
International Journal of Engineering Trends and Technology Volume 73 Issue 1, 357-370, January 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I1P131 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Identification of Performance Regression Causing Code

Modifications Using Memetic Algorithm

Brindha Subburaj1, J. Uma Maheswari2

1,2School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

1Corresponding Author : brindha.s@vit.ac.in

Received: 13 September 2024 Revised: 11 January 2025 Accepted: 16 January 2025 Published: 31 January 2025

Abstract - Regression testing in software development is a vital and inevitable process performed to ensure that the modifications

made to the code do not affect the overall quality of the software. Conducting performance regression tests each and every time

when we do some modifications to the code is costlier. Thus, it would be better if we could identify the code modifications that

may lead to performance regression and apply regression tests only during such code modification instances. The multi-objective

optimization problem formulated includes detecting the code modification that causes performance regression. In this paper, we

propose a memetic algorithm named Memetic algorithm using NSGA-II and Local Search (MNSLS), where NSGA-II algorithm

with controlled elitism technique is used for global search along with a new improved and controlled local search method. These

global and local search techniques improve the exploration and exploitation properties of the algorithm and help to find fitter

solutions. MNSLS is used to optimize the identification rules, which could characterize and identify the code modifications that

pose a problem to the software quality by finding solutions with a better trade-off between the hit and dismiss rates as objectives.

The performance of the proposed algorithm is evaluated using a set of around 8000 Git project commits. The multi-objective

optimization results are compared with other evolutionary algorithms using the Hypervolume metric and Mann-Whitney 𝑈 test.

The proposed method is further compared with another evolutionary-based regression identification method called PRICE. The

results of the above analysis show that the proposed MNSLS algorithm-based regression identification method is more efficient

than other methods.

Keywords - Performance Regression, Evolutionary Algorithm, Local Search, Memetic Algorithm, MNSLS.

1. Introduction
In the software development field, performance

regression testing is used to ensure that recent code

modifications do not affect the functioning in terms of meeting

the performance specifications of software developed and

tested earlier. Deviation in response time and resource

utilization are a few examples of performance regression [1].

One of the standard procedures to identify the possibility of

performance regression occurrence is to execute performance

benchmark tests during every code change [2]. The major

issues with performing regression tests for every code

modification are time and resource costs. Thus, the options

available to perform regression tests are (a) to test after every

code modification, (b) to test in intervals and (c) to delay the

test till the end of an iteration or ignore the test. The first

option, as already discussed, is costlier and delays the further

development process to wait for the regression test results [3].

Chen et al. [1], in their work, have recommended testing for

every code modification rather than delaying it to the future.

The second option, performing regression tests in intervals

[4], may reduce the cost of testing but introduces overhead in

finding the code modification that created a performance

regression if one such exists. The third option is also

expensive as it delays the performance regression test till the

end of a development cycle, and if any code modification that

has introduced performance regression and is detected at a

later point will demand rework [5]. Many research studies

have evaluated the benefits of using performance regression

tests only when the code changes are problematic. Identifying

problematic code modifications, which create a performance

regression, is challenging. One way to track such code

changes is by analysing their patterns [6]. Huang et al. [3] have

suggested a Performance Risk Analysis method (PRA) where

code modifications are ranked based on how problematic they

are in introducing performance regression. Further,

performance regression tests are carried out for the code

modifications with higher ranks. Using a performance

detection model to identify the problematic code changes by

training the model with a limited performance test, and once

the model performance is satisfactory, it is used to predict the

need for a performance regression test for a code modification

[7]. Alocer et al. [8] used a horizontal profiling method to

identify the code modifications that created performance

regression. They compare the current code modification with

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1Corresponding%20Author%20:%20brindha.s@vit.ac.in

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

358

respect to benchmark profiles, assign a cost factor to detect

deviations and make a decision about carrying out tests.

Identifying problematic code changes that cause performance

regression using the above methods is time-consuming and

characterizing such changes will help in prioritizing and

testing these changes easily. Recently, metrics have been used

to characterize the code changes, which measures the

structural effect of these changes on source code.

These static and dynamic metric-based performance

regression identification using evolutionary algorithms is still

in the early stage of research, which sets the motivation for

conducting research in this field. Several problems related to

software design and development are solved using

evolutionary algorithms. In this research, the identification of

code modifications requiring performance regression is

formulated as a multi-objective optimization problem, and

recent research related to this context is reviewed and

presented. Regression testing is an optimization problem

where value-based objectives are maximized, and cost-based

objectives are minimized [9]. Evolutionary algorithms are

used to solve the optimization problem in our research.

The challenge in using evolutionary methods includes

utilizing appropriate structural metrics that characterize the

code changes, fine-tuning the algorithm based on the problem

type, and many other related factors that affect the

performance of the above methods. Our primary objective is

identifying performance regression and creating code

modifications through optimal identification rules using an

appropriate evolutionary algorithm. The multi-objective

optimization problem includes two objectives: hit rate and

dismiss rate [9], representing accuracy in identifying commits

that create performance regression and accuracy and

excluding the commits that do not create performance

regression, respectively. The optimization algorithm tries to

find feasible solutions that are the best trade-off between the

objectives through the rules.

