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Abstract - Regression testing in software development is a vital and inevitable process performed to ensure that the modifications 

made to the code do not affect the overall quality of the software. Conducting performance regression tests each and every time 

when we do some modifications to the code is costlier. Thus, it would be better if we could identify the code modifications that 

may lead to performance regression and apply regression tests only during such code modification instances. The multi-objective 

optimization problem formulated includes detecting the code modification that causes performance regression. In this paper, we 

propose a memetic algorithm named Memetic algorithm using NSGA-II and Local Search (MNSLS), where NSGA-II algorithm 

with controlled elitism technique is used for global search along with a new improved and controlled local search method. These 

global and local search techniques improve the exploration and exploitation properties of the algorithm and help to find fitter 

solutions. MNSLS is used to optimize the identification rules, which could characterize and identify the code modifications that 

pose a problem to the software quality by finding solutions with a better trade-off between the hit and dismiss rates as objectives. 

The performance of the proposed algorithm is evaluated using a set of around 8000 Git project commits. The multi-objective 

optimization results are compared with other evolutionary algorithms using the Hypervolume metric and Mann-Whitney 𝑈 test. 

The proposed method is further compared with another evolutionary-based regression identification method called PRICE. The 

results of the above analysis show that the proposed MNSLS algorithm-based regression identification method is more efficient 

than other methods. 

Keywords - Performance Regression, Evolutionary Algorithm, Local Search, Memetic Algorithm, MNSLS. 

1. Introduction 
In the software development field, performance 

regression testing is used to ensure that recent code 

modifications do not affect the functioning in terms of meeting 

the performance specifications of software developed and 

tested earlier. Deviation in response time and resource 

utilization are a few examples of performance regression [1]. 

One of the standard procedures to identify the possibility of 

performance regression occurrence is to execute performance 

benchmark tests during every code change [2]. The major 

issues with performing regression tests for every code 

modification are time and resource costs. Thus, the options 

available to perform regression tests are (a) to test after every 

code modification, (b) to test in intervals and (c) to delay the 

test till the end of an iteration or ignore the test. The first 

option, as already discussed, is costlier and delays the further 

development process to wait for the regression test results [3]. 

Chen et al. [1], in their work, have recommended testing for 

every code modification rather than delaying it to the future. 

The second option, performing regression tests in intervals 

[4], may reduce the cost of testing but introduces overhead in 

finding the code modification that created a performance 

regression if one such exists. The third option is also 

expensive as it delays the performance regression test till the 

end of a development cycle, and if any code modification that 

has introduced performance regression and is detected at a 

later point will demand rework [5]. Many research studies 

have evaluated the benefits of using performance regression 

tests only when the code changes are problematic. Identifying 

problematic code modifications, which create a performance 

regression, is challenging. One way to track such code 

changes is by analysing their patterns [6]. Huang et al. [3] have 

suggested a Performance Risk Analysis method (PRA) where 

code modifications are ranked based on how problematic they 

are in introducing performance regression. Further, 

performance regression tests are carried out for the code 

modifications with higher ranks. Using a performance 

detection model to identify the problematic code changes by 

training the model with a limited performance test, and once 

the model performance is satisfactory, it is used to predict the 

need for a performance regression test for a code modification 

[7]. Alocer et al. [8] used a horizontal profiling method to 

identify the code modifications that created performance 

regression. They compare the current code modification with 
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respect to benchmark profiles, assign a cost factor to detect 

deviations and make a decision about carrying out tests. 

Identifying problematic code changes that cause performance 

regression using the above methods is time-consuming and 

characterizing such changes will help in prioritizing and 

testing these changes easily. Recently, metrics have been used 

to characterize the code changes, which measures the 

structural effect of these changes on source code.   

These static and dynamic metric-based performance 

regression identification using evolutionary algorithms is still 

in the early stage of research, which sets the motivation for 

conducting research in this field. Several problems related to 

software design and development are solved using 

evolutionary algorithms. In this research, the identification of 

code modifications requiring performance regression is 

formulated as a multi-objective optimization problem, and 

recent research related to this context is reviewed and 

presented. Regression testing is an optimization problem 

where value-based objectives are maximized, and cost-based 

objectives are minimized [9]. Evolutionary algorithms are 

used to solve the optimization problem in our research.  

