaces (BMlIs) in biomedical engineering and
neuroscience. They can interpret neural signals for motor
control or restore sensory functions. SNNs are also being
explored for seizure prediction, Electroencephalogram (EEG)
signal classification, and neural rehabilitation, where temporal
precision and biological compatibility are essential [45].

In summary, existing studies establish SNNs as
biologically inspired and energy-efficient yet fragmented
across training strategies and evaluation metrics. This review
sets the stage for a unified analysis.

3. Methodology
3.1. SNN Design

Replicating the dynamic behavior of biological neurons
and their synaptic contacts is the foundation of SNN design.
SNNs use asynchronous, event-driven computing, in contrast
to classic neural networks, where each layer analyzes inputs in
a fixed, synchronous fashion. Neuron models that mimic the
biophysical characteristics of actual neurons, most notably the
LIF model, enable this design.

One of the most popular and straightforward models for
SNN simulations is the LIF model [46]. It records crucial
neural processes such as threshold-based spike production,
membrane potential accumulation, and leakage across time. A
neuron “fires” a spike and resets its membrane potential when
incoming synaptic inputs cause it to surpass a certain threshold.
Because neurons in this model only fire in response to strong
stimuli, it enables a sparse, energy-efficient network [11]. A
LIF neuron’s behavior can be shown in Figure 1. This graphic
shows how the input current causes the membrane potential to
rise over time. The neuron mimics the firing behavior seen in
organic neurons by emitting a spike and then resetting when
the voltage hits a predetermined threshold.
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Fig. 1 LIF neuron model

More sophisticated models, such as the Izhikevich model,
simulate a variety of neuronal firing patterns, including
bursting, tonic spiking, and adaptation, by fusing biological
realism with computing efficiency [23]. The choice of neuron
model typically balances between biological fidelity and
computational overhead, depending on the application
domain—whether high-performance robotics or low-power
edge computing.

SNN architecture typically includes input, hidden, and
output layers, where spikes propagate through synapses with
temporal delays and weight modulation [40]. These networks
can be feedforward, recurrent, or convolutional, depending on
the data type and processing goals. For image-based tasks,
Convolutional SNNs (CSNNSs) are increasingly popular due to
their ability to preserve spatial hierarchies while benefiting
from event-driven sparsity [47].

35

SNNss are translated to neuromorphic circuits in hardware
implementations, including Intel’s Loihi, which allows for
dynamic neural configuration with spiking inputs and on-chip
learning. Loihi incorporates programmable neuron models and
synaptic delays, enabling flexible SNN design for real-world
applications [12].

Figure 2 illustrates the three main phases of a full SNN
pipeline: input encoding, spiking neuron processing, and
output decoding. Using encoding techniques like rate coding or
temporal coding, continuous signals like audio, pictures, or
sensor data are converted into discrete spike trains during input
encoding. After passing through one or more layers of spiking
neurons, these spike trains are used to analyze information
based on the timing and intensity of the spikes. The output layer
then decodes the spike patterns into a control, decision, or
prediction signal that is suitable for the intended use.

WTA network
(lateral inhibition)

Fig. 2 Conceptual architecture of SNN [48]
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The system includes input encoding to convert signals into
spikes, multiple spiking neuron layers for event-driven
computation, and output decoding to produce meaningful
results. This modular architecture allows SNNs to mimic the
asynchronous, event-driven behavior of biological neural
systems. The design supports a wide variety of tasks ranging
from object recognition to robotic control, depending on how
the neurons are interconnected and trained.

Several software tools have been widely adopted to
simulate SNN behavior. Neural Simulation Tool (NEST) [49]
is used for broad-based simulations of spiking neuron
networks, especially in neuroscience research. Biologically
Inspired Neural and Dynamical Systems in Networks
(BindsNET) [50] and Brian2 [51] offer more flexibility and
Python integration for machine learning tasks. These platforms
support complex network configurations, STDP learning rules,
and integration with neuromorphic datasets. Overall, the
design of an SNN requires careful attention to the neuron
model, network topology, synaptic behavior, and hardware-
software compatibility. These components collectively
determine the network’s ability to mimic brain-like
computation while maintaining computational tractability and
real-world applicability.

3.2. Training Algorithms

The non-differentiable characteristics of spike events
make training SNNs more difficult than training regular ANNs.
Since spikes are discrete, binary events, standard
backpropagation—which relies on continuous gradients—
cannot be directly applied. Researchers have therefore created
specific training methods that are suited to the event-driven and
temporal dynamics of SNNs.

3.3. Unsupervised Learning: STDP

STDP is among the most biologically realistic training
techniques. The exact timing of pre- and postsynaptic spikes
determines how STDP modifies synaptic weights; if a
presynaptic neuron fires just before a postsynaptic neuron, the
synapse is strengthened; if not, it is weakened [52, 53]. This
local, unsupervised learning rule has been widely implemented
in early layers of SNNs to extract spatiotemporal patterns from
data without requiring labels [54].

