
International Journal of Engineering Trends and Technology                                Volume 73 Issue 1, 410-430, January 2025 

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I1P135                                          © 2025 Seventh Sense Research Group®  
  

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Optimizing Quality of Service and Energy Efficiency in 

Hazardous Drone Ad-Hoc Networks (DANET) Using 

Kingfisher Routing Protocol (KRP)  

J. Ramkumar1, V. Valarmathi2, R. Karthikeyan3 

1Department of Computer Science, Apex Professional University, Arunachal Pradesh, India. 
2Department of Computer Science, Sri Krishna Arts and Science College, Tamil Nadu, India. 

3Department of Computer Technology, Sri Krishna Adithya College of Arts and Science, Tamil Nadu, India. 

1Corresponding Author : drjramkumarphd@gmail.com 

Received: 22 August 2024           Revised: 11 December 2024       Accepted: 17 December 2024        Published: 31 January 2025

Abstract - Communication networks in hazardous environments present additional problems to problems already encountered 

in terrain and environment, often unpredictable and extreme. The time and reliability of data communication for critical 

operations become necessary. When traditional networks fail, there is a need for real-time communication, and this is exactly 

the utility of Drone Ad-hoc Networks (DANET). DANET is relevant in search and rescue, surveillance, and emergency response. 

Routing in DANET has particularly difficult characteristics in that continuous coverage and stable communication links are 

hard. On top of this, high drone mobility, frequent network topology changes, and scarce power resources make it difficult to 

realize reliable data transmission with low power consumption simultaneously. To address them, presenting the Kingfisher 

Routing Protocol (KRP). The network modifies paths over time according to real-time conditions. This is a dynamic problem. 

Based on continuously monitored position, signal strength, and network density, the protocol dynamically reconfigures routes 

that maximize energy efficiency while providing Quality of Service (QoS). KRP uses advanced algorithms based on the behavior 

of kingfishers that maximize efficiency by making drones pick the best routes (load balancing and energy efficiency, respectively). 

Link failures can be detected, and recovery can be made robust through the protocol incorporation of pre- and post-mechanisms 

that handle them. Simulation shows that KRP achieves significant performance improvement (critical performance indicators: 

packet delivery ratio, latency, energy efficiency, and link stability). The enhancement of these outlines KRP's capability to 

enhance DANET activities within harsh environments, providing dependable and energy-efficient communication. 

Keywords - Drones, Ad-hoc Networks, Disaster Management, Energy Efficiency, Routing Protocol, Kingfisher Routing Protocol. 

1. Introduction 
The ability of Drones Ad-hoc Networks (DANET) to 

form self-organizing drones capable of a more tolerant 

communication system is expected to change various 

industries. Such a network can self-form and respond to real-

time performance changes in complex environments. Thus, 

DANETs have a lot of promise in boosting the overall 

effectiveness of smart cities, especially in traffic surveillance 

and management, checking intracultural health and security, 

etc. DANETs can improve precision farming approaches by 

delivering and sharing details of crop and climate scouting [2]. 

Further embracing and embedding new technologies like AI 

and ML in DANET’s performance and usability in various 

industries are ensured [3]. 

Hazardous DANET corresponds to drones operating in 

conditions where conventional communication poses great 

difficulties due to the prevailing circumstances. 

Communication in these networks must be based on protocols 

allowing end-to-end connectivity despite cyclic 

interconnectivity interruption and dynamic network structure 

[4]. Scalability and adaptability are important to failures; the 

failure of one or more locations in the network does not disrupt 

the data flow. The energy resources of drones must be 

managed carefully; therefore, the routing paths that the 

protocols must use must be optimized to reduce energy usage. 

Protocols need to ensure latency while at the same time 

ensuring that they support the scalability for increased 

numbers of drones without degrading the performance of the 

network [5]. Reducing energy usage while providing 

consistent and reliable links to the other nodes increases the 

network's lifetime. 

Routing in the future of DANET thus holds the next big 

chance of being developed by incorporating new things such 

as machine learning and artificial intelligence. These 
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technologies improve routing protocols by estimating 

topological changes influenced by drone motion and 

environmental conditions [6]. Algorithms used in predictive 

technology enhance routing, minimizing latency and 

increasing the efficiency of the network. Since drones have 

restricted battery life, energy-efficient routing methods 

require significant focus. Reducing power consumption while 

preserving dependable links enhances the network’s 

functionality and useful life [7]. The technological 

development in the sensors used and the real-time monitoring 

of the networks allow for an easier and more detailed 

understanding of the status of the network at times of routing. 

The evolution of such technologies shows that DANET can be 

made more effective, versatile, and capable of meeting the 

needs of a great field of many applications, from smart cities 

to environmental sensing [8, 9]. 

1.1. Problem Statement 

With limited battery life for drones, energy consumption 

management is an important challenge. Drones use routes 

excessively, often requiring rerouting and retransmitting lost 

data, which can translate into inefficient routing protocols. It 

shortens the life of individual drone operations and reduces the 

efficiency of the entire network. Energy efficiency and 

reliable data transmission are challenging for the high mobility 

and dynamic DANETs. Environmental factors like speed 

airflows can make drones suddenly change direction and 

further trash their energy resources. Given the continuous 

route adjustment and corresponding increase in energy 

consumption required for DANETs, energy-efficient routing 

protocols are needed to address the challenges associated with 

DANETs. 

1.2. Motivation 

The limited battery life of drones directly impacts their 

operational longevity and effectiveness in DANETs; 

therefore, energy consumption is an important concern. Both 

routing protocols and the design of the drone networks can 

lead to inefficient routing, exacerbating energy consumption, 

and thus, rapid drone battery depletion and short network 

lifetime. Individual drones use high energy, which can cause 

network partitioning and reduce coverage. One more can 

affect the stability and function of the network as a whole. So, 

it is necessary to develop energy-efficient routing algorithms 

to conserve energy usage with high routing efficiency.  

It is time for these algorithms to focus more on energy-

aware path selection load balancing and to reduce the rate of 

unnecessary data transmission. Such strategies cannot only 

greatly extend the operational lifespan of the drones 

themselves, prolong mission endurance, and sustain network 

performance, but they have also been proven to help enhance 

range. At the application level, the ability of DANETs to 

provide efficient energy management in these routing 

protocols is essential to maximize the utility and effectiveness 

of DANETs in many applications as the network continues to 

function and remain reliable over a prolonged period, where 

recharging or replacing batteries is either infeasible or 

impractical. 

1.3. Objective 

This paper aims to present a bio-inspired optimization 

routing protocol that concurrently optimizes energy 

consumption and routing efficiency in DANETs. Because 

drones have limited battery life, energy-efficient routing is 

vital to extend the network's operational lifespan. Inspired by 

nature’s energy-efficient process, the proposed protocol will 

use algorithms that prefer energy conservation. The protocol 

seeks to extend the computation operational lifespan of drones 

and the overall network by optimizing path selection and load 

balancing based on real-time energy metrics. This approach 

will be validated by simulations and field trials, and it will 

show how this can maintain an acceptable balance of energy 

consumption versus the routing efficiency and increase the 

sustainability of DANETs in energy-constrained 

environments. 

2. Literature Review 
"EV-Drone Hybrid Delivery" [10] integrates electric 

vehicles and drones for optimized package delivery. Vehicles 

transport drones to strategic locations, where drones take over 

for last-mile delivery. Drones follow predetermined routes 

using GPS, while vehicles act as mobile hubs. Real-time data 

optimizes routes based on traffic and weather. This hybrid 

approach enhances efficiency and reduces delivery times by 

leveraging the strengths of both transportation modes. The 

issues in “Heterogeneous Multi-Drone Routing (HMDR)” 

[11] are solved with an iterative two-phase approach.  

The first part solves minor optimization problems, 

assigning drones to routes based on capacity and demand. An 

approximate second version of each tour is produced by 

reassigning drones and reassigning routes through local 

search. The method reduces travel distance and distributes 

load among drones in such a way as to arrive in an optimal or 

near-optimal state. "Swarm Route Optimization" [12] is used 

to optimize the efficiency of UAVs in workload constraints. 

UAVs are modeled as ants exploring routes using the Ant 

Colony Optimization framework. The Traveling Salesman 

Problem formulation guarantees each UAV’s complete 

deliveries while minimizing travel distance. At each time step, 

load balancing is done per the algorithm, considering battery 

life and payload capacity. Pursuing this idea of Adaptive 

Intelligence means that paths are iteratively explored to refine 

paths to adapt to changing conditions and workloads. 

"Stock-taking Drone Optimization" [13] optimizes 

storage space usage and automatically optimizes stock-taking 

routes and warehouse charging station locations. The 

placement algorithms minimize downtime and ease of access. 

The routing algorithms are advanced, and paths are calculated 
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efficiently, adjusting as real-time data is incoming. Such 

integration endows uninterrupted stock-taking with increased 

inventory accuracy and operation efficiency. "Multi-Trip 

Truck-Drone Data Routing" [14] is a robust optimization 

technique that optimizes information flow in multi-trip truck 

drone systems. After they deliver, drones collect data and 

route it into a central system. Dynamic network conditions and 

historical data are used on which the algorithm adjusts paths. 

Data is transmitted reliably via multi-hop communication and 

adaptive routing for operational efficiency. “Smart Drone 

Recharge & Mission Plan" [15] autonomously managing 

drone power and flight paths. Battery levels are monitored, 

and recharging stations are shared in a broadcast manner so 

they can navigate them if needed. Energy replenishment is 

strategically placed via recharging stations. Sensor data and 

communications network data from aerial drones are 

improved, enabling drones to resume missions with optimized 

flight paths that balance energy consumption and mission 

requirements. This process operates within operational 

efficiency without the need for human intervention. 