The challenge in using evolutionary methods includes 

utilizing appropriate structural metrics that characterize the 

code changes, fine-tuning the algorithm based on the problem 

type, and many other related factors that affect the 

performance of the above methods. Our primary objective is 

identifying performance regression and creating code 

modifications through optimal identification rules using an 

appropriate evolutionary algorithm. The multi-objective 

optimization problem includes two objectives: hit rate and 

dismiss rate [9], representing accuracy in identifying commits 

that create performance regression and accuracy and 

excluding the commits that do not create performance 

regression, respectively. The optimization algorithm tries to 

find feasible solutions that are the best trade-off between the 

objectives through the rules. 

The proposed evolutionary algorithm, named Memetic 

algorithm using NSGA-II and Local Search (MNSLS), which 

is an NSGA-II with a controlled elitism-based evolutionary 

search algorithm, is further combined with an improved and 

controlled local search method, balancing the exploration and 

exploitation properties of the evolutionary algorithm. MNSLS 

execution begins with a set of input commits. It develops the 

identification rules to identify the code modifications 

(commits) that cause performance regression with the help of 

a set of dynamic metrics [10]. Along the evolution process, the 

identified rule is improved to identify the problem-causing 

commits and exclude non-problematic commits accurately. 

The research contributions specifically are, 

• A Memetic algorithm using NSGA-II and Local Search 

(MNSLS) is proposed and applied to the performance 

regression identification problem. 

• A new, improved, controlled local search method is 

proposed to exploit potential solutions.  

• Experimentation using 8596 Git Project commits data 

taken from [10]. 

• Performance comparison of the proposed MNSLS 

algorithm with other evolutionary algorithms using 

hypervolume performance metric and Mann-Whitney 𝑈 

test, a statistical test.  

• Performance comparison with the price regression 

detection method is needed to strengthen the results 

further. 

The proposed controlled local search technique and 

applying the memetic algorithm to the problem of identifying 

problematic code modifications is the novelty of this research 

work. The paper is structured as follows: Section 2 gives the 

related works, Section 3 details the proposed research 

methodology, Section 4 gives the experimentation, results, 

and discussion, followed by the conclusion.  

2. Related Works  
Characterizing the code modifications that introduce 

performance regression is now a widely considered option, as 

it is easier to make decisions about performance testing. It 

requires tracing the similarities and identical patterns along the 

code modifications. Code metrics, both static and dynamic 

nature metrics, are currently used to profile the code 

modifications. These metrics assess the structural impacts of 

the latest code modifications on source code, like lines of 

code, code complexity, etc. [1]. Oliveria et al. [6] have 

proposed the Perphecy approach to simplify the performance 

regression test selection process using static and dynamic 

metrics to identify the code modifications that create 

performance regression. Alshoaibi et al. [10] have presented 

an evolutionary search-based approach to detect problematic 

code modifications using static and dynamic indicators and 

have highlighted the effectiveness of dynamic metrics like 

count of added and deleted methods, highest percent static 

function length change, etc. Mkaouer et al. [11] have used 

around fifteen different quality metrics to evaluate the effect 

of refactoring. 

Evolutionary Algorithms (EAs) are proposed using the 

Darwinian principle of evolution and survival of the fittest and 

are search-based optimization methods. They are widely used 

to solve real-world optimization problems. Fitness or 

objective functions are framed using the decision variables 

related to the area of optimization. EAs try to find the solution 

that best solves the function. EA starts its evolution with an 

initial set of parent populations chosen from the search space; 

the child population is generated using the recombination and 

mutation operation. Fitter solutions among the parent and 

child population are selected for further processing based on 

their fitness function values. Optimization algorithms are 

classified as single-objective, multi-objective and, recently, 

many-objective optimization algorithms based on the number 
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of objectives that are to be optimized. The present research 

work is based on a multi-objective optimization problem, and 

a few representative algorithms from this class are as follows. 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

[12], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [13], 

Fuzzy Adaptive Multi-Objective Differential Evolution with 

Diversity Control (FAMDE-DC) [14], self-adaptive multi-

objective differential evolution-based trajectory optimization 

algorithm (STO), Non-dominated Sorting Moth Flame 

Optimization (NS-MFO) algorithm [16], Multi-Objective 

Evolutionary Algorithm based on Decomposition (MOEA/D) 

[17].  