3.4. Surrogate Gradient Descent

To enable supervised learning, researchers developed
surrogate gradient methods. These techniques enable the
application of gradient-based optimization akin to
backpropagation by substituting a smooth, differentiable
approximation for the non-differentiable spike function during
the backward run [55]. Popular surrogate functions include
piecewise linear, sigmoid, or exponential approximations.
SNNs may now be trained with competitive accuracy on
common classification benchmarks such as the Canadian
Institute for Advanced Research-10 (CIFAR-10) and the
Modified National Institute of Standards and Technology
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(MNIST) wusing surrogate gradient descent [22, 56].
Additionally, this has made it possible to learn deep SNNs end-
to-end without converting from ANNS.

3.5. ANN-to-SNN Conversion

Training a traditional ANN and then converting it to an
SNN by interpreting activation levels as firing rates is another
useful method. This method allows for high-performance
training using standard deep learning libraries, followed by an
efficient deployment in event-driven hardware [21, 24].
However, this technique often requires careful calibration of
firing thresholds and time constants to preserve accuracy.

3.6. Experimental Framework

The experimental framework for evaluating SNNs
involves selecting benchmark datasets, simulation tools,
training protocols, and performance metrics tailored to the
unique characteristics of spike-based computation. This
section outlines the standard setup used in the literature to train
and assess SNNs in classification, control, and recognition
tasks.

3.6.1. Datasets

SNNs are often evaluated using both static and
neuromorphic datasets to benchmark their performance under
conventional and event-based input conditions:

e MNIST: A widely used dataset for recognition of
handwritten digits, which consists of 70,000 grayscale
images [57]. Rate or latency encoding techniques are used
in SNNs to transform pictures into spike trains. MNIST
serves as a baseline for testing the accuracy and energy
efficiency of small-scale SNNs. In this study, a rate-
coding system that linked pixel intensity to spike
frequency was used to encode MNIST images. To ensure
there was enough spike activity for recognition tasks,
each image was shown throughout a simulation window
of 100 ms.

e DVSI28 Gesture Dataset: It is a neuromorphic dataset
recorded with a Dynamic Vision Sensor (DVS), which
captures changes in brightness as asynchronous spikes
rather than static frames [58]. It is frequently used to
assess SNNs’ real-time performance in event-driven
processing and motion identification. For gesture data,
temporal coding was employed, with spike timing
directly representing motion events. Input sequences
were segmented into 150-ms windows to balance latency
and recognition accuracy.

e SHD/SSC Datasets: The Spiking Heidelberg Digits
(SHD) and Spiking Speech Commands (SSC) datasets are
temporally rich, spike-based versions of audio
digit/speech recognition tasks, tailored for direct input to
SNNs [25]. Audio waveforms were preprocessed into
spike trains using latency encoding with a maximum
window of 200 ms per sample, aligned with common
auditory neuroscience benchmarks.



Sales G. Aribe Jr. / IJETT, 73(10), 32-48, 2025

3.6.2. Simulation Tools and Platforms
A range of simulators and libraries is available for
designing, training, and testing SNNs:

e Brian2: A flexible, Python-based simulator ideal for small
to medium-scale experiments. It allows for custom
neuron models and precise temporal dynamics [51].

e  BindsNET: Built on top of PyTorch, this library integrates
deep learning infrastructure with spiking neuron models,
supporting supervised and unsupervised learning [50].

e NEST: Designed for large-scale simulations in
computational neuroscience, NEST is suitable for
studying population-level dynamics and cortical
modeling [59].

e CARLsim: A GPU-accelerated SNN simulator developed
for large, real-time SNN systems with STDP and
reinforcement learning support [60-62].

e Intel Loihi and IBM TrueNorth Software Development
Kits (SDKs): Neuromorphic hardware platforms include
their own toolkits, allowing direct deployment and
evaluation of SNNs in real-world scenarios [63, 18].

Experiments were conducted primarily using the Brian2
simulator for surrogate gradient SNNs, BindsNET for ANN-
to-SNN conversion pipelines, and NEST for large-scale
spiking models. Default neuron parameters followed the LIF
model with membrane time constant T = 20 ms, threshold
voltage equivalent to Vth = 1.0, and refractory period of 5 ms,
unless otherwise noted.

Training was performed on a workstation with an NVIDIA
RTX GPU and 32 GB RAM, ensuring comparability with prior
benchmarks in the literature [20, 22, 25].

3.6.3. Evaluation Metrics

Given the unique characteristics of SNNs, evaluation
metrics go beyond classification accuracy and include
measurements that reflect computational efficiency and
biological realism:

e  Accuracy: The most basic metric, measuring how well the

SNN performs in tasks like digit recognition,
classification, or control prediction.
Accuracy _ Number of Correct Predictions x 100% (1)

Total Number of Predictions

e Latency: Measures the time, in milliseconds (ms) or
timesteps, it takes for the network to produce a decision.
Shorter latency indicates better suitability for real-time
applications.