"5G UAVs for Opportunistic Networking" [16] integrated 

with UAV improve energy efficiency for opportunistic 

networking. UAVs are connected to ad-hoc networks 

dependent on their real-time conditions. Inventory of the 

devices is integrated with connectivity and data routing 

management, particularly using 5G features for more reliable 

networks and less energy consumption by advanced 

algorithms. The research optimizes energy usage in such a 

way that it extends flight times and assists in improving 

network performance. “Hybrid MGO-JAYA Clustered 

Routing” [17] was developed to improve efficient data 

transmission by combining Multi-Objective Genetic 

Optimization (MGO) with the JAYA algorithm.  

Proximity and energy level information is integrated into 

cluster UAVs. JAYA optimizes clusters, and MGO forms 

clusters. It adapts to a network change and guarantees efficient 

and reliable data transmission. In dynamic environments, the 

hybrid approach also improves network performance. 

“Adaptive Truck-Drone Delivery” [18] is a multi-objective 

optimization algorithm that performs collaborative delivery 

services. Based on real-time data, resources are dynamically 

allocated to trucks and drones. Drones take the final delivery 

leg, operating as the final leg from the trucks to the address. 

The algorithm feature adjusts the allocation continuously to 

find the optimal delivery time, the minimum energy, and the 

minimum costs. This approach allows for an adaptive 

efficiency and reliability of the delivery network. 

"Hybrid Multi Objectively Truck Drone Routing" [19] 

combines truck and drone coordination and ad-hoc routing 

with multi-objective optimization. Routing scenarios are 

evaluated with Genetic Algorithms and Particle Swarm 

Optimization. Drones in ad hoc networks rely on trucks for 

communication. The system routes as the situation is, and 

there is almost no room for error in delivering the product. 

This hybrid approach enhances performance in the 

decentralized environment. "SWEEPER" [20] employs a 

secure waterfall routing strategy for energy-efficient data 

transmission in FANETs. Datam, a dynamic topology formed 

by UAVs exchanging status with each other, passes data from 

higher energy to lower energy nodes. Secure communication 

is achieved through robust encryption and efficient 

communication with adaptive transmission power control. It 

works as a reliable and energy-saving protocol that adapts to 

network changes. "ACO-Based Drone Routing" [21] is 

proposed for hazardous waste collection in dynamic locations. 

Like course paths, drones use pheromone trails to explore, 

updating above them based on route quality. It works 

iteratively: it explores, then it exploits its previous paths. 

Efficient and safe waste collection is ensured by real-time 

adjustments that consider changing circumstances. This 

approach helps improve route efficiency and reliability in 

logistics scenarios with complex demand. 

"Ad-hoc On-demand Distance Vector (AODV)" [22] 

constructs routes by originating RREQ packets, which it 

receives at intermediate or destination nodes with valid routes. 

It will not even require constant routing and retaining of 

resources. Network attacks in broadcast communication, e.g., 

blackhole, wormhole, and Sybil attacks, can effectively 

undermine this protocol's capabilities. Thus, AODV is 

inappropriate to support applications with required data 

delivery times. The overhead caused by maintaining routes in 

highly dynamic environments curtails overall network 

performance. However, the overhead of setting up routes is 

high for small data packets, so the protocol is inefficient.  

In "Q-learning-based Secure and Reliable Clustering 

Routing (QSCR)" [23], learning models are updated, and the 

network is stabilized with frequent control messages sent to 

manage clusters. This has the side effect of increasing network 

traffic, affecting overall performance, and causing security 

vulnerabilities with additional control transmissions. The 

QSCR may not respond quickly enough to node failures, 

which can be problematic for handling network stability. It 

becomes a synchronization problem, making the drones work 

separately to store information, but it needs to be 

synchronized. Second, the implementation of the protocol is 

also complicated by choosing an appropriate network and 

learning rate independent of the stable dynamics of the 

network. 

2.1. Technological Gaps 

Methods for optimizing energy consumption and routing 

efficiency, such as EV-Drone Hybrid Delivery and ITPO-

MDR, present notable challenges. Extensive computational 

requirements and complex coordination between drones and 

vehicles often lead to inefficiencies and delays. Hurdles exist 

in the use of such potential technologies, including Swarm 

Route Optimization and Smart Drone Recharge and Mission 



J. Ramkumar et al. / IJETT, 73(1), 410-430, 2025 

 

413 

Plan, in terms of accurate real time data acquisition and the 

requirement of sophisticated algorithms for dynamic 

adjustment. Existing solutions lack optimal energy vs 

communication performance tradeoff, especially in 

environments with varying environmental conditions and high 

mobility. While providing reliable communication and timely 

decision-making, proper protocols are desired which are 

energy efficient. 

Table 1. Comparative analysis of energy-efficient routing methods 

Name Methodology Merits Demerits 

How It Affects 

Drone 

Communication 

EV-Drone Hybrid 

Delivery [10] 

Integrates electric vehicles 

and drones for optimized 

package delivery. 

Enhances efficiency, 

reduces delivery times, 

and leverages the 

strengths of both 

transportation modes. 

Complex coordination 

is required between 

vehicles and drones. 

Communication 

delay due to 

complex 

coordination. 

ITPO-MDR [11] 

Iterative two-phase 

approach for heterogeneous 

multi-drone routing. 

Minimizes travel 

distance and balances 

load among drones. 

Requires extensive 

computation for 

iterative refinement. 

High computational 

overhead affecting 

communication. 

Swarm Route 

Optimization [12] 

Uses ACO-DTSP algorithm 

for UAV swarm efficiency 

under workload constraints. 

Balances workload to 

ensure efficient 

delivery. 

Initial setup and 

tuning of pheromone 

trails can be complex. 

The initial 

communication 

setup is complex. 

Stock-taking Drone 

Optimization [13] 

Strategic location of 

charging stations and 

optimized drone routes. 

Continuous operation 

improves inventory 

accuracy and 

efficiency. 

Initial analysis and 

setup of charging 

stations are time-

consuming. 

Delays in 

communication 

during the initial 

setup phase. 

Multi-Trip Truck-

Drone Data 

Routing [14] 

Robust optimization for 

data flow in multi-trip 

truck-drone systems. 

Reliable data 

transmission enhanced 

operational efficiency. 

Dependent on real-

time data and 

historical analytics. 

Communication 

issues if real-time 

data is not accurate. 

Smart Drone 

Recharge & 

Mission Plan [15] 

Autonomous power and 

flight path management for 

drones. 

Maintains operational 

efficiency and reduces 

the need for human 

intervention. 

Relies on accurate 

pre-programmed GPS 

coordinates for 

recharging stations. 

Communication 

issues if GPS data is 

inaccurate. 

5G UAVs for 

Opportunistic 

Networking [16] 

Integration of 5G 

technology for enhanced 

energy efficiency and 

communication. 

Optimizes energy 

usage, extends flight 

times, and improves 

network performance. 

High reliance on 5G 

network 

infrastructure. 

Affected by the 

availability of 5G 

infrastructure. 

Hybrid MGO-

JAYA Clustered 

Routing [17] 

Combines MGO with the 

JAYA algorithm for 

efficient data transmission 

in clustered UAVs. 

Enhances network 

performance and 

adapts to dynamic 

environments. 

Complexity in 

clustering and route 

optimization. 

High complexity in 

maintaining optimal 

communication. 

Adaptive Truck-

Drone Delivery 

[18] 

Multi-objective 

optimization for dynamic 

resource allocation between 

trucks and drones. 

Increases delivery 

efficiency and 

reliability. 

Requires real-time 

data and continuous 

adjustments. 

Communication 

delays if real-time 

data is lacking. 

Hybrid Multi-

Objective Truck-

Drone Routing [19] 

Multi-objective 

optimization and ad-hoc 

routing for truck-drone 

coordination. 

Ensures efficient 

delivery operations in 

decentralized 

environments. 

Complex adaptive and 

decentralized routing 

protocols. 

Communication can 

be affected by 

complex routing 

protocols. 

SWEEPER [20] 

Uses secure waterfall 

routing for energy-efficient 

data transmission in 

FANETs. Data flows from 

higher to lower-energy 

nodes. 

Secure, energy-

efficient 

communication, 

reliable adaptation 

Complexity in 

managing encryption 

and power control 

Adaptive 

adjustments can 

cause temporary 

delays 
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ACO-Based Drone 

Routing [21] 

Uses Ant Colony 

Optimization for routing 

drones in hazardous waste 

collection. Paths are refined 

using pheromone trails. 

Efficient, reliable route 

optimization, real-time 

adaptation 

Iterative process may 

be computationally 

intensive 

High computational 

demands can delay 

communication 

3. Kingfisher Routing Protocol 
Kingfisher Routing Protocol (KRP) is designed to be 

inspired by the observational behavior of kingfishers, their 

ability to see things closely, and the precision of their hunting 

techniques. KRP is attempting to mimic these natural 

behaviors to increase the efficiency and reliability of DANET. 

The protocol is broken into phases, each dealing with a 

specific problem in drone communication, such as route 

discovery, data transmission, and optimizing data 

communication. Advanced mathematical models and 

algorithms are employed to optimize drone positioning, 

neighbor discovery, route selection, and error handling, 

significantly improving the robustness and adaptivity of the 

network service provided by KRP. 

3.1. Perching Phase 

The perching phase represents the first step towards the 

efficient drone communication routes in the KRP, serving as 

the initialization of the KRP for DANET. True kingfishers 

perch above high objects, peering at the sight of prey, describe 

down to the water for pursuit. During the Perching Phase of 

DANET, drones visit (or perch) their area of interest to 

determine network conditions and locate nearby nodes. This 

section considers mathematical forms of the Perching Phase 

of KRP. 