Memetic Algorithm (MA) [18] combines population-

based global search algorithms like evolutionary algorithms 

and local search techniques like Tabu search, Hill climbing, 

etc. Several research papers published over previous years 

show the effectiveness of MA with high-performance results 

in solving optimization problems. A few recent studies based 

on MA have included the application of NSGA-II and Tabu 

search-based memetic algorithms to solve green job shop 

scheduling problems [19].  

An MA based on Differential Evolution and a hill-

climbing algorithm is used to optimize the clustering process 

in wireless sensor networks [20]. A Memetic algorithm using 

Teaching Learning based optimization and a Tabu search 

algorithm are used to optimize graph coloring problems [21]. 

When applied to such varied problem domains, the memetic 

algorithm further proves its effectiveness. Extending 

evolutionary algorithms to build predictive models using 

software metrics is analysed in detail and presented [22].  

In [10], the NSGA-II algorithm is used to optimize the 

problem of identifying code changes that create performance 

regression. The performance is compared with other classic 

algorithms, showing a promising research approach in 

Evolutionary Algorithms. A multi-objective evolutionary 

algorithm named diversity based Genetic Algorithm (DIV-

GA) was proposed by improving the diversity of the search 

population and is found to be efficient in optimizing the test 

case selection problem [23].  

A wide range of Evolutionary algorithms were applied to 

minimize the test suite size by characterizing a multi-objective 

optimization problem with two objectives: to maximize the 

effectiveness and minimize the cost [24]. NSGA-II and 

MOEA/D algorithms were used to optimally choose a subset 

of the regression test suite to achieve a trade-off between cost 

and coverage [25]. Regression test case prioritization and 

selection are essential during a software maintenance phase; 

an improvement to the existing Ant Colony Optimization 

algorithm is made, and the resulting algorithm is named 

Enhanced ACO_TCSP, resulting in minimal runtime and 

maximum coverage [26]. A hybrid Spider Monkey method-

based optimization algorithm was proposed and applied to 

optimize the regression test suite to find the minimal test cases 

needed to perform regression testing [27]. Tetrad optimization 

techniques based on evolutionary algorithms, such as an ant 

colony and bee colony, and genetic and greedy approach 

optimization methods were used for the test case selection and 

prioritization problem related to regression testing [28]. The 

related works focused on existing methods for performance 

regression causing code change identification are given in 

Tabe 1. 

Table 1. Studies on performance regression identification 

Ref. 

No./Year 
Year Method 

[10] 2022 

• Performance regression causing code modification identification 

• Metrics are used to characterize the structural code properties like lines of code 

• Multi-objective evolutionary algorithms like NSGA-II, SPEA2, and IBEA are used 

• Git project commits used for experimentation 

• IBEA outperforms other algorithms 

[29] 2020 

• Machine Learning Model to identify performance regression 

• Boosted decision tree, decision forest and SVM are used, and SVM attained best results 

• Static and dynamic indicators to describe structural characteristics are used 

• Solutions evaluated using hit-and-dismiss rates 

• Git Project commits are taken for experimentation 

[30] 2024 

• Early detection of performance regressions 

• Initially, component level performance deviation is identified and later mapped to the architecture 

level. 

• Finally, system-level performance regressions are evaluated 

• Experimentation conducted using Tea store and Train ticket open-source systems 

[31] 2022 

• Automated performance regression detection 

• Random forest classifiers are used 

• Metrics are estimated through aspects like synchronization, loop, external call, etc. 

• Experiments conducted using systems like Hadoop, Cassandra and openJPA 
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Fig. 1 Flowchart MNSLS approach 

3. Proposed Method 
The overall process of the research work is illustrated in 

Figure 1. Detailed discussion is provided in subsequent 

sections. From the database of previous historic commits (Git 

project), the static and dynamic information are extracted. 

This information is applied to the evaluation metrics, which 

are used in the formation of identification rules to identify the 

problematic code modifications/commits. The proposed 

MNSLS algorithm uses these evaluation metrics and generates 

the identification rules. For a new commit or code 

modification, this rule is used to identify whether it causes 

performance regression. If regression is identified, 

benchmarks will be used to assess the deviations. The updates 

are then stored back in the commits database. Through this 

process, the necessity to check for performance regression 

after every code modification could be avoided. The research 

problem is identifying the code modifications that cause 

performance regression instead of evaluating all the modified 

codes, saving time, effort and money. The problematic code 

modifications are identified using a set of static and dynamic 

metrics. These metrics measure the structural impact that code 

modifications create and are detailed in Section 3.1. An 

evolutionary algorithm-based approach to solving the above 

problem has been experimented and the steps are detailed in 

this section.  