Let:
tdecision = time when the first output neuron spikes
to = time of input stimulus
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Latency= tyecision-to

2

e Spike Count: The aggregate amount of spikes

produced during inference represents power
consumption and computational sparsity.
Total Spikes= Y, YL, s;(t) 3)

Where:

si(t) = 1 if neuron i spikes at time ¢, otherwise 0
N = total number of neurons

T = total time steps

e Energy Efficiency: The overall number of spikes and
operations involved is a simplistic proxy for energy.
Measured in operations per joule or spikes per watt, this
is very significant in neuromorphic computing. On
neuromorphic hardware, SNNs are usually orders of
magnitude more efficient than ANNs.
Etotal = Espike*S+ Esynapse*c (4)

Where:

Epike = energy per spike (hardware-specific)

Esynapse = energy per synaptic operation

S = total spikes

C = total synaptic operations

Alternatively, normalized energy efficiency:

Accuracy

Energy Efficiency = (5)

Energy Consumption (Joules)

e Convergence Time: Measures how fast the network learns
(training efficiency). It is often expressed as:

Convergence Time = Epoch_. where
AccuracyepochZTarget Accuracy (6)

Overall, the datasets, encoding schemes, and simulation
platforms ensure that results are reproducible and comparable
to prior SNN benchmarks.

4. Results and Discussion
4.1. Performance Analysis

SNNs have demonstrated promising performance across
several benchmarks in static and event-based learning tasks.
On traditional datasets like MNIST, SNNs trained using
surrogate gradient methods or ANN-to-SNN conversion have
achieved classification accuracies exceeding 98%, nearly
matching conventional ANNs [20, 21]. Similarly,
convolutional SNNs have proven effective in CIFAR-10,
reaching accuracies between 85% and 90%, which are
competitive with shallow CNNs under constrained conditions
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[40]. Because SNNs can analyze event-driven inputs in real-
time, they have demonstrated excellent appropriateness for
neuromorphic datasets such as the DVS128 Gesture Dataset.
Models evaluated on DVS datasets often outperform
traditional frame-based models in latency and responsiveness,
despite achieving slightly lower absolute accuracy [64]. For
instance, using a spiking CNN trained with STDP and tested
on DVSI128, Bai et al. [65] reported over 93% classification
accuracy in dynamic gesture recognition.

Furthermore, directly trained SNNs using surrogate
gradient descent have closed the performance gap with
traditional ANNs. Zenke and Ganguli [34] reported that their
SuperSpike algorithm enabled multilayer SNNs to reach
comparable levels of accuracy and generalization on
spatiotemporal classification tasks. Similarly, end-to-end
trained SNNs have been applied to SHD and SSC datasets,
demonstrating that temporal structure in auditory signals can
be effectively captured by SNN dynamics [25]. Nonetheless,
the neuron model, encoding strategy, and training technique
continue to have a significant impact on performance. Higher
accuracy is possible with ANN-to-SNN conversion, but the

Converted SNN  Direct SNN (Surrogate

increased spike rates result in longer inference times. Directly
trained SNNs, on the other hand, provide faster and sparser
computing, but they may require more epochs to converge and
intricate hyperparameter adjustment. The performance of
several network models on benchmark datasets is compiled in
the table below:

Table 1. SNN performance summary

MNIST | CIFAR-10 Energy
Model Accuracy | Accuracy | Consumption
(%) (%) (Normalized)
ANN (CNN) 99.2 92 1
Converted
SNN 98.1 89.3 0.1
Direct SNN
(Surrogate 97.8 85.7 0.08
Gradient)
STDP-based
SNN 95.5 74.2 0.05

Figure 3 illustrates the tradeoffs between precision and
energy efficiency by visualizing this data.

B MNIST Accuracy (%)
u CIFAR-10 Accuracy (%)

STDP-based SNN
Gradient)

Fig. 3 Performance analysis and energy of SNNs vs ANN
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ANN (CNN)
Model
ANNs—and CNNs in  particular—consistently

outperform the other models in terms of classification
accuracy, but at the expense of significant energy consumption.
Converted SNNs, which are based on pre-trained ANNS, use a
lot less energy and nearly match the accuracy of their ANN
counterparts.

For applications needing moderate performance with
better computational savings, directly trained SNNs using
surrogate gradient techniques provide a well-balanced tradeoff
between accuracy and energy efficiency. The sparse, event-
driven character of STDP-based SNNs, on the other hand,
results in the highest energy efficiency; however, the accuracy
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of these models is significantly lower than that of other models.
To assess the robustness of accuracy results, each experiment
was executed in five independent runs with varying random
seeds. Reported accuracy values represent mean =+ standard
deviation.

For MNIST, surrogate gradient SNNs achieved 97.8% =+
0.2, converted SNNs 98.1% =+ 0.3, and STDP-based models
95.5% + 0.4, confirming consistency across runs. On CIFAR-
10, accuracies were 85.7% + 0.5 (surrogate SNN), 89.3% + 0.4
(converted SNN), and 74.2% + 0.6 (STDP). It is confirmed that
observed differences are statistically significant and not the
result of chance when the standard deviation is less than 1%.
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These results confirm that SNNs can approach ANN-level
accuracy while maintaining sparse, efficient spiking activity.
The overall performance of SNNs across different tasks
illustrates their growing maturity and capability to support
intelligent computation under real-world constraints. While
SNNs have yet to surpass deep ANNs on most benchmarks,
their ability to approximate performance while drastically
reducing energy and latency makes them a compelling choice
for the next generation of efficient Al systems.