On the other hand, drones are in the Perching Phase and 

realize their initial positions on the network using positioning 

algorithms. Depending on the available hardware and 

environmental constraints, proximity-based methods are used. 

The Trilateration method is one common algorithm that 

defines a drone's position by triangulating (measuring) its 

distance to 3 or more known anchor points. It is expressed as 

Equation (1). 

𝑑𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

+ (𝑧𝑖 − 𝑧𝑗)
2
  (1) 

Where 𝑑𝑖,𝑗represents the distance between drone 𝑖 and 

anchor point 𝑗, and (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)denotes the coordinates of the 

drone 𝑖. 

Therefore, drones must discover neighboring nodes within 

their communication range to establish communication links. 

Neighbor Discovery Probability (𝑃𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟) expresses the 

probability that a nearby drone is detected successfully, given 

its signal strength and environmental condition. Equation (2) 

is the model of this probability modeled as probabilistic 

distribution, for example, Gaussian distribution. 

𝑃𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 = 𝑒
−

(𝑑−𝜇)2

2𝜎2   (2) 

Where 𝑑 represents the distance between drones, and 𝜇 

and 𝜎 denote the mean and standard deviation of the signal 

strength distribution, respectively. 

During the Perching Phase, drones must conserve energy 

by actively searching the environment for neighbouring 

nodes. The positioning and communication activities of the 

Energy Consumption Model are estimated to consume the 

energy needed to engage in those activities. To this end, one 

linear energy consumption model defined by Equatio (3) can 

be utilized, in which energy consumption (𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒) is 

proportional to the distance traveled (𝑑𝑡𝑟𝑎𝑣𝑒𝑙) and the data 

transmission rate (𝑅𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡). 

𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒 = 𝛼 × 𝑑𝑡𝑟𝑎𝑣𝑒𝑙 + 𝛽 × 𝑅𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡   (3) 

Where 𝛼 and 𝛽 represent the energy consumption 

coefficients. 

The effectiveness of the communication links during the 

Perching phase is highly dependent upon the drone density in 

the network. Network Density Estimation techniques 

investigate the drone spatial distribution to roughly evaluate 

the overall network density. The second approach is to divide 

the space into regions of a drone for which every point in its 

region is closest to that drone. The Voronoi cell area 
(𝐴𝑉𝑜𝑟𝑜𝑛𝑜𝑖) can be calculated as Equation (4). 

𝐴𝑉𝑜𝑟𝑜𝑛𝑜𝑖 =
1

3
∑ 𝐴𝑖

𝑛
𝑖=1   (4) 

Where 𝐴𝑖 represents the area of the Voronoi cell 

associated with drone 𝑖, and 𝑛 denotes the number of drones 

in the network. 

Optimizing the communication range of drones is 

essential for ensuring reliable connectivity while conserving 

energy. The Communication Range Optimization algorithm 

adjusts the transmission power of drones based on the network 

density and Signal-to-Noise Ratio (SNR). One approach is to 

maximize the coverage area.(𝐴𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) within a specified 

SNR threshold (𝑆𝑁𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) mathematically expressed as 

Equation (5) and Equation (6). 

𝐴𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝜋

4
× (𝑑𝑚𝑎𝑥)2  (5) 
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𝑑𝑚𝑎𝑥 = √
𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡×𝐺𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡

𝑁0×𝑆𝑁𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
  (6) 

Where 𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡  and 𝐺𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡  denote the transmission 

power and antenna gain, respectively, and 𝑁0  represents the 

noise power spectral density. 

A probability of having a connection to neighboring 

drones is essential in developing a way to measure how well a 

network is likely to perform. The Connectivity Probability 
(𝑃𝑐𝑜𝑛𝑛𝑒𝑐𝑡) looks at the strength of the signal, possible 

interference with the signal and the prevailing environment to 

determine the possibility of data transmission. The first 

approach is to define 𝑃𝑐𝑜𝑛𝑛𝑒𝑐𝑡 in terms of Equation (7) with 

the received signal power (𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑)and the interference 

power (𝑃𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒). 

𝑃𝑐𝑜𝑛𝑛𝑒𝑐𝑡 = 1 −
𝑃𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
  (7) 

Where 𝑃𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒  can be calculated based on 

interference from neighbouring drones and external sources. 

3.2. Neighbor Discovery 

The neighbouring discovery is a critical stage 

corresponding to the KRP for DANET and aims to create links 

between drones. Inspired from the social behaviour of 

kingfishers, which are generally found near water bodies, this 

phase lets drones ascertain the loci of the next connected nodes 

to be approached. Signal strength between two drones is an 

important factor that defines the feasibility of its discovery by 

the other drone.  

The signal strength model (𝑆𝑚𝑜𝑑𝑒𝑙) describes the amount 

of received signal power (𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑) at some distance (𝑑) 

between the two drones, transmitting and receiving. 

According to the inverse square law of the model, which is 

expressed as Equation (8). 

𝑆𝑚𝑜𝑑𝑒𝑙 =
𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡×𝐺𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡×𝐺𝑟𝑒𝑐𝑒𝑖𝑣𝑒

(4𝜋×𝑑)2×𝐿
  (8) 

Where 𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡  is the transmission power, 𝐺𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 and 

𝐺𝑟𝑒𝑐𝑒𝑖𝑣𝑒  are the antenna gains of the transmitting and receiving 

drones, respectively, and 𝐿 is the path loss factor. 

The probability of successful neighbour detection 

(𝑃𝑑𝑒𝑡𝑒𝑐𝑡) is the cumulative result of success factors in 

performing neighbour detection, such as signal strength, 

interference and environmental factors. It is possible to use a 

probabilistic model to calculate P_detect depending on the 

received signal, the power, 𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  and the detection 

threshold 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as it is shown in Equation (9). 

𝑃𝑑𝑒𝑡𝑒𝑐𝑡 = 1 − 𝑒
−

𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   (9) 

Where 𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 is obtained from the signal strength 

model and𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 represents the minimum required signal 

power for successful detection. 

Drones periodically broadcast beacon signals to announce 

their presence and facilitate neighbour discovery. The beacon 

interval (𝑇𝑏𝑒𝑎𝑐𝑜𝑛) determines the frequency at which drones 

transmit beacon signals. Optimizing 𝑇𝑏𝑒𝑎𝑐𝑜𝑛 is crucial for 

balancing the tradeoff between neighbor discovery efficiency 

and energy consumption. A common approach is to adjust. 

𝑇𝑏𝑒𝑎𝑐𝑜𝑛  dynamically based on network density and traffic 

load. Equation (10) computes 𝑇𝑏𝑒𝑎𝑐𝑜𝑛 . 

𝑇𝑏𝑒𝑎𝑐𝑜𝑛 =
1

𝜆𝑏𝑒𝑎𝑐𝑜𝑛
  (10) 

Where 𝜆𝑏𝑒𝑎𝑐𝑜𝑛 represents the beacon rate, determined 

based on network parameters such as the number of active 

drones and communication range. 

Every drone also holds a neighbour table in order to track 

the ID, received signal strength and the ability of the 

neighbours to communicate with other systems. Neighbour 

table management consists of modifying and altering this data 

for optimum neighbour identification and routing. For 

instance, with methods like the Weighted Moving Average 

(WMA), the signal's strengths can be calculated based on 

dynamic signal strength measurements. Equation (11) 

provides the over all formula for computing the weighted 

average of signal strength. 

𝑆𝑎𝑣𝑔(𝑡) = (1 − 𝛼) × 𝑆𝑎𝑣𝑔(𝑡 − 1) + 𝛼 × 𝑆𝑛𝑒𝑤(𝑡)  (11) 

Where 𝑆𝑎𝑣𝑔(𝑡) represents the weighted average signal 

strength at time 𝑡, 𝑆𝑛𝑒𝑤(𝑡) is the latest signal strength 

measurement, and 𝛼 is the smoothing factor. 

Drones have the freedom to place the antennas practically 

where the neighbouring drones can be easily discovered in the 

shortest time compared to conventional techniques. It 

provides the drones with the ability to improve their 

transmission and reception in a certain direction. The 

beamforming gain (𝐺𝑏𝑒𝑎𝑚) can be obtained from the antenna 

pattern and the beamforming angle, as defined in Equation 

(12). 

𝐺𝑏𝑒𝑎𝑚 = 𝐺𝑚𝑎𝑥 × 𝑠𝑖𝑛𝑐2(𝜃)  (12) 

Where 𝐺𝑚𝑎𝑥  is the maximum antenna gain, and 𝜃 is the 

beamforming angle. 

Especially when the amount of energy available is fairly 

limited, there is a particular need to discover the neighbours 

while simultaneously operating with minimum energy 

expenditure for smooth link connection. An energy-aware 
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discovery threshold (𝑃𝑒𝑛𝑒𝑟𝑔𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is evaluated with 

Equation (13). Instead, it is preprogrammed and dynamically 

adjusted depending on the remaining energy level of the 

drone, 𝐸𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔. 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑃𝑑𝑒𝑓𝑎𝑢𝑙𝑡 −
𝐸𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝐸𝑡𝑜𝑡𝑎𝑙
× 𝑃𝑎𝑑𝑗𝑢𝑠𝑡   (13) 

Where 𝑃𝑑𝑒𝑓𝑎𝑢𝑙𝑡  is the default detection threshold, 

𝐸𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔  represents the remaining energy, 𝐸𝑡𝑜𝑡𝑎𝑙  is the total 

energy capacity, and 𝑃𝑎𝑑𝑗𝑢𝑠𝑡  is the adjustment factor. 