3.1. Evaluation Metrics Used for Profiling 

These metrics characterize and profile the code 

modifications that cause performance regression. There is a 

wide range of static and dynamic metrics available that are 

used to profile the code modifications [6][10]. The dynamic 

evaluation metrics used in the present research work are listed 

in Table 2. These evaluation metrics are indicators that predict 

the code modifications that cause performance regression. 

Static or Static and dynamic information are needed to derive 

the metric value.  

The process of collecting static and dynamic information 

and applying it to evaluation metrics is performed as follows: 

first, the static and dynamic information is collected, and this 

step is detailed below. Next, the collected information is 

applied to the evaluation metrics listed in Table 1, and the 

prediction about the problematic code modifications is based 

on the hit and dismiss rate objective function values. The 

procedure to collect static and dynamic information [6] is 

briefed in this section and is illustrated in Figure 2. B1 and B2 

represent sample benchmarks for a project. Dynamic 

information is collected whenever the benchmarks are 

executed against a commit. It is usually done when a 

performance change is predicted or execution happens at a 

prespecified interval.  

Thus, dynamic information is not available for old 

commit2 with benchmark B2. Every new commit must be 

verified to determine whether it causes performance changes 

for the 2 benchmarks. To check whether the new commit 

affects the performance of benchmark B1, the static 

information from the new commit and dynamic information 

from old commit 2 are used.  

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 2 Static and dynamic information 
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Similarly, to verify whether performance with respect to 

benchmark B2 changes due to the new commit, the static 

information of the new commit and static and dynamic 

information from old commit 1 are used. This is because 

dynamic information for old commit 2 with benchmark B2 is 

not available; thus, it is retrieved from the previous commit 1, 

for which the dynamic information of B2 is available. Thus, 

the static and dynamic information is collected through this 

process to predict performance change against a benchmark 

and decide to execute a benchmark test with the new commit. 

3.2. Identification Rule  

The multi-objective optimization problem in this research 

work is the generation of identification rules that can 

successfully identify the code modifications that cause 

performance regression, and the problem is characterized by 

two objective functions, namely, hit and dismiss rates, 

respectively. The objective functions are detailed in Section 

3.3.  

Seven evaluation metrics detailed in the previous section 

form the search space with different associated values, subject 

to upper and lower bound limits and are represented as rules 

in the form of the tree. These identification rules are used to 

predict whether a new commit is problematic or not. If the 

commits are found to be problematic, a benchmark test is 

executed, and the static and dynamic information is observed 

to record the metric value, which is used to update the 

identification rule in future. An example rule is given below 

and the same is illustrated in Figure 3, in the form of a tree. 

The population of solutions used in the evolution process are 

given in the form of a tree [10]. ((((DM<18) OR (AM>38)) 

AND (PTCM>0.1%)) OR ((DMB<0.50) OR (PML>5%)))  

3.3. Objective Functions 

The solutions attained using the MNSLS algorithm were 

evaluated using the following two objectives: hit rate and 

dismiss rate. These objective functions are described in this 

section. 

Table 2. Evaluation metrics 

Metric Description Data 

Number of methods that are deleted (DM) 
Refactoring is the indicative reason for deleted methods, 

which may affect the performance. 
Static 

Number of methods that are added (AM) The newly added functions may also affect the performance. Static 

Number of methods that are deleted and are 

reached in benchmark execution (DMB) 

Refactoring is the indicative reason for deleted methods, and if 

they are reached in the benchmark execution process, it may 

affect the performance. 

Static and 

Dynamic 

 

 

The percentage of changed top-called 

methods (PTCM) 

It implies that the percentage of altered top-level methods may 

affect performance. 

Static and 

Dynamic 

The percentage of changed top-called 

methods, by at least 10%, changes to its 

static instruction length (PTCM10) 

It implies the percentage of top-called methods that are altered 

by 10% magnitude with respect to static instruction length, 

and these changes are of high risk. 