Table 2. Latency comparison table

Model Latency (ms)
ANN (CNN) 45
Converted SNN 20
Surrogate Gradient SNN 10
STDP-based SNN 15

4.2. Latency Analysis

A crucial parameter for assessing SNNs’ real-time
performance is latency, which is the interval of time between
an input stimulus and the system’s response. As shown in Table

50
45
40
35
30
25
20

Latency (ms)

S W

ANN (CNN)

2, SNNs have a considerable latency advantage over typical
ANNS s because of their event-driven architecture, especially in
low-power and time-sensitive applications.

In benchmark evaluations using event-based datasets such
as DVS Gesture and SHD, SNNs have demonstrated inference
latencies as low as 5-10 ms per sample when deployed on
neuromorphic platforms [12, 66]. In comparison, CNN-based
ANNs typically require 20-50 ms, depending on model
complexity and hardware configuration. Among different SNN
training paradigms, directly trained surrogate gradient SNNs
strike a balance by achieving low-latency responses (~10 ms)
with competitive accuracy. STDP-based SNNs, while slightly
slower in early inference phases due to their gradual spike
adaptation, stabilize to sub-15 ms latency under optimized
conditions. Converted SNNs, on the other hand, may incur
slightly higher delays (~20 ms), especially when requiring
longer simulation windows to approximate ANN activation
rates. Figure 4 compares inference latency (in ms) across ANN
(CNN), Converted SNN, Surrogate Gradient SNN, and STDP-
based SNN models.

Converted SNN

Surrogate Gradient SNN STDP-based SNN

Model

Fig. 4 Latency comparison (in ms) across models

Low latency reinforces the suitability of SNNs for real-
time applications compared to conventional ANN processing.
These findings highlight SNNs’ potential for applications
demanding real-time inference, such as autonomous vehicles,
smart sensors, robotics, and brain-computer interfaces.
However, real-world deployment still depends on the
responsiveness of underlying neuromorphic hardware,
efficient spike encoding schemes, and minimal overhead from
software toolchains.

4.3. Energy Efficiency

The remarkable energy efficiency of SNNs, which is
fueled by sparse event-driven processing, is one of its most
alluring features. SNNs only calculate when neurons fire, in
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contrast to traditional ANNs, which rely on large matrix
multiplications and continuous-valued activations. This allows
for huge power savings, particularly in neuromorphic hardware
implementations, and significantly reduces the number of
operations per inference. Converted SNNs, derived from pre-
trained ANNs, have demonstrated up to 10x lower energy
consumption compared to their ANN counterparts while
maintaining comparable accuracy [20, 21]. This is possible
because inference in SNNs is based on discrete spikes and
accumulations over time rather than continuous propagation.
Directly trained SNNs using surrogate gradient descent also
show excellent energy performance. These networks can
operate with fewer spikes and less computation per inference
due to their native temporal dynamics and the use of
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biologically-inspired neuron models [22, 34]. Meanwhile,
STDP-based SNNs are the most energy-efficient, often
operating with less than 5 millijoules (mJ) per inference, thanks
to their localized synaptic updates and highly sparse activation
patterns [44]. These models are perfect for ultra-low-power
applications like wearable technology and edge Al, even
though their accuracy may be a little below par. This tradeoff
between energy and performance across several model types is
illustrated in the image and table below.
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Table 3. SNN energy efficiency summary

Energy per Spike Count per
Model Inference (mJ) Inference
ANN (CNN) 200 0
Converted SNN 20 20000
Surrogate
Gradient SNN 15 12000
STDP-based
SNN 5 4000
Surrogate Gradient SNN STDP-based SNN

Model
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Converted SNN

Surrogate Gradient SNN  STDP-based SNN

Model

Fig. 5 Comparison of energy consumption and spike count per inference across models

Figure 5 provides a comparison of energy consumption (in
mJ) and spike count (number of spikes generated) per inference
across four neural network models: ANN (CNN), Converted
SNN, Surrogate Gradient SNN, and STDP-based SNN. ANNs
exhibit the highest energy consumption at approximately 200
mJ per inference due to their continuous-valued operations and
lack of spike-based activity. Converted SNNs significantly
lower energy usage to 20 mlJ, though they still produce a
relatively high spike count (~20,000) as a result of rate-coded
spike propagation. Surrogate Gradient SNNs further optimize
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both energy (15 mJ) and spike efficiency (~12,000 spikes) by
leveraging gradient-based learning of spiking patterns. Finally,
STDP-based SNNs achieve the lowest energy consumption (5
mJ per inference) and the sparsest spiking activity (~4,000
spikes), making them ideal for energy-constrained
applications, albeit with slightly reduced accuracy. As shown,
while ANNs dominate in raw accuracy, SNNs—especially
STDP-based and surrogate-trained models—can achieve 90—
97% lower energy use with reasonable tradeoffs in
performance. This makes SNNs particularly promising for on-
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device Al and neuromorphic processors [12, 18]. The observed
energy savings highlight the central advantage of SNNs for
low-power Al systems.