3.3. Keen Observation 

In the KRP planning for DANET, the Keen Observation 

phase is comparable to the scanning behaviour of kingfishers 

in search of their food. Drones are constantly seeking 

information about the current state of a network and searching 

for the best way to get the data to its final user. This phase 

encompasses mathematical models and solutions to route 

discoveries for quality and timely transmission of information 

in a network. Drones need a metric by which to measure the 

quality of possible routes to help identify which routes to 

discover. The 𝑄𝑟𝑜𝑢𝑡𝑒 metric incorporates items that mark 

different routes depending on latency, bandwidth, reliability, 

etc. One of the used ways is to define 𝑄𝑟𝑜𝑢𝑡𝑒 as the sum of 

different metrics weighted in proportion to their values given 

in Equation (14). 

𝑄𝑟𝑜𝑢𝑡𝑒 = (𝑤1 × 𝐿𝑎𝑡𝑒𝑛𝑐𝑦) + (𝑤2 × 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ) +
                          (𝑤3 × 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)  (14) 

Where 𝑤1, 𝑤2 and 𝑤3 are the weights assigned to each 

metric, reflecting their relative importance. 

Nodes of the drones use the Link State Advertisement 

(LSA) messages to share information about their neighbouring 

nodes as well as the topology of the network. These drones 

dynamically transmit their LSAs, which include their identity, 

available resources and link-quality estimations from time to 

time. In Equation (15), It shows the LSA format, and it 

consists of fields of sender ID (𝐼𝐷𝑠𝑒𝑛𝑑𝑒𝑟), receiver ID 

(𝐼𝐷𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟) and link quality (𝑄𝑙𝑖𝑛𝑘). 

𝐿𝑆𝐴 = (𝐼𝐷𝑠𝑒𝑛𝑑𝑒𝑟 , 𝐼𝐷𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 , 𝑄𝑙𝑖𝑛𝑘)  (15) 

Dijkstra’s algorithm is as old as the routing algorithms, 

and the drones employ it to investigate the shortest pathways 

to the target destination nodes from the received LSAs. The 

algorithm is used to cycle through the neighboring nodes, and 

the cost of getting to that particular node and the path with the 

minimum cost is then selected. The minimum cost of the path 

from the source node to each of the destination nodes is 

defined as (𝐶𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡) in Equation (16). 

𝐶𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡(𝑣) = 𝑚𝑖𝑛{𝐶𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡(𝑢) + 𝑤(𝑢, 𝑣)}  (16) 

Where 𝐶𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡(𝑣) represents the cost of reaching node 

𝑣, 𝐶𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡(𝑣) is the cost of reaching the predecessor node 𝑢, 

and 𝑤(𝑢, 𝑣) denotes the weight of the edge between nodes 𝑢 

and 𝑢. 

Drones employ a route discovery timer to mitigate routing 

overhead and control message propagation. (𝑇𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦) to 

limit the duration of route discovery processes. The timer 

specified in Equation (17) determines the maximum duration 

for which a drone actively searches for routes before 

considering alternative strategies or revisiting the process 

later. 

𝑇𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 = 𝑅𝑎𝑛𝑑𝑜𝑚(𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥)  (17) 

Where 𝑅𝑎𝑛𝑑𝑜𝑚(𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥) generates a random value 

within the specified range. 

Once multiple potential routes are discovered, drones 

employ path selection strategies to choose the most suitable 

route for data transmission. These strategies consider route 

quality metrics, available resources, and network dynamics. 

The routes with lower latency and higher reliability are 

calculated using Equation (18). 

𝑃𝑠𝑒𝑙𝑒𝑐𝑡 =
1

𝑄𝑟𝑜𝑢𝑡𝑒
  (18) 

Where 𝑃𝑠𝑒𝑙𝑒𝑐𝑡denotes the route selection priority level, and 

it will be inversely proportional to 𝑄𝑟𝑜𝑢𝑡𝑒. 

3.4. Hovering Phase 

The Hovering Phase in the KRP for DANET chick 

corresponds to when the kingfisher hovers over water before 

taking its target. Likewise, in KRP, satellites remain above 

probable paths, anticipating various aspects to choose the best 

approach for data communication. The fourth phase is focused 

on mathematical calculations and selecting the route that will 

be considered most effective and safe. Consistency or stability 

of routes is an important factor when choosing routes, and the 

data transmission should be consistent. The route stability 

metric 𝑆𝑟𝑜𝑢𝑡𝑒 reflects the likelihood of using particular routes 

and the network conditions for the route as analyzed based on 

historical information. Equation (19) define 𝑆𝑟𝑜𝑢𝑡𝑒 that 

involves the computation of Exponentially Weighted Moving 

Averages (EWMA) of route quality metrics. 

𝑆𝑟𝑜𝑢𝑡𝑒(𝑡) = (1 − 𝛼) × 𝑆𝑟𝑜𝑢𝑡𝑒(𝑡 − 1) + 𝛼 × 𝑄𝑟𝑜𝑢𝑡𝑒(𝑡)  (19) 

Where 𝑆𝑟𝑜𝑢𝑡𝑒(𝑡) represents the route stability at time 

𝑡, 𝑄𝑟𝑜𝑢𝑡𝑒(𝑡) is route quality metric at time 𝑡, and 𝛼 is the 

smoothing factor. 

Self-organising drones use load-balancing methods to 

select routes that allow traffic to be evenly distributed across 
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available routes. While navigating, drones have the option of 

using metrics, including link utilization and packet loss rate, 

to determine the load that various routes are handling. The 

most used is the load balancing ratio (𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑒), which is 

calculated using the bandwidth of the current traffic load and 

is provided in Equation (20). 

𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =
𝐵𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡
  (20) 

Where 𝐵𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒  is the available bandwidth and 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

is the current traffic load on the route. 

The route selection algorithm is used to identify criteria 

and processes by which the best route among the available 

ones is to be chosen. However, depending on the type and 

need, routing techniques can be implemented in different 

networks, such as shortest path routing, load-aware routing, or 

even QoS routing. Of these, the Weighted Sum Model set out 

in Equation (21) is frequently applied to additively integrate 

several route metrics. 

𝑆𝑐𝑜𝑟𝑒𝑟𝑜𝑢𝑡𝑒 = ∑ 𝑤𝑖 × 𝑀𝑖
𝑛
𝑖=1   (21) 

Where 𝑆𝑐𝑜𝑟𝑒𝑟𝑜𝑢𝑡𝑒 represents the overall score of the 

route, 𝑤𝑖  is the weight assigned to the metric 𝑀𝑖, and 𝑛 is the 

total number of metrics considered. 

In cases where specific Quality of Service (QoS) demands 

dictate reception, drones offer routes that meet particularly 

prescribed QoS needs, either in terms of minimal delay, 

maximal jitter, or secured bandwidth. The QoS-aware routing 

algorithms are characterized by the fact that they seek to select 

given routes while operating with certain QoS limitations. 

Because of this, Equation (22) can be used in dynamically 

adapting a route selection depending on the actual achieved 

QoS and negotiations. 

𝑃𝑠𝑒𝑙𝑒𝑐𝑡 = {
1  𝑖𝑓 𝑄𝑜𝑆𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 
0                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (22) 

Some routes based on drones may include a diversity of 

possible physical paths, intermediate nodes, or 

communication links to improve network reliability. It is 

agreed that route diversity assists in reducing the effect of link 

failures, congestion, and other network anomalies. In this 

research, Diverse Path Selection, defined in Equation (23), 

aims to choose routes supporting path diversity and other 

routing criteria. 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑟𝑜𝑢𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑒𝑟𝑠𝑒 𝑝𝑎𝑡ℎ𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠
     (23) 

In dynamic networks, routes are not always stable and 

may exhibit varying levels of performance as a result of 

factors such as traffic distribution, network status, or 

configuration. Selected paths of drones are perpetually 

reassessed for these changes in order to alter their routing 

decisions on a dynamic basis. Route-by-route stability 

measures assess stability, loads, and Qo S parameters and 

initiate a route update or a change when required. 

3.5. Dive Preparation 

The Dive Preparation phase may be considered to 

correspond to the Sign posting phase of the KRP for DANET. 

It represents a kingfisher bird changing its wings’ position 

before diving into the water. Similarly, in KRP, the drones log 

data transmission requesting the formation of the selected 

route and required configuration parameters. This phase 

provides the mathematical tools and techniques to properly 

erect the right communication channel. Prior to data 

transmission, drones have some overhead, including pathway 

establishment processes such as signaling, handshake, and 

negotiation. The route setup overhead (O_setup) may possibly 

be determined dependent on the control packets taken during 

the process of route establishment mathematically described 

in Equation (24). 

𝑂𝑠𝑒𝑡𝑢𝑝 = 𝑁𝑝𝑎𝑐𝑘𝑒𝑡𝑠 × 𝑇𝑝𝑎𝑐𝑘𝑒𝑡  (24) 

Where 𝑁𝑝𝑎𝑐𝑘𝑒𝑡𝑠 represents the number of control packets 

exchanged and 𝑇𝑝𝑎𝑐𝑘𝑒𝑡  is the average time taken to transmit a 

single packet. 

For the purpose of keeping the route effector and 

trustworthy, drones use route validation procedures to identify 

and fix probable routing errors or discrepancies. Route 

validation checks for the accuracy of the rout information, 

confirmation of the absence of loops in all routes possible, and 

detection of routing irregularities. The first and second 

solution is to use the route validation metric, calculated as a 

value given by the formula (25) representing the validity and 

quality of the established route. 

𝑀𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝑟𝑜𝑢𝑡𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒𝑠
  (25) 

Drones also keep and refresh the paths during data 

transmission in case of areas related to network conditions or 

path failure. Route maintenance is the resources used to 

monitor, update, or repair a route, which is termed 

𝑂𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒. The maintenance overhead is computed using 

Equation (26) and involves the frequency of route 

maintenance jobs and the corresponding computational and 

relay expenses. 