Static and 

Dynamic 

The percentage of static method length 

change (PML) 

This metric implies the percentage of changes made to the 

static instruction length of a method, and if beyond the 

threshold value, are likely to degrade the performance 

Static 

The percentage of static method length 

change is called by benchmark (PMLB) 

The description is the same as the above metric, and 

additionally, the function is called by the benchmark. 

Static and 

Dynamic 
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Fig. 4 MNSLS Algorithm
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3.3.1. Objective function 1 - Hit rate  

 Let 𝐻𝑇  be the variable denoting the count of total 

commits, which causes performance regression. 𝐻𝐷 denotes 

the count of detected commits that cause performance 

regression. Hit rate gives the measurement value for the count 

of detected commits, which causes performance regression 

with respect to total commits, which causes performance 

regression. Equation 1 gives the hit rate calculation for a 

solution 𝑠𝑜𝑙. 

𝐻𝑖𝑡𝑟𝑎𝑡𝑒(𝑠𝑜𝑙) =
|𝐻𝐷∩𝐻𝑇|

𝐻𝑇
  (1) 

Hit values range between 0 and 1, and a hit value of 1 

implies that all problematic commits are detected by the 

solution, which is attained through the evolutionary algorithm.  

3.3.2. Objective function 2 - Dismiss rate  

Let 𝐷𝑇  be the variable denoting the count of total commits 

that do not cause performance regression. 𝐷𝐷 denotes the 

count of detected commits that do not cause performance 

regression.Dismiss rate gives the measurement value for the 

count of detected non-problematic commits that do not cause 

performance regression with respect to total nonproblematic 

commits. Equation 2 gives the dismiss rate calculation for a 

solution 𝑠𝑜𝑙. 

𝐷𝑖𝑠𝑚𝑖𝑠𝑠𝑟𝑎𝑡𝑒(𝑠𝑜𝑙) =
|𝐷𝐷∩𝐷𝑇|

𝐷𝑇
  (2) 

The dismiss rate value ranges between 0 to 1; a dismiss 

rate value of 1 implies that all nonproblematic commits are 

detected. An optimal solution will have both hit rate and 

dismiss rate values as 1, and finding one such solution or rule 

is difficult. Thus, the objective of the search process using the 

MNSLS evolutionary algorithm is to find solutions through 

simultaneous optimization of the conflicting objective 

functions, with a good trade-off between both hit rate and 

dismiss rates.  

3.4. Proposed MNSLS Method 

The flowchart of the proposed MNSLS method is 

illustrated in Figure 4.  

3.4.1. NSGA-II with Controlled Elitism 

Nondominated sorting genetic algorithm-II (NSGA-II) 

[12] is a modified and improved version of the NSGA 

algorithm with elitism preserving, nondominated-based 

ranking and crowding distance properties. The initial 

population of size 𝑁𝑃 is randomly generated within the 

variable boundary conditions, and this parent population is 

represented as 𝑃𝑝𝑜𝑝. The objective function value is calculated 

for all solutions. The population is sorted and arranged 

through their nondomination factor, and the solutions are 

assigned with a fitness value equal to their level of 

nondomination (fitness 1 represents the best level). The 

offspring population represented as 𝑂𝑝𝑜𝑝 is generated through 

tournament selection, crossover and the mutation process. In 

the NSGA-II approach, parent and offspring populations 𝑃𝑝𝑜𝑝 

and 𝑂𝑝𝑜𝑝 are combined together and are represented as 𝐶𝑝𝑜𝑝 

(𝐶𝑝𝑜𝑝 = 𝑃𝑝𝑜𝑝 + 𝑂𝑝𝑜𝑝) of size 2𝑁𝑃. The new population for 

the next generation is chosen through nondominated sorting 

and crowding distance sorting methods. Though the NSGA-II 

algorithm is widely adapted to solve numerous optimization 

problems, there are a few factors that could be addressed to 

further leverage the search standards like, uncontrolled elitism 

could be restricted. Maintaining diversity lateral to the pareto 

front and accelerating the algorithm’s convergence speed are 

a few additions that can contribute to a better search and 

optimize process. A diversity of solutions along and lateral to 

the non-dominated front is needed to have good convergence. 

The controlled Elitism technique [32] improves lateral 

diversity, as detailed below. As discussed above, maintaining 

lateral diversity with respect to the non-dominated front or 

pareto front is vital and helps overcome excessive 

exploitation. When this lateral diversity is lost, it affects the 

search process and leads to exploitation in the region of 

current promising solutions. This is depicted in Figure 5 [32]. 