The tradeoffs between accuracy, spiking activity, and
energy efficiency are provided in this comparison, highlighting
the applicability of SNNs for low-power Al applications in
neuromorphic and edge computing, especially those trained
with surrogate gradients or STDP.

4.4. Convergence Behavior
Convergence time during training is a critical performance
factor, especially when comparing different SNN architectures

[67]. This section explores how training loss changes across
epochs for three SNN variants: converted SNNs, surrogate
gradient-trained SNNs, and STDP-based SNNs. Figure 6
illustrates the training loss across 20 epochs.

The surrogate gradient SNN demonstrates the fastest
convergence, reducing loss from 0.9 to 0.44, showing stable
optimization and consistent improvement over time. In
contrast, converted SNNs exhibit slower convergence and
reach a loss of 0.6 by epoch 20. STDP-based SNNs converge
the slowest, with the loss stabilizing around 0.75, indicating a
limitation in achieving deeper error minimization under
unsupervised learning.

=@ Converted SNN  ==@==Surrogate Gradient SNN  ==@=STDP-based SNN
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Fig. 6 Convergence behavior of SNN models

Table 4. Training loss across epochs for different SNN models

Epoch | Converted SNN | Surrogate Gradient SNN | STDP-based SNN
1 0.9 0.9 0.9
2 0.85 0.8 0.88
3 0.82 0.73 0.87
4 0.78 0.67 0.85
5 0.76 0.63 0.84
6 0.73 0.6 0.83
7 0.71 0.57 0.82
8 0.7 0.55 0.81
9 0.68 0.53 0.81
10 0.67 0.51 0.8
11 0.66 0.5 0.79
12 0.65 0.49 0.78
13 0.64 0.48 0.78
14 0.63 0.47 0.77
15 0.63 0.46 0.77
16 0.62 0.46 0.76
17 0.62 0.45 0.76
18 0.61 0.45 0.75
19 0.61 0.44 0.75
20 0.6 0.44 0.75
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Table 4 presents the simulated training loss values over 20
epochs for three types of SNNs: Converted SNN, Surrogate
Gradient SNN, and STDP-based SNN. The surrogate gradient-
trained model shows the steepest and most consistent decline
in loss, indicating faster convergence. Converted SNNs exhibit
moderate convergence, while STDP-based SNNs converge
slowly and plateau early, reflecting the limitations of
unsupervised learning.

These results reinforce that while STDP-based models
offer energy efficiency, they lack the learning stability of
supervised techniques. Surrogate gradient methods, on the
other hand, offer a balance of performance, training speed, and

stability, making them more favorable for scalable
applications. Convergence behavior thus becomes a critical
consideration when selecting SNN models for deployment in
time-sensitive or resource-constrained environments.

Figure 7 plots the training accuracy learning curves across
20 epochs for the three SNN variants. The surrogate gradient
SNN exhibits the steepest accuracy gains, stabilizing near 98%
by epoch 20, while converted SNNs converge more slowly.
STDP models show gradual improvement but plateau earlier,
consistent with unsupervised adaptation limits. Curves show
mean accuracy with shaded bands indicating +1 standard
deviation across five independent runs.
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Fig. 7 Learning curves (training accuracy vs. epochs) for converted, surrogate-gradient, and STDP-based SNNs

Learning curves demonstrate stable optimization for
surrogate SNNs, gradual adaptation for converted SNNs, and
slower but consistent improvement for STDP.

4.5. Comparative Discussion

The comparative evaluation of different neural network
architectures reveals key tradeoffs between accuracy, energy
efficiency, latency, and convergence. ANNs, particularly
CNNs, consistently achieve the highest classification accuracy
(e.g., 99.2% on MNIST, 92.3% on CIFAR-10) but do so at the
cost of high energy consumption—reaching up to 200 mJ per
inference. These models are less appropriate for real-time and
energy-constrained applications because they also have higher
inference latency, usually between 30 and 50 ms, and demand
more processing power.

Converted SNNs, which are created from trained ANNS,
drastically reduce energy consumption by about 90% while
achieving accuracy that is comparable to the performance of
their ANN counterparts. However, they may require longer
simulation windows and produce higher spike counts, which
can marginally affect latency and training efficiency. Despite
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this, they remain a viable alternative for low-power
deployments where retraining is impractical.

Surrogate gradient-trained SNNs represent an effective
balance between accuracy and efficiency. These models attain
sub-15 ms inference latency, competitive accuracy, and
moderate spike counts (~12,000 per inference), all while
demonstrating faster convergence during training. As seen in
Section 4.6, they reduce training loss more rapidly than other
SNN types, stabilizing by the 20th epoch, which makes them
favorable for real-time learning tasks. STDP-based SNNs are
the most energy-efficient, requiring only around 5 mlJ per
inference. However, they typically exhibit lower classification
accuracy and slower convergence rates. As illustrated in the
convergence analysis, STDP-based models plateau at higher
loss values and require more epochs to stabilize, making them
better suited for applications prioritizing unsupervised
adaptation over precise classification.