𝑂𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 𝐹𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 × 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛  (26) 

Where 𝐹𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 represents the frequency of route 

maintenance operations and 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 denotes the average 

cost of a maintenance operation. 
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Drones could use channel encoding to transmit their data 

packets through the set channel with added privacy concerns, 

hence securing their data as it transmits. The overhead for 

route encryption overhead (𝑂𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛) is the amount of 

time taken to perform the encryption and decryption of a 

message. The encryption overhead may be approximated by 

the drones’ encryption algorithm, packet size, and processing 

ability. In Equation (27), the encryption process is mentioned 

on the basis of packet count and cost. 

𝑂𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 = 𝑁𝑝𝑎𝑐𝑘𝑒𝑡𝑠 × (𝐶𝑒𝑛𝑐𝑟𝑦𝑝𝑡 + 𝐶𝑑𝑒𝑐𝑟𝑦𝑝𝑡) (27) 

Where 𝐶𝑒𝑛𝑐𝑟𝑦𝑝𝑡 and 𝐶𝑑𝑒𝑐𝑟𝑦𝑝𝑡 represent the 

computational costs of encryption and decryption, 

respectively. 

For those topologies that require an important level of 

route diversity in terms of redundancy and FT, drones 

compute the level of path diversity that has been set up to 

pinpoint the SSD or single point of failure. Strong components 

of connectance and connectivity that help disentangle path 

diversity and length of various connecting routes are also 

considered. Diversity associated with the known path is 

measured by the path diversity (𝐷𝑝𝑎𝑡ℎ) term defined by the 

number of disjoint source-destination paths as defined in 

Equation (28). 

In fault-tolerant applications, where route heterogeneity 

is essential, drones review the level of path diversification and 

determine universal bottlenecks and risks. Network 

redundancy analysis focuses on the topology of the system and 

the extent to which the topology offered by the network is 

diverse and flexible. The 𝐷𝑝𝑎𝑡ℎ defines the measure of diverse 

paths used according to the number of disjoint paths between 

source and destination, as shown in Equation (28). 

𝐷𝑝𝑎𝑡ℎ =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑝𝑎𝑡ℎ𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠
  (28) 

Drones incorporate methods of routing that seek to 

minimize latency, maximize the throughput or conserve 

energy to enhance the overall efficiency and effectiveness of 

existing routes. Exemplarily, route optimization methods alter 

one or more of the route characteristics, including the 

transmission power, routing metrics or route selection criteria, 

to handle the occurrence of new network conditions. The first 

is to apply reinforcement learning algorithms to learn and 

improve the route selection policies used in the past and the 

feedback that the operating environment provides. 

3.6. Dive 

The Dive phase represents the data transmission in the 

KRP, the moment a kingfisher plunges into the water to catch 

its prey. In KRP, drones initiate data transmission along the 

established route, delivering data packets to their intended 

destinations. This phase involves mathematical formulations 

and procedures to ensure efficient and reliable data 

transmission. Before initiating data transmission, drones 

generate data packets to be sent over the established route. The 

data packet generation rate (𝑅𝑝𝑎𝑐𝑘𝑒𝑡) determines the 

frequency at which the source node generates data packets. 

Equation (29) is applied to compute 𝑅𝑝𝑎𝑐𝑘𝑒𝑡. 

𝑅𝑝𝑎𝑐𝑘𝑒𝑡 =
𝐷𝑡𝑜𝑡𝑎𝑙

𝑇𝑡𝑜𝑡𝑎𝑙
  (29) 

Where 𝐷𝑡𝑜𝑡𝑎𝑙  represents the total data size to be 

transmitted and  𝑇𝑡𝑜𝑡𝑎𝑙  denotes the total transmission time. 

Each data packet incurs overhead associated with 

packetization, including header information, error detection 

codes, and sequence numbers. The packetization 

overhead(𝑂𝑝𝑎𝑐𝑘𝑒𝑡) can be calculated by applying Equation 

(30), and it will be based on the packet size (𝑆𝑝𝑎𝑐𝑘𝑒𝑡) and the 

header size (𝑆ℎ𝑒𝑎𝑑𝑒𝑟). 

𝑂𝑝𝑎𝑐𝑘𝑒𝑡 = 𝑆𝑝𝑎𝑐𝑘𝑒𝑡 + 𝑆ℎ𝑒𝑎𝑑𝑒𝑟   (30) 

Drones dynamically adjust their transmission power to 

optimize energy consumption and minimize interference 

based on the distance to the next hop in the route. 

Transmission power control algorithms aim to maintain 

reliable communication while conserving energy. Equation 

(31) adjusts the transmission power (𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡) based on the 

distance (𝑑) between the transmitting and receiving nodes. 

𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 =
𝑃𝑚𝑎𝑥

𝑑𝛼   (31) 

Where 𝑃𝑚𝑎𝑥  represents the maximum transmission 

power, and 𝛼 is the path loss exponent.  

To enhance the reliability of data transmission, drones 

may employ forward error correction techniques to detect and 

correct errors in received data packets. Forward Error 

Correction (FEC) codes add redundant information to the data 

packets, enabling the receiver to reconstruct the original data 

even if some bits are corrupted. Equation (32) calculates the 

FEC (𝑂𝐹𝐸𝐶) which depends on the FEC code rate (𝑅𝐹𝐸𝐶) and 

the size of the redundant information. 

𝑂𝐹𝐸𝐶 = (1 − 𝑅𝐹𝐸𝐶) × 𝑆𝑝𝑎𝑐𝑘𝑒𝑡   (32) 

In dynamic wireless environments, drones may 

experience variations in channel conditions, affecting the 

quality of received signals. Adaptive Modulation and Coding 

(AMC) techniques adjust the modulation scheme and coding 

rate based on channel quality metrics such as Signal-to-Noise 

Ratio (SNR) or Signal-to-Interference-plus-Noise Ratio 

(SINR). Additional overhead representing signaling and 
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adapting modulation and coding schemes is included in the 

modulation and coding overhead (𝑂𝐴𝑀𝐶) expressed by 

Equation (33). 

𝑂𝐴𝑀𝐶 = 𝑆ℎ𝑒𝑎𝑑𝑒𝑟   (33) 

When a drone receives data packets, it sends an 

Acknowledgement (ACK) back to the sender as confirmation. 

The acknowledgement mechanism guarantees data delivery 

with the aid of the sender and then can alter the transmission 

parameters. The overhead caused by acknowledgements can 

be represented by overhead introduced by acknowledgements 

(𝑂𝐴𝐶𝐾) and depends on ACK size and the number of sent 

acknowledgements, as shown in Equation (34). 

𝑂𝐴𝐶𝐾 = 𝑁𝐴𝐶𝐾 × 𝑆𝐴𝐶𝐾  (34) 

Where 𝑁𝐴𝐶𝐾 represents the number of acknowledgements 

sent and 𝑆𝐴𝐶𝐾  is the size of each acknowledgement packet. 

3.7. Underwater Pursuit 

The Underwater Pursuit phase denotes the relay and 

forwarding in KRP. It mirrors a kingfisher's relentless pursuit 

of prey underwater. In KRP, drones actively relay and forward 

data packets to ensure successful delivery to their destinations. 

This phase involves mathematical formulations and strategies 

for efficient and reliable data relay and forwarding. When 

multiple drones are available to relay data packets, relay 

selection criteria help determine the most suitable relay nodes 

based on proximity, link quality, and available resources. The 

relay selection criteria (𝐶𝑟𝑒𝑙𝑎𝑦) can be expressed as a 

weighted sum of individual metrics: 

𝐶𝑟𝑒𝑙𝑎𝑦 = 𝑤1 × 𝑃𝑟𝑜𝑖𝑥𝑚𝑖𝑡𝑦 + 𝑤2 × 𝐿𝑖𝑛𝑘 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 +

𝑤3 × 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦  (35) 

Where 𝑤1, 𝑤2 and 𝑤3 are the weights assigned to each 

metric. 

Upon receiving data packets, drones make forwarding 

decisions based on routing tables, destination addresses, and 

relay selection criteria. The forwarding decision algorithm 

determines whether to forward packets directly to the 

destination or relay them through intermediate nodes. One 

approach uses Equation (36), which selects the next best hop 

based on route metrics and network conditions. 

𝑁𝑒𝑥𝑡𝐻𝑜𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑄𝑟𝑜𝑢𝑡𝑒)  (36) 

Where 𝑄𝑟𝑜𝑢𝑡𝑒 represents the route quality metric. 

To prevent packet loss and ensure efficient data 

forwarding, drones employ buffer management strategies to 

prioritize and manage the transmission of queued packets. 

Buffer management algorithms adjust buffer sizes, packet 

drop policies, and congestion control mechanisms based on 

network conditions. A commonly used strategy is the First-In-

First-Out (FIFO) queuing discipline, where packets are 

transmitted in the order they arrive. Equation (37) represents 

the same. 

𝐷𝐹𝐼𝐹𝑂 =
𝑁𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠

𝑁𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠
  (37) 

Where 𝑁𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 and 𝑁𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠 represent the number of 

packets arriving and departing from the buffer, respectively. 

Relaying data packets consumes energy, and drones must 

optimize energy usage to prolong network lifetime and ensure 

uninterrupted operation. The relay energy consumption model 

estimates drones' energy while relaying packets based on 

transmission power, packet size, and relay distance. One 

approach is to use a linear energy consumption model 

specified in Equation (38). 

𝐸𝑟𝑒𝑙𝑎𝑦 = 𝛼 × 𝑑𝑟𝑒𝑙𝑎𝑦 + 𝛽 × 𝑆𝑝𝑎𝑐𝑘𝑒𝑡   (38) 

Where 𝑑𝑟𝑒𝑙𝑎𝑦  represents the distance traveled by the relay 

drone, and 𝛼 and 𝛽 are energy consumption coefficients. 