The controlled elitism technique controls the rate of 

exploitation over exploration by adaptively restricting the 

count of solutions chosen from the best front (nondominated 

set of solutions). A geometric distribution restricts the number 

of solutions chosen from a front, ensuring solutions across all 

the fronts are selected, thus controlling elitism. 

The geometric distribution is given by, 

𝐶𝑖 = 𝐶
1−𝑟

1−𝑟𝐹
𝑟𝑖−1 (3) 

Variable 𝐶𝑖 represents the count of solutions to be 

selected from the 𝑖𝑡ℎ front, where (𝑖 = 1,2, . . 𝐹). Variable 𝑟 

denotes the reduction rate, which is a user-specified value and 

is less than 1 (𝑟 < 1). This value range ensures solutions 

selected from the first front (best-nondominated front) are 

higher, and from the subsequent fronts, the count of solutions 

selected is exponentially reduced. 𝐶 represents the count of 

solutions to be selected in total. 

 
Fig. 5 Controlled elitism 
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Fig. 6 Improved and controlled local search 

3.4.2. Local Search  

To accelerate and improve the convergence speed of the 

algorithm, a local search is performed and is detailed 

subsequently. Local search techniques are known to improve 

the convergence properties by intensifying the search to find 

better solutions in the proximity region of promising solutions. 

These methods exploit the promising solutions attained so far, 

refine them, and optimize them further to improve fitness. The 

general practice is to choose solutions from the non-dominated 

front and to perform local search on these solutions to identify 

a better one. The proposed improved and controlled local 

search differs from the existing techniques by choosing 

candidate solutions from all available fronts to perform local 

search. The algorithm for local search is given in Figure 6.   

For instance, if there are 𝐹 non-dominated fronts 

available in a generation as an outcome of the NSGA-II 

algorithm, one solution from each front is selected to perform 

local search in order to identify a better neighbourhood, the 

candidate solutions selected to perform local search are stored 

in set 𝐶𝑆. Next, a direct search-based local search method 

called Nelder-Mead [33] is used to search the proximity of the 

neighbourhood regions of these candidate solutions to identify 

a fitter solution. A solution 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 that is 

identified through local search is evaluated  and compared 

with all the solutions in the first non-dominated front, and if it 

dominates any solution in this front, then 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

is added, and the dominant solution is removed. The 

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is also added to the first non-dominated 

front if it is not dominated by any solution in this front. In 

either case, a fitter solution is included in the first/best non-

dominated front, thus exploiting the potential solutions and 

further improving the search process. Since the local search 

method increases the search cost, and to avoid exploitation at 

a high rate, local search is performed in regular intervals 

(𝐿𝑆_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙), which makes it a controlled local search 

method. This improved and controlled local search method 

contributes to enhancing the rate of convergence of the 

proposed MNSLS algorithm. 

4. Experimentation and Results  
The parameter settings, performance indicators and the 

algorithms chosen for comparison are all detailed in this 

section. The open-source Git project is used for performance 

evaluation. Performance test bookmarks exist for the same, 

spanning across different projects. The database of around 

8596 Git project commits, as listed in the PRICE approach 

[10], is used for evaluation. All the commits are taken for 

experimentation.  

4.1. Parameter settings 

The parameters in the proposed MNSLS algorithm and 

their associated values are listed in Table 3.  

Table 3. Algorithm parameters and their value 

Parameter Value 

Population size (𝑁𝑃) 100 

Mutation rate 0.2 

Crossover rate 0.8 

Number of iterations 10000 

Runs 30 

Local search Interval (𝐿𝑆_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 10 

Local search number of iterations (𝐿𝑆𝐼𝑡𝑐𝑜𝑢𝑛𝑡) 100 

The threshold limits of the evaluation metrics, which form 

the variables of the search algorithm used to find the optimal 

identification rule, are set at the value as given in [10] and are 

listed in Table 4.  