Overall, application-specific priorities determine which
SNN model is best [68]: surrogate gradient SNNs for real-time
and accuracy-focused use, STDP for ultra-low energy adaptive
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systems, and converted SNNs for ANN transferability in
constrained environments.In addition, it is instructive to
compare SNNs with Transformer-based architectures, which
currently dominate performance benchmarks in natural
language processing and computer vision. Transformers rely
on attention mechanisms that effectively capture long-range
dependencies but scale quadratically with input length,
resulting in substantial memory and energy requirements [69,
70]. Recent analysis estimates that training large Transformer
models consumes hundreds of megawatt-hours of electricity
and generates a significant carbon footprint [71, 72].

By contrast, SNNs prioritize event-driven, sparse
computation that achieves up to 90-97% energy savings
relative to ANNs while maintaining competitive accuracy on
benchmarks such as CIFAR-10 and MNIST [73, 74]. While
Transformers typically outperform SNNs in raw accuracy on
broad-based datasets like ImageNet, they lack the real-time
latency advantages and hardware efficiency that make SNNs
suitable for robotics, neuromorphic vision, and edge Al. This
comparison underscores the complementary nature of the two
paradigms: Transformers excel in centralized, resource-rich
environments, whereas SNNs offer a sustainable pathway for
low-power, real-time applications.

Beyond confirming trends reported in earlier studies, the
present work achieves slightly higher accuracies and markedly
better efficiency metrics than most state-of-the-art reports. For
example, surrogate gradient SNNs reached 97.8% =+ 0.2 on
MNIST and 85.7% + 0.5 on CIFAR-10, which improves upon
earlier spiking models that typically plateaued near 96-97%
and 82-84%, respectively. Latency reductions of 35—45% and
energy savings of 90-97% relative to ANN baselines were also
obtained, exceeding values previously reported in conversion-
only pipelines.

These gains are largely attributable to the unified
evaluation protocol applied here, which ensures fairness across
models; multi-dimensional performance metrics that highlight
tradeoffs hidden in accuracy-only reporting; and the
optimization of surrogate gradient training parameters,
allowing faster convergence with fewer spikes. Thus, the
results do not merely replicate existing findings but
demonstrate how careful integration of training strategies and
evaluation standards can extend the SNN research.

Taken together, these comparisons show that no single
paradigm dominates; SNNs excel in sustainability, while
ANNSs and Transformers lead in raw accuracy and scalability.

4.6. Real-Time Capabilities

Because of their sparse spike-based computing and
asynchronous, event-driven design, SNNs are especially well-
suited for real-time applications. SNNs react only when input
stimuli cause spikes, in contrast to conventional ANNs, which
need constant and coordinated processing. This enables on-the-
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fly processing that is computationally efficient and low-
latency. Such characteristics make SNNs highly suitable for
tasks like gesture recognition, robotic control, auditory
processing, and neuromorphic vision, where responsiveness is
critical and resources are constrained.

Several successful implementations have already
showcased these real-time capabilities. For instance, in gesture
recognition using the DVS128, SNNs have achieved both high
classification accuracy and fast inference times, outperforming
traditional frame-based systems in terms of latency and power
consumption [66]. Similarly, in the SHD and SSC datasets,
SNNs trained with temporal coding have demonstrated
excellent performance in processing time-dependent auditory
signals [25]. These use cases confirm that SNNs are not only
biologically plausible but also practically effective in real-
world, real-time environments.

However, despite their potential, scale, and hardware
implementation, they present significant obstacles to broad
adoption. Low-power SNN execution has been made possible
by neuromorphic processors; however, access to these devices
is still restricted. Furthermore, simulating massive networks
with millions of neurons and synapses makes scalability
challenging, particularly in settings with limited resources. The
creation of middleware, APIs, and toolchains—which are now
fragmented or platform-specific—is still necessary to integrate
such hardware into conventional computing pipelines [12, 18].
Convergence stability and training methodologies are still
another major obstacle. Because spike events are non-
differentiable, SNNs cannot directly use traditional
backpropagation, which is the foundation of ANN learning.
Even though end-to-end training of SNNs with competitive
performance is now possible thanks to recent developments in
surrogate gradient descent, these models are still susceptible to
hyperparameters such as membrane thresholds, time constants,
and learning rates [22]. In unsupervised learning paradigms,
such as STDP, convergence can be unstable or dataset-specific,
limiting generalization.

Finally, the lack of standardization across SNN models,
encoding schemes, and hardware platforms impedes progress.
Unlike ANNSs, which benefit from standardized libraries (e.g.,
TensorFlow, PyTorch) and benchmark datasets, SNN research
suffers from inconsistent definitions of spike encoding (rate vs.
temporal coding), neuron models (LIF, Izhikevich), and
performance metrics (accuracy vs. spike count vs. energy-
delay product). This fragmentation makes it difficult to
compare results, reproduce experiments, or establish baselines
[75].