In dynamic and unpredictable environments, drones may 

encounter changes in network topology, link quality, or traffic 

patterns. Adaptive routing protocols enable drones to adjust 

routing decisions and forwarding strategies adaptively based 

on real-time observations and feedback. The adaptive routing 

protocol dynamically updates routing tables using Equation 

(39), adjusts relay selection criteria, and redistributes traffic to 

optimize network performance: 

𝑃𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 =
1

𝑄𝑟𝑜𝑢𝑡𝑒(𝑛)
  (39) 

Where 𝑃𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒  represents the priority of selecting a 

route based on adaptive routing criteria, and n represents the 

threshold time limit. 

Drones employ error correction and retransmission 

mechanisms to cope with transmission errors and packet 

losses to ensure reliable data delivery. Error correction codes, 

such as Reed-Solomon or convolutional codes, add 

redundancy to data packets, enabling receivers to detect and 

correct errors. If errors persist despite error correction, drones 

initiate retransmissions to request missing or corrupted 

packets using Equation (40). 

𝑃𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 =
𝑁𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑁𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑐𝑘𝑒𝑡𝑠
  (40) 

Where 𝑁𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  represents the number of packet 

retransmissions and 𝑁𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑐𝑘𝑒𝑡𝑠  is the total number of 

packets transmitted. 



J. Ramkumar et al. / IJETT, 73(1), 410-430, 2025 

 

420 

3.8. Capture Phase 

The Capture phase in the KRP for DANET signifies a 

kingfisher's successful capture of prey. In KRP, this phase 

corresponds to the acknowledgement of received data packets 

and the handling of transmission errors to ensure reliable data 

delivery. This phase involves mathematical formulations and 

procedures for effectively managing acknowledgements and 

handling errors. After transmitting data packets, drones wait 

for acknowledgements from the receiver to confirm successful 

delivery. The acknowledgement timeout (𝑇𝑎𝑐𝑘) determines 

the maximum duration a drone waits for an acknowledgement 

before considering the transmission unsuccessful and 

initiating error handling mechanisms. Equation (41) is applied 

to compute 𝑇𝑎𝑐𝑘. 

𝑇𝑎𝑐𝑘 = ∑ 𝑅𝑎𝑛𝑑𝑜𝑚(𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥) (41) 

Where 𝑅𝑎𝑛𝑑𝑜𝑚(𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥) generates a random value 

within the specified range. 

The acknowledgement rate (𝑅𝑎𝑐𝑘) reflects the proportion 

of successfully acknowledged data packets relative to the total 

transmitted packets. Equation (42) provides insights into data 

transmission, reception reliability, and efficiency. 

𝑅𝑎𝑐𝑘 =
𝑁𝑎𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑑

𝑁𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
  (42) 

Where 𝑁𝑎𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑑  represents the number of 

acknowledged packets and 𝑁𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑  is the total number of 

transmitted packets. 

Drones employ error detection and correction 

mechanisms to identify and mitigate transmission errors 

during data transmission. Error detection codes, such as 

Cyclic Redundancy Check (CRC), enable receivers to detect 

corrupted packets, while error correction codes, such as 

Hamming codes, facilitate error recovery. Equation (43) is 

applied to check errors. 

𝑃𝑒𝑟𝑟𝑜𝑟 =
𝑁𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑

𝑁𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
  (43) 

Where 𝑁𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑  represents the number of corrupted 

packets detected and 𝑁𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 is the total number of received 

packets. 

In cases where data packets cannot be successfully 

delivered, receivers send Negative Acknowledgements 

(NACKs) to request retransmissions. The NACK rate (𝑅𝑁𝐴𝐶𝐾) 

indicates the frequency of unsuccessful data transmissions 

relative to the total transmitted packets. Equation (44) is 

applied to compute 𝑅𝑁𝐴𝐶𝐾. 

𝑅𝑁𝐴𝐶𝐾 =
𝑁𝑁𝐴𝐶𝐾

𝑁𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
  (44) 

Where 𝑁𝑁𝐴𝐶𝐾 represents the number of NACK packets 

received. 

Drones initiate retransmissions of the affected data 

packets upon receiving a NACK or experiencing 

acknowledgement timeout. The retransmission timeout 
(𝑇𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡) calculated using Equation (45) determines the 

maximum duration a drone waits before retransmitting the 

packet. 

𝑇𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑛) = 𝑅𝑎𝑛𝑑𝑜𝑚(𝑇𝑚𝑖𝑛(𝑛), 𝑇𝑚𝑎𝑥(𝑛))  (45) 

Where 𝑅𝑎𝑛𝑑𝑜𝑚(𝑇𝑚𝑖𝑛(𝑛), 𝑇𝑚𝑎𝑥(𝑛)) generates a random 

value within the specified time limit. 

The Automatic Repeat reQuest (ARQ) mechanism 

enables drones to automatically retransmit data packets upon 

detecting transmission errors or unsuccessful 

acknowledgements. Go-Back-N ARQ manages the 

retransmission process based on received acknowledgements 

and NACKs. Equation (46) is applied to calculate 𝑃𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 . 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 = ∏
𝑁𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑁𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑐𝑘𝑒𝑡𝑠
  (46) 

Where 𝑁𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  represents the number of packet 

retransmissions triggered by the ARQ mechanism and 

𝑁𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑐𝑘𝑒𝑡𝑠is the total number of transmitted packets. 

3.9. Return to Surface 

The Return to Surface phase in KRP mirrors the ascent of 

a kingfisher back to the surface after a successful dive. In 

KRP, this phase involves collecting feedback from network 

operations and optimizing routing strategies based on 

observed performance metrics. It encompasses mathematical 

formulations and procedures for feedback collection, analysis, 

and routing optimization. Drones collect performance metrics 

such as packet delivery ratio, end-to-end delay, and 

throughput to evaluate the effectiveness of routing strategies 

and network operations. Performance metric collection 

involves periodically measuring and recording relevant 

metrics during network operation where Equation (47) is fully 

applied. 

𝑃𝑚𝑒𝑡𝑟𝑖𝑐 =
𝑁𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙_𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑁𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑐𝑘𝑒𝑡𝑠
  (47) 

Where 𝑁𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙_𝑝𝑎𝑐𝑘𝑒𝑡𝑠 represents the number of 

successfully delivered packets and 𝑁𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑐𝑘𝑒𝑡𝑠 is the total 

number of transmitted packets. 

After collecting performance metrics, drones analyze the 

feedback to identify trends, patterns, and areas for 

improvement in network performance. Equation (48) indicates 

the feedback analysis involving statistical analysis, trend 
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detection, and anomaly detection techniques to extract 

meaningful insights from collected data. 

𝐹𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 = 𝐴𝑛𝑎𝑙𝑦𝑧𝑒(𝑃𝑚𝑒𝑡𝑟𝑖𝑐)  (48) 

Based on the results of the feedback analysis, drones 

select route optimization strategies to improve network 

performance and address identified issues. Equation (49) 

provides route optimization strategies, including route 

recalibration, adaptive routing parameter adjustment, or route 

reconfiguration based on observed network dynamics. 

𝑆𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑒𝑙𝑒𝑐𝑡_𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(𝐹𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠)  (49) 

In dynamic and uncertain environments, reinforcement 

learning techniques may be employed by drones to adaptively 

optimize routing decisions adaptively, conditioned on 

observed outcomes and received environmental feedback. 

Apply reinforcement learning algorithms, namely Deep Q-

Network (DQN) in KRP. It learns optimal routing policies 

through trial-error interactions with the network environment. 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 × [𝑅(𝑠, 𝑎) + 𝛾 ×
𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]  (50) 

Where 𝑄(𝑠, 𝑎) represents the quality of taking action 𝑎 in 

state 𝑠, 𝑅(𝑠, 𝑎) denotes the immediate reward obtained from 

taking action 𝑎 in state 𝑠, 𝛼 is the learning rate, 𝛾 is the 

discount factor, 𝑠′ is the next state, and 𝑎′ is the following 

action. 

Drones change routing parameters dynamically to adapt 

to changing network conditions and requirements, including 

route weights, transmission power levels and packet 

prioritization policies. Dynamic parameter adjustment 

mechanisms described by Equation (51) monitor the network 

performance dynamically and adjust routing parameters 

continuously. 

𝑃𝑎𝑑𝑗𝑢𝑠𝑡 =
∆𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

∆𝑡
  (51) 

Where ∆𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 represents the change in routing 

parameter value, and 𝛥𝑡 is the time interval over which the 

adjustment occurs. 

In addition to route optimization, drones may use cross-

layer optimization techniques that leverage information from 

multiple protocol layers to improve overall network 

performance. Cross-layer optimization enables drones to 

jointly optimize routing, Medium Access Control (MAC), and 

physical layer parameters to enhance efficiency and 

throughput. Equation (52) plays a crucial role in optimizing 

the cross-layers. 

𝑂𝑐𝑟𝑜𝑠𝑠−𝑙𝑎𝑦𝑒𝑟 = ∑ 𝑊𝑖 × 𝑀𝑖
𝑛
𝑖=1   (52) 

Where 𝑊𝑖 represents the weight assigned to the metric 𝑀𝑖 

from the 𝑖𝑡ℎprotocol layer and 𝑛 is the total number of protocol 

layers considered. 

3.10. Prey Handling 

The Prey Handling phase in the KRP symbolizes a 

kingfisher's successful delivery of prey to its destination. In 

KRP, this phase corresponds to the reliable delivery of data 

packets to their intended destinations. Upon receiving data 

packets, drones identify the destination nodes based on 

destination addresses or routing table lookups. Equation (53) 

is applied to determine the destination and ensure that data 

packets are delivered to the correct recipients. 