Table 4. Evaluation metrics and their threshold value 

Evaluation metric 
Threshold 

value 

Number of methods that are deleted (DM) 20 

Number of methods that are added (AM) 44 

Number of methods that are deleted and 

are reached in benchmark execution 

(DMB) 

0.553 

The percentage of changed top-called 

methods (PTCM) 0.597% 

The percentage of changed top-called 

methods, by at least 10%, changes to its 

static instruction length (PTCM10) 

30% 

The percentage of static method length 

change (PML) 500% 

The percentage of static method length 

change is called by benchmark (PMLB) 14% 

4.2. Performance Metric- Hypervolume 

Hypervolume (HV) [34, 35] is a performance metric used 

to analyze and compare the performance of the algorithms. 

HV metric assesses the convergence and diversity properties 

of the attained non-dominated solution set and does not 

require a true front for evaluation.  

HV gives the area between the attained non-dominated 

front and a reference point. The reference points used include 

the worst objective function value from the attained solution 

set for each objective. The higher the HV value, the better the 

solution quality.  



Brindha Subburaj & J. Uma Maheswari  / IJETT, 73(1), 357-370, 2025 

 

365 

4.3. Nonparametric Statistical Test- Mann-Whitney 𝑼 Test 

To further strengthen the findings, a statistical test is 

conducted between the algorithms taken for comparison. 

Mann-Whitney 𝑈 test [36] is used for this purpose and is also 

called the Wilcoxon Rank Sum Test. It is a pair pairwise 

comparison test and interprets if there is any significant 

difference between the population group. The null hypothesis 

is that there is no significant difference between the two 

populations, and they are equal.  

The 𝑝-value less than 0.05 indicates a significant 

difference between the algorithms to rule out the null 

hypothesis. The MNSLS algorithm is compared with three 

other state-of-the-art algorithms, NSGA-II [12], SPEA2 [12], 

PESA-II [15] and IBEA [34] algorithms. A 10-fold cross-

validation is used, with nine folds for training and one-fold for 

testing, making a total of 300 runs per algorithm. 

4.4. Results 

The pareto fronts obtained by MNSLS and the other 

algorithms taken for comparison are given in Figure 7. The 

attained front using the proposed MNSLS method, as shown 

in Figure 7(a), is promising and evident through the following 

statistical test results. The statistical test results are given in 

Table 5, which gives the obtained 𝑝-value using the Mann-

Whitney 𝑈 test.   

From the statistical test results, it can be observed that the 

𝑝-value of MNSLS, when compared to all three other 

algorithms, is less than 0.05, which shows there is a significant 

difference between the algorithms. Even the results of other 

algorithms have significant differences except for SPEA2 and 

PESA-II algorithms, as there is no significant difference in 

performance between them as the 𝑝-value is 0.06, which is 

greater than the threshold value of 0.05.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Fig. 7 Obtained pareto fronts (a) MNSLS, (b) NSGA-II, (c) SPEA2, (d) PESA-II, (e) IBEA. 

Table 5. Mann-Whitney 𝑼 statistical test results using HV metric  
Algorithm B 

Algorithm A NSGA-II SPEA2 PESA-II IBEA 

IMP-NSGA-II 0.021 5.98E -09 7.8E -15 2.17E-16 

NSGA-II 
 

2.59E -07 2.3E -16 2.19E-16 

SPEA2 
  

0.06 2.23E-16 

PESA-II 
   

2.18E-16 

Table 6. Evaluation metric values attained vs. actual 

 PMLB PML PTCM10 PTCM 

Identification rule value <1.1% <0.25% >28 <0.1 

Actual value for commit 0.063% -0.024% 115% -0.015% 

The evaluation metric values attained using the MNSLS 

algorithm are analysed to further strengthen the results. 

Commit 0719f3ee is taken for this purpose, the obtained 

evaluation metric value through MNSLS and the actual 

Commit metric value [10] are presented in Table 6, and it can 

be seen that the predicted value for all the evaluation metrics 

is appropriate and shows that the code modifications are 

problematic.  

4.5. Comparison with Other Regression Identification 

Techniques 

It is evident from the results discussed in Section 3.4 that 

the proposed MNSLS algorithm best solves the multi-

objective optimization problem, which includes hit rate and 

dismiss rate as objectives used to detect the code modification 

that causes performance regression. The proposed method of 

regression identification using MNSLS is further compared 

with another evolutionary optimization-based regression 

identification approach called PRICE [10]. This helps to 

strengthen the results of the proposed approach. PRICE 

approach represented using IBEA as the evolutionary 

algorithm is taken for comparison. As discussed in the 

previous section, 10-fold cross-validation is used, where nine-

fold is used for training, and one-fold is used for testing. The 

rule generated using the training dataset is used for evaluation 

during testing. The approaches were compared using the hit 

rate and dismiss rates.  