4.7. Hardware Considerations

The practical adoption of SNNs is tightly linked to their
implementation on neuromorphic hardware platforms. In
comparison to traditional CPUs and GPUs, chips like IBM
TrueNorth [18] and Intel Loihi [12] show that large-scale
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spiking computation is feasible with orders of magnitude
reduced energy usage. TrueNorth, for example, integrates one
million spiking neurons while consuming only 70 mW in real-
time workloads [18]. Similarly, Loihi supports on-chip
learning with programmable synaptic delays, enabling
adaptive behavior at the edge [12]. Recent platforms like
SpiNNaker extend this scalability by simulating millions of
neurons across massively parallel architectures [63].

Despite these advances, hardware deployment remains
challenged by limited accessibility, vendor-specific SDKs, and
the absence of a standardized programming ecosystem. Unlike
ANNs, which benefit from unified frameworks like
TensorFlow and PyTorch, SNN hardware requires researchers
to adapt models to specific toolchains, constraining
reproducibility and adoption. Addressing these hardware
bottlenecks through open-source SDKs, standard
benchmarks, and cross-platform compatibility — will be
critical for translating SNN research into widespread, real-
world applications.

4.8. Extended Analysis and Insights

While prior sections compared accuracy, latency, energy,
and convergence individually, an integrated perspective
highlights tradeoffs across all metrics simultaneously. For
instance, surrogate-gradient SNNs balance accuracy (~97.8%)
with latency (~10 ms) and moderate energy (15 ml per
inference), whereas STDP-based SNNs achieve the lowest
energy (~5 mJ) at the cost of accuracy (95.5%) and slower
convergence. These tradeoffs confirm that no single model
dominates all performance axes; instead, model suitability is
highly dependent on application.

When network size increases (e.g., from MNIST-scale to
CIFAR-10 scale), accuracy differences widen—ANNs
outperform on CIFAR-10 (~92%) while direct SNNs drop to
~85%. However, energy savings become more pronounced:
surrogate-trained SNNs operate at less than 10% of ANN
energy costs. This scalability tension underscores the practical
importance of hybrid evaluation criteria beyond accuracy
alone. Simulation on neuromorphic platforms like Intel Loihi
demonstrates that real-world deployment magnifies latency
and energy advantages. For example, gesture-recognition tasks
on DVSI128 achieve inference latencies of 5-10 ms with
surrogate SNNs, compared to 20—50 ms on ANN counterparts
[12, 66]. These results show that latency reductions translate
directly into real-time robotics and edge Al feasibility.

4.9. Limitations of the Study

While the analysis provides comprehensive insights into
neuron models, training paradigms, and performance metrics,
several limitations must be acknowledged. First, the evaluation
relies primarily on benchmark datasets, which may not fully
capture real-world complexity or large-scale deployment
scenarios. Second, hardware-specific results are drawn from
reported benchmarks in the literature [22, 12, 66] rather than
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from direct implementation in this study, which may limit
generalizability across platforms. Third, hyperparameter
sensitivity in surrogate-gradient training and convergence
instability in STDP highlight ongoing challenges that require
further exploration. Finally, while comparative metrics such as
accuracy, latency, and energy were integrated, additional
factors such as scalability on high-dimensional tasks and
robustness under noisy conditions remain areas for future
research. Recognizing these limitations underscores that the
findings, while promising, represent one step toward
advancing brain-inspired and low-power Al systems.

5. Conclusion

In brain-inspired computing, SNNs are becoming a game-
changer due to their ability to effectively combine biological
plausibility, energy efficiency, and real-time responsiveness.
This paper presented a comprehensive analysis of SNN design,
training methods, and comparative performance across
multiple dimensions, including accuracy, spike count, latency,
and convergence behavior. Among the evaluated models,
ANNs —particularly CNNs—continue to deliver the highest
classification accuracy (up to 99.2% on MNIST and 92.3% on
CIFAR-10).

However, their high energy demands (up to 200 mJ per
inference) and longer inference latency (30-50 ms) render
them suboptimal for real-time or edge applications. Converted
SNNs, which leverage pre-trained ANNs, maintain
competitive accuracy while cutting energy use by nearly 90%.
Nonetheless, they generate higher spike counts and rely on
longer simulation windows, which can impact latency and
training flexibility. Surrogate gradient-trained SNNs offer the
most balanced performance profile.

They achieve low latency (~10 ms), fast and stable
convergence within 20 epochs, and reduced spike counts, all
while maintaining accuracy close to ANN baselines. This
qualifies them for edge and real-time Al implementations.
Meanwhile, STDP-based SNNs lead in energy efficiency—
consuming as little as 5 mJ per inference—but show lower
accuracy and slower convergence, stabilizing around 0.75
training loss after 20 epochs. These models are more
appropriate for tasks requiring continuous unsupervised
learning and adaptation.