𝐷𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑜𝑘𝑢𝑝_𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐷𝑝𝑎𝑐𝑘𝑒𝑡)  (53) 

Where 𝐷𝑝𝑎𝑐𝑘𝑒𝑡  represents the destination address of the 

data packet. 

The end-to-end delay (𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑) measures the time 

data packets travel from the source node to the destination 

node. It includes transmission delay, propagation delay, 

queuing delay, and processing delay along the route. 

𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 = 𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑇𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒  (54) 

Where 𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙  is the time when the packet arrives at the 

destination, and 𝑇𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒  is the time when the packet was 

sent from the source. 

The packet delivery ratio (𝑅𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦) specified in 

Equation (55) quantifies the proportion of successfully 

delivered packets relative to the total transmitted packets. It 

reflects the effectiveness of data delivery within the network. 

𝑅𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 =
𝑁𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝑁𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
  (55) 

Where 𝑁𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑  represents the number of packets 

successfully delivered to the destination and 𝑁𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑  is 

the total number of transmitted packets. 

Drones use congestion control mechanisms to regulate 

the packet rate transmission to prevent congestion and 

maintain smooth data delivery and network overload. 

Transmission rates adjust based on observed network 

conditions dynamically in congruency control algorithms. 

Equation (56) examines whether there is congestion and 

performs suitable actions. 

𝑃𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = {
1                    𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 
0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (56) 
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For scenarios where Quality of Service (QoS) needs are 

specified, drones ensure QoS properties to promise delivery of 

data packets with prefixed quality parameters (e.g., minimum 

delay, maximum jitter, or guaranteed bandwidth). QoS 

enforcement mechanisms use QoS requirements to prioritize 

packets and allocate the network resources accordingly. The 

QoS is checked using Equation (57). 

𝑃𝑄𝑜𝑆 = {
1  𝑖𝑓 𝑄𝑜𝑆 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑚𝑒𝑡
0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (57) 

After successfully delivering data packets to their 

destinations, drones send Acknowledgements (ACKs) to the 

source node to confirm delivery. Equation (58) is applied to 

check the acknowledgement where the successful delivery 

ensures that the source node receives feedback on the status of 

transmitted packets. 

𝑃𝑎𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 =

{
1  𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑎𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑑
0                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (58) 

3.11. Framework of KRP 

The KRP framework provides a comprehensive algorithm 

and flow diagram for efficient drone communication routes. 

Figure 1, "Framework of KRP," illustrates the overall process, 

integrating phases such as route discovery, path establishment, 

and data transmission. Algorithm 1 details the working 

process, outlining the procedural steps and decision-making 

mechanisms. This framework ensures dynamic adaptation to 

network conditions and optimized resource utilization within 

DANET. 

Algorithm 1: KRP 

Input: 

• Network topology information 

• Data packets to be transmitted 

• Routing parameters  

• Quality of Service (QoS) requirements 

• Feedback from network operations 

Output: 

• Successfully delivered data packets 

• Feedback for route optimization 

Procedure: 

1. Initialize routing tables and set up initial route 

configurations and QoS parameters. 

2. Exchange control packets to discover neighboring nodes 

and establish communication links. 

3. Perform route discovery using proximity, link quality, 

and resource availability metrics. 

4. Evaluate and select the most suitable route based on route 

metrics and QoS constraints. 

5. Establish the selected route by configuring necessary 

parameters and setting up communication paths. 

6. Generate and transmit data packets along the established 

route. 

7. Relay and forward data packets to ensure reliable 

delivery. 

8. Wait for acknowledgements and handle transmission 

errors with retransmissions or error correction. 

9. Collect and analyze feedback from network operations, 

then adjust routing parameters and optimization 

strategies. 

10. Identify destination nodes, calculate end-to-end delay and 

packet delivery ratio, and send acknowledgements for 

successfully delivered packets. 

3.12. Advantages of KRP 

• Ensures reliable data transmission by dynamically 

prioritizing routes based on key metrics like latency, 

bandwidth, and packet delivery requirements.   

• Maintains longer-lasting communication links through 

adaptive routing that minimizes disruptions caused by 

network topology changes.   

• Enhances the packet delivery ratio by selecting efficient 

and stable routes, minimizing losses, and improving data 

reliability even under challenging conditions.   

• Supports increasing numbers of drones without 

compromising network performance, making it suitable 

for large-scale deployments in hazardous scenarios.   

• Ensures faster data transmission by reducing unnecessary 

control messages and rapidly converging to stable routing 

structures.   

• Detects and resolves link failures swiftly, enabling 

continuous communication and reducing downtime in 

dynamic and unpredictable environments.   

4. Results and Discussion 
4.1. Simulation Setting 

The DANET is simulated using the NS-3 simulation tool 

in this study on ad hoc networks. The simulations last for 900 

seconds, with data being recorded at one second intervals and 

alongside the random seeds. Network parameters include 

nodes between 50 and 500 in a 1000m x 1000m area using 

grid and random connectivity with the Random Waypoint 

mobility model. Examples of IEEE 802.11 communication 

standards are used. There are other external factors like wind 

speed and any obstacles that may be on the way. Table 2 gives 

the simulation settings. 

4.2. Packet Delivery Ratio and Packet Loss Ratio Analysis 

Figure 2 showcases the comparative analysis of Packet 

Delivery Ratio (PDR), and Figure 3 highlights Packet Loss 

Ratio (PLR) among three routing protocols, AODV, QSCR, 

and KRP, across various drone counts. Figure 4 and Figure 5 

provide the average PDR and PLR. PDR and PLR evaluate the 

efficiency and reliability of packet delivery within the 

network.
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Fig. 1 Framework of KRP 
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Table 2. Simulation setting 

Category Parameter Value / Range 

G
en

er
al

 

Simulation Tool NS-3 

Simulation Duration 900 seconds 

Data Collection 

Frequency 
1 second 

Simulation Seed Random 

N
et

w
o

rk
 a

n
d

 

E
n

v
ir

o
n

m
en

t 

P
ar

am
et

er
s 

Nodes 50 - 500 

Environment Dimensions 1000m x 1000m 

Network Topology Grid, Random 

Model of Mobility Random Waypoint 

Speed of Drone 

Movement 
5 - 18 m/s 

Standby Time 20 - 180 seconds 

C
o

m
m

u
n

ic
at

io
n

 

P
ar

am
et

er
s 

MAC and PHY Layers IEEE 802.11 

Transmission Range 80m - 240m 

Channel Bandwidth 20 MHz 

Propagation Model 
Two-Ray Ground 

Reflection 

Path Loss Model 
Free Space, Two-

Ray Ground 

Collision Avoidance RTS/CTS 

T
ra

ff
ic

 a
n

d
 P

ro
to

co
l 

P
ar

am
et

er
s Protocol 

AODV, DSR, 

OLSR,.. 

Traffic Pattern 
CBR (Constant Bit 

Rate) 

Packet Size 256 bytes 

Transmission Rate 2 Mbps - 12 Mbps 

Packet Interval 0.2 - 1 second 

Queue FIFO, DropTail 

Control Packet Interval 0.5 - 5 seconds 

Congestion Control 

Mechanism 
TCP, UDP 

E
n

er
g

y
 P

ar
am

et
er

s 

Initial Energy 1000 Joules 

Energy Model Linear Battery 

Sleep Mode Energy 

Consumption 
0.1 Joules/second 

Packet Transmission 

Energy 
0.5 Joules/packet 

Packet Reception 

Energy 
0.3 Joules/packet 

  

Table 3 and Table 4 provides the simulation results with 

its average. AODV protocol significantly demonstrates a 

lower PDR and a higher PLR as drones increase. Vulnerability 

to attacks like blackhole and wormholes significantly impacts 

the PDR, reducing it to 21.541% for 500 drones and increasing 

the PLR to 78.459%. Such attacks disrupt the routing process, 

causing packet losses and reduced network reliability. 

 
Fig. 2 Packet delivery ratio 

Table 3. Packet delivery ratio  

No. of Drones AODV QSCR KRP 

50 44.492 52.260 74.587 

100 41.557 49.538 72.699 

150 38.696 46.866 70.901 

200 35.178 44.049 69.207 

250 32.268 41.841 67.129 

300 29.881 40.044 64.783 

350 27.680 38.501 62.617 

400 25.530 36.788 60.650 

450 23.549 35.088 58.819 

500 21.541 33.251 56.921 

Average 32.037 41.823 65.831 

 

 
Fig. 3 Average packet delivery ratio 

20

30

40

50

60

70

80

50 100 150 200 250 300 350 400 450 500

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
%

)

Drones

AODV QSCR KRP

0

10

20

30

40

50

60

70

AODV QSCR KRP

A
v
er

ag
e 

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
%

)

Routing Protocols



J. Ramkumar et al. / IJETT, 73(1), 410-430, 2025 

 

425 

 
Fig. 4 Packet loss ratio 

 
Fig. 5 Average packet loss ratio 

Table 4. Packet loss ratio 

No. of Drones AODV QSCR KRP 

50 55.508 47.740 25.413 

100 58.443 50.462 27.301 

150 61.304 53.134 29.099 

200 64.822 55.951 30.793 

250 67.732 58.159 32.871 

300 70.119 59.956 35.217 

350 72.320 61.499 37.383 

400 74.470 63.212 39.350 

450 76.451 64.912 41.181 

500 78.459 66.749 43.079 

Average 67.963 58.177 34.169 

KRP protocol shows substantial improvement in PDR, 

achieving an average of 65.831% across all drone counts. Like 

a kingfisher's targeted diving, its highly precise data delivery 

mechanism minimizes the likelihood of packet interception or 

loss. This precision results in a lower PLR, averaging 

34.169%, enhancing overall network performance and 

reliability compared to AODV and QSCR. The optimized 

routing in KRP ensures efficient data transmission and robust 

network communication. KRP's adaptive routing mechanism 

swiftly adjusts to network changes, stabilizing performance in 

dynamic environments. 