The comparison results with respect to hit rate and 

dismiss rate between the approaches are presented in Figure 

8a and Figure 8b, respectively. The hit rate of the proposed 

MNSLS algorithm-based approach ranges from 60% to 100%, 

whereas for PRICE, it is about 48% to 100%. Thus, the hit rate 

is higher with the proposed approach. The dismiss rate of the 

proposed approach varies from 15% to 98%, and for the Price 

approach, it is about 17% to 97%; on average, the dismiss rate 

of the proposed MNSLS algorithm-based approach is better. 

To further strengthen the claim, the precision, recall, F1 

and AUC scores are calculated using hit and dismiss rates. The 

results of the above metrics using the proposed MNSLS and 

PRICE [10] approach are given in Table 7.
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Fig. 8 (a) Hit rate of MNSLS vs. PRICE

 
Fig. 8 (b) Dismiss rate of MNSLS vs. PRICE 

Table 7. Results of MNSLS approach with different metrics, comparing with PRICE 

 Pre. Recall F1 AUC 

MNSLS 0.89 0.84 0.90 0.87 

PRICE 0.81 0.76 0.79 0.78 
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From the results, it is evident that the proposed MNSLS 

approach identifies the problematic codes better when 

compared to the other approach taken for comparison. The 

results using the hypervolume metric and statistical tests prove 

the same as well. The proposed memetic algorithm using the 

controlled local search procedure aids in better exploitation by 

finding better solutions in the proximity of promising solution 

regions at regular intervals, whereas the other existing 

evolutionary algorithm-based methods applied to regression 

identification problems are based on a global search method 

or algorithms which is not adapted to this problem. The 

proposed MNSLS algorithm based on both global and local 

search approaches attains better solutions, resulting in better 

identification.   

4.6. Limitations  

The proposed method identifies code changes that occur 

in functions. However, considering the code changes in 

statements will make the detection model more efficient; the 

same is the scope for future work. The generalization aspect 

of the proposed work has practical implications to be 

considered, and the same is true of the scope of future work. 

Thus, applying the proposed method to other projects will give 

better results concerning real-world problems.  

5. Conclusion  
In this research work, identifying the code modifications 

that are problematic and cause performance regression using 

the evolutionary algorithm is presented. Evaluation metrics 

that characterize the code modifications act as the input 

variables for the algorithm. The identification rule that 

predicts the problematic code modifications is defined as the 

search problem with two objectives: hit rate and dismiss rate.   

Deriving this identification rule through an evolutionary 

algorithm is the major research objective. Memetic algorithm 

using NSGA-II and Local Search (MNSLS) is proposed. In 

MNSLS, the NSGA-II algorithm with controlled elitism is 

used as a global search algorithm. New, improved and 

controlled local search techniques are used to enhance the 

search performance and attain pareto optimal solutions that 

form the best trade-off between the two objectives.  

Commits from the Git project are used as the dataset for 

experimentation. MNSLS algorithm is compared with three 

other state-of-the-art evolutionary algorithms. Hypervolume 

metric is used as the performance indicator to evaluate the 

quality of the solutions obtained and further, used to compare 

the performance between the algorithms. To strengthen the 

findings, the Mann-Whitney 𝑈 test, which is a nonparametric 

statistical test, is conducted.  

To further investigate the performance of the overall 

approach for performance regression identification using the 

MNSLS algorithm, a comparative study is conducted between 

the MNSLS-based regression identification approach and the 

IBEA algorithm-based PRICE approach for regression 

identification. Through the results obtained using the above 

experimentation, it is evident that the proposed technique 

results are better than those of the other evolutionary 

algorithms and regression detection approach, and the 

identification rules that are attained appropriately classify and 

identify the problematic code modifications. 

This research could further be expanded to analyse the 

effectiveness of evaluation metrics in identifying problematic 

commits. This work will be performed in the future by 

including several other metrics and studying the contribution 

of various metrics. Another extension is to analyse the 

performance of the proposed evolutionary algorithm-based 

regression identification with other machine learning-based 

models used for regression identification. Further, extending 

and conducting experimentation with other projects improves 

the generalization aspect of the identification model.  
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