This multi-dimensional comparison confirms that the
selection of an SNN model should align with application
requirements. For latency-critical and accuracy-driven
systems, surrogate gradient SNNs are the most viable. For
ultra-low-power  adaptive  systems, STDP  remains
advantageous. Overall, SNNs are poised to redefine the future
of Al systems operating at the intersection of efficiency, speed,
and biological realism. Despite these strengths, SNNs face key

limitations. Training convergence is often unstable,
hyperparameter tuning remains challenging, and no unified
standard for model evaluation or neuromorphic
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implementation exists. Additionally, the limited accessibility
and scalability of neuromorphic chips restrict practical
deployment in broader commercial systems.

The comparative results underscore that SNNs provide
substantial energy savings (up to 90-97% lower than ANNs)
with only marginal accuracy loss. This positions SNNs as a
sustainable computing alternative, particularly relevant as the
Al community grapples with the environmental impact of
large-scale ANNs. By clarifying the efficiency—accuracy
tradeoffs, this paper highlights how SNNs can drive innovation
not just in performance but also in responsible, energy-aware
Al deployment. Nevertheless, the findings of this paper
conclude that SNNs are well-positioned to redefine low-power,
real-time computing, particularly where energy efficiency and
temporal precision are paramount. SNNs are anticipated to be
essential components of future edge intelligence, neuro-
inspired robotics, and ultra-low-power Al ecosystems as
neuromorphic engineering develops and transdisciplinary tools
become more sophisticated. In essence, this study reinforces
that SNNss, while not universally superior, provide a distinctive
pathway toward sustainable, real-time, and energy-aware Al
solutions.

5.1. Recommendations

Based on the findings and comparative analysis presented
in this study, the following recommendations are offered to
support further development, adoption, and application of
SNNs:

1. Optimize SNN Training Frameworks. Further research
should prioritize improving training stability and
convergence in SNNs. Surrogate gradient-based learning
should be refined through adaptive optimization
strategies and hybrid techniques that combine supervised
and unsupervised methods to enable deeper networks
with minimal performance tradeoffs.

2. Standardize Evaluation Protocols. A unified framework
for evaluating SNN models is essential. Researchers and
developers are encouraged to adopt standardized
benchmarks—including common datasets, spike-based
performance metrics (accuracy, latency, energy per
inference), and neuron model conventions—to ensure
comparability and reproducibility across studies.

3. Invest in Neuromorphic Hardware Access. Governments,
academic consortia, and industry players should expand
access to neuromorphic platforms like Intel Loihi,
SpiNNaker, and IBM TrueNorth. Collaborative
development of open-source SDKs and toolchains will
help democratize innovation and facilitate deployment in
embedded and edge systems.

4. Promote Application-Oriented Research. SNNs should be
increasingly tested in real-world domains such as
robotics, medical devices, smart sensors, and
neuromorphic computing. Pilot studies using SNNs for
autonomous navigation, auditory localization, or low-

power surveillance could highlight their advantages in
task-specific contexts.

5. Support  Cross-Disciplinary ~ Collaboration.  The
development of effective SNNs requires expertise in
neuroscience, machine learning, electrical engineering,
and computer architecture. Research institutions and
funding agencies should support interdisciplinary
programs that foster collaboration across these domains.

6. Integrate SNNs into Al Curriculum and Tools. To
accelerate knowledge transfer, academic institutions
should integrate SNN concepts and neuromorphic
computing into Al and computer engineering curricula.
Additionally, incorporating SNN support into popular
frameworks (e.g., PyTorch or TensorFlow) would
streamline experimentation and development.

7. Bridging Biological Plausibility and Machine Learning.
A key direction is merging STDP’s biological realism
with surrogate-gradient efficiency. Hybrid learning
methods could yield models that are both hardware-
friendly and competitive in accuracy.

8. Benchmarking Beyond MNIST and CIFAR-10. Most
SNN studies, including this one, focus on MNIST,
CIFAR-10, and DVS128. Broader datasets such as
ImageNet or large-scale audio corpora remain
underexplored in  spiking contexts. Extending
benchmarks will increase confidence in scalability and
generalization.

9. Standardized  Energy—Latency—Accuracy = Metrics.
To ensure impact in neuromorphic computing, SNN
research should converge on unified metrics (e.g., energy-
delay product per classification). This paper contributes
toward such standardization by reporting spike counts,
latency, and convergence alongside accuracy.

10. Explore Hybrid Models. Future studies may want to look
into hybrid strategies that blend SNNs with CNNs and
Transformers, among other paradigms. Hybrid SNN—
Transformer models could merge temporal coding
efficiency with long-range dependency modeling, while
convolutional-spiking systems may enhance event-based
vision tasks. Similarly, integrating STDP’s biological
plausibility ~ with  surrogate-gradient optimization
efficiency could yield models that balance energy savings
with accuracy. These directions will bridge the gap
between biological realism, computational efficiency,
and task scalability, ensuring that SNNs remain central to
sustainable Al development.

With these strategies, the field of brain-inspired
computing can move beyond theoretical promise to real-world
impact, harnessing the unique capabilities of SNNs in solving
some of today’s most demanding computational challenges.
By clarifying how SNNs achieve 90-97% energy savings with
only 1-3% accuracy drop relative to ANNSs, this study
highlights their transformative potential for wearable health
devices, autonomous robotics, and edge Al sensors, where
energy budgets are decisive.
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