4.3. Latency Analysis 

Figure 6 illustrates latency comparisons for AODV, 

QSCR, and KRP protocols across various drone counts. 

Latency measures the time a packet takes to travel from the 

source to the destination, indicating network responsiveness. 

 
Fig. 6 Latency analysis results 

AODV protocol exhibits high latency values. This 

protocol incurs significant delays, particularly in dynamic 

environments with many drones. The need for frequent route 

discoveries and updates causes substantial network 

congestion. With 500 drones, AODV records a latency of 

4105 milliseconds, indicating substantial inefficiencies. The 

protocol's susceptibility to network attacks also exacerbates 

delays, as compromised routes require reestablishment, 

further increasing latency. QSCR protocol demonstrates 

moderate latency values.  

 

Frequent control message exchanges for managing 

clusters and updating learning models lead to increased 

network traffic, resulting in higher latency. With 500 drones, 

the latency is recorded at 3732 milliseconds. Increased 

network traffic causes congestion, leading to delays and 

reduced efficiency. Challenges handling node failures and 

synchronization further contribute to this latency, impacting 

overall network performance. 
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Table 5. Latency analysis result values 

No. of Drones AODV QSCR KRP 

50 3623 3017 1526 

100 3735 3039 1549 

150 3808 3073 1570 

200 3868 3120 1593 

250 3909 3214 1626 

300 3948 3320 1664 

350 3984 3431 1707 

400 4023 3537 1744 

450 4066 3633 1778 

500 4105 3732 1810 

Average 3907 3312 1657 

 

 
Fig. 7 Average latency 

KRP protocol shows significantly lower latency, 

averaging 1657 milliseconds across all drone counts. 

Precision in data delivery minimizes unnecessary control 

messages and optimizes route selection, reducing network 

congestion and speeding up data transmission. Rapid 

convergence to a stable routing structure ensures quick 

establishment and maintenance of routes, further reducing 

latency. The streamlined, targeted routing mechanism of KRP 

ensures swift and reliable data packet delivery, enhancing 

overall network performance and responsiveness compared to 

AODV and QSCR. This results in a more efficient and robust 

communication network, particularly in dynamic 

environments with many drones. Table 5 provides the 

simulation results obtained for the metric Latency. Figure 7 

provides a comparison of average latency. 

4.4. Energy Consumption Analysis 

Figure 8 presents the comparative analysis of energy 

consumption for AODV, QSCR, and KRP protocols across 

various drone counts, as shown in Table 6. Energy 

consumption is a critical metric for evaluating the efficiency 

of routing protocols, particularly in resource-constrained 

environments. 

 
Fig. 8 Energy consumption analysis results 

 

AODV protocol exhibits high energy consumption 

values. Frequent route discoveries and maintenance activities 

lead to significant energy expenditure. With 500 drones, 

AODV records an energy consumption of 77.762%, reflecting 

substantial inefficiencies. Nodes involved in multiple route 

discoveries and updates deplete their batteries quickly, 

resulting in non-uniform battery usage and reducing the 

overall network lifespan. QSCR protocol shows moderate 

energy consumption values. The frequent exchange of control 

messages to manage clusters and update learning models 

increases energy usage. With 500 drones, QSCR's energy 

consumption stands at 73.713%. Synchronization challenges 

and handling node failures further contribute to higher energy 

consumption, impacting network sustainability. 

 
Fig. 9 Average energy consumption  
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KRP protocol demonstrates lower energy consumption, 

averaging 42.915% across all drone counts. The protocol's 

precision in data delivery minimizes unnecessary control 

messages and optimizes routing efficiency. 

Table 6. Energy consumption result values 

No. of Drones AODV QSCR KRP 

50 58.567 52.093 30.800 

100 60.135 54.494 33.070 

150 61.905 57.741 35.749 

200 64.326 60.192 38.260 

250 66.685 63.192 41.485 

300 68.725 65.149 44.648 

350 70.764 67.065 47.730 

400 73.043 69.089 50.265 

450 75.521 71.342 52.551 

500 77.762 73.713 54.596 

Average 67.743 63.464 42.915 

 

By reducing the need for frequent route discoveries and 

updates, KRP conserves energy. This efficient energy usage 

extends the network's operational life, ensuring sustainable 

performance in dynamic environments. The streamlined, 

targeted routing mechanism of KRP enhances overall network 

efficiency, making it a robust choice compared to AODV and 

QSCR. Figure 9 provides the average energy consumption. 

4.5. Link Stability 

Link stability measures how long a communication link 

remains active without interruption. Figure 10 shows the 

analysis of link stability for AODV, QSCR, and KRP 

protocols with different numbers of drones, as presented in 

Table 7.  Figure 11 provides the results of average link 

stability of routing protocols in hazardous DANET.  
 

 
Fig. 10 Link stability analysis results 

AODV exhibits lower link stability values, with frequent 

route discoveries leading to unstable links. At 500 drones, 

AODV records an average link stability of 3.310 milliseconds. 

The dynamic nature of AODV, with its frequent need for route 

maintenance, results in shorter stable link durations, causing 

disruptions in communication. QSCR has moderate link 

stability. The control message exchanges for cluster 

management and learning model updates impact stability. 

With 500 drones, QSCR achieves a link stability of 4.458 

milliseconds. Challenges in synchronization and managing 

node failures contribute to the moderate stability observed. 

Table 7. Link stability result values 

No. of Drones AODV QSCR KRP 

50 5.368 6.380 8.449 

100 5.076 6.197 8.342 

150 4.905 5.929 8.175 

200 4.677 5.652 8.006 

250 4.474 5.443 7.825 

300 4.254 5.246 7.597 

350 4.011 5.045 7.371 

400 3.771 4.829 7.158 

450 3.545 4.632 6.942 

500 3.310 4.458 6.731 

Average 4.339 5.381 7.660 

 

 
Fig. 11  Average link stability 

 

KRP shows significantly higher link stability, averaging 

7.660 milliseconds across all drone counts. The protocol's 

precise data delivery and efficient routing mechanisms lead to 

longer stable link durations. By reducing unnecessary control 

messages and optimizing route paths, KRP maintains more 

consistent and reliable links. This improvement in link 
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stability enhances network performance, ensuring continuous 

and robust communication. The ability to adapt swiftly to 

environmental changes and maintain stable links makes KRP 

an excellent choice for dynamic networks with a high number 

of drones. 

4.6. Hop Count Analysis 

The hop count metric represents the number of 

intermediate nodes a packet traverses from the source to the 

destination. Figure 12 displays the hop count analysis for 

AODV, QSCR, and KRP protocols across different numbers 

of drones, as detailed in Table 8. Figure 13 provides the 

Average Hop Count routing protocol in hazardous DANET. 

 

AODV exhibits consistently high hop counts, with an 

average of 10.059 hops. The need for frequent route 

discoveries and updates in dynamic environments contributes 

to longer paths, increasing the number of hops. This higher 

hop count leads to delays in packet delivery and higher 

network overhead, reducing overall efficiency. QSCR shows 

a moderate hop count, averaging 9.031 hops. While clustering 

and learning models help to some extent, the frequent control 

message exchanges and the need to manage synchronization 

and node failures still result in many intermediate nodes. This 

moderate hop count indicates that QSCR is more efficient than 

AODV but still has room for improvement. 

 
Fig. 12 Hop count results 

 

KRP makes a difference with a rather low hop count of 

5.516 average hops. Optimized routing protocols and precise 

data transport result in minimal intermediate nodes of the 

system. This comprises a lower hop count, meaning KRP 

effectively sets up packet transmission through the shortest 

and direct routes. In this context of operation, KRP improves 

the data and signaling transmission rate and the network 

integration efficiency by reducing unnecessary jumps. This 

improvement makes KRP a much more practical mechanism 

for achieving and sustaining low hop counts for the purpose 

of fast and highly reliable inter-drone communication. 

 

 
Fig. 13 Average hop count 

 

Table 8. Hop count analysis result values  

No. of Drones AODV QSCR KRP 

50 9.969 8.834 5.225 

100 9.992 8.896 5.301 

150 10.010 8.946 5.360 

200 10.035 8.988 5.436 

250 10.055 9.025 5.499 

300 10.072 9.059 5.553 

350 10.090 9.091 5.614 

400 10.107 9.123 5.672 

450 10.124 9.156 5.726 

500 10.141 9.188 5.773 

Average 10.059 9.031 5.516 

 

5. Conclusion 
This paper evaluates the Kingfisher Routing Protocol as a 

suitable solution to address the major issues of Drone Ad Hoc 

Networks (DANET) in danger zones. These environments 

demand perpetual coverage, consistent communication, and 

low energy consumption, which can hardly be maintained 

because of the fluid topologies of drone networks.  

To deal with these issues, KRP utilizes the algorithm for 

dynamic routing based on the current network conditions to 

provide proper and steady communication and reduce energy 

expenditure. Arrangement of network density, signal strength, 

and route selection at the KRP improves the quality of service 

through the designated quality of service. Other assessment 
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outcomes of the simulation studies show that KRP boosts up 

the packet delivery, decreases the latency as well as enhances 

energy consumption and link stability remarkably. The 

outcome of these measures reconfirms the KRP’s ability to 

increase the practical readiness of DANET in severe 

conditions and is effective for communication preservation in 

extreme situations. There could be future improvements to 

make use of machine learning to make the adaptation process 

of KRP more intelligent and come up with predictive routing 

adjustments from the data collected predisposing and changes 

in the network. Furthermore, introducing the KRP to multi-

drone cooperative missions and reviewing its efficacy in 

various environmental conditions may improve the broad 

applicability of KRP in various operation types.
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