The proposed evolutionary algorithm, named Memetic

algorithm using NSGA-II and Local Search (MNSLS), which

is an NSGA-II with a controlled elitism-based evolutionary

search algorithm, is further combined with an improved and

controlled local search method, balancing the exploration and

exploitation properties of the evolutionary algorithm. MNSLS

execution begins with a set of input commits. It develops the

identification rules to identify the code modifications

(commits) that cause performance regression with the help of

a set of dynamic metrics [10]. Along the evolution process, the

identified rule is improved to identify the problem-causing

commits and exclude non-problematic commits accurately.

The research contributions specifically are,

• A Memetic algorithm using NSGA-II and Local Search

(MNSLS) is proposed and applied to the performance

regression identification problem.

• A new, improved, controlled local search method is

proposed to exploit potential solutions.

• Experimentation using 8596 Git Project commits data

taken from [10].

• Performance comparison of the proposed MNSLS

algorithm with other evolutionary algorithms using

hypervolume performance metric and Mann-Whitney 𝑈

test, a statistical test.

• Performance comparison with the price regression

detection method is needed to strengthen the results

further.

The proposed controlled local search technique and

applying the memetic algorithm to the problem of identifying

problematic code modifications is the novelty of this research

work. The paper is structured as follows: Section 2 gives the

related works, Section 3 details the proposed research

methodology, Section 4 gives the experimentation, results,

and discussion, followed by the conclusion.

2. Related Works
Characterizing the code modifications that introduce

performance regression is now a widely considered option, as

it is easier to make decisions about performance testing. It

requires tracing the similarities and identical patterns along the

code modifications. Code metrics, both static and dynamic

nature metrics, are currently used to profile the code

modifications. These metrics assess the structural impacts of

the latest code modifications on source code, like lines of

code, code complexity, etc. [1]. Oliveria et al. [6] have

proposed the Perphecy approach to simplify the performance

regression test selection process using static and dynamic

metrics to identify the code modifications that create

performance regression. Alshoaibi et al. [10] have presented

an evolutionary search-based approach to detect problematic

code modifications using static and dynamic indicators and

have highlighted the effectiveness of dynamic metrics like

count of added and deleted methods, highest percent static

function length change, etc. Mkaouer et al. [11] have used

around fifteen different quality metrics to evaluate the effect

of refactoring.

Evolutionary Algorithms (EAs) are proposed using the

Darwinian principle of evolution and survival of the fittest and

are search-based optimization methods. They are widely used

to solve real-world optimization problems. Fitness or

objective functions are framed using the decision variables

related to the area of optimization. EAs try to find the solution

that best solves the function. EA starts its evolution with an

initial set of parent populations chosen from the search space;

the child population is generated using the recombination and

mutation operation. Fitter solutions among the parent and

child population are selected for further processing based on

their fitness function values. Optimization algorithms are

classified as single-objective, multi-objective and, recently,

many-objective optimization algorithms based on the number

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

359

of objectives that are to be optimized. The present research

work is based on a multi-objective optimization problem, and

a few representative algorithms from this class are as follows.

Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

[12], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [13],

Fuzzy Adaptive Multi-Objective Differential Evolution with

Diversity Control (FAMDE-DC) [14], self-adaptive multi-

objective differential evolution-based trajectory optimization

algorithm (STO), Non-dominated Sorting Moth Flame

Optimization (NS-MFO) algorithm [16], Multi-Objective

Evolutionary Algorithm based on Decomposition (MOEA/D)

[17].

Memetic Algorithm (MA) [18] combines population-

based global search algorithms like evolutionary algorithms

and local search techniques like Tabu search, Hill climbing,

etc. Several research papers published over previous years

show the effectiveness of MA with high-performance results

in solving optimization problems. A few recent studies based

on MA have included the application of NSGA-II and Tabu

search-based memetic algorithms to solve green job shop

scheduling problems [19].

An MA based on Differential Evolution and a hill-

climbing algorithm is used to optimize the clustering process

in wireless sensor networks [20]. A Memetic algorithm using

Teaching Learning based optimization and a Tabu search

algorithm are used to optimize graph coloring problems [21].

When applied to such varied problem domains, the memetic

algorithm further proves its effectiveness. Extending

evolutionary algorithms to build predictive models using

software metrics is analysed in detail and presented [22].

In [10], the NSGA-II algorithm is used to optimize the

problem of identifying code changes that create performance

regression. The performance is compared with other classic

algorithms, showing a promising research approach in

Evolutionary Algorithms. A multi-objective evolutionary

algorithm named diversity based Genetic Algorithm (DIV-

GA) was proposed by improving the diversity of the search

population and is found to be efficient in optimizing the test

case selection problem [23].

A wide range of Evolutionary algorithms were applied to

minimize the test suite size by characterizing a multi-objective

optimization problem with two objectives: to maximize the

effectiveness and minimize the cost [24]. NSGA-II and

MOEA/D algorithms were used to optimally choose a subset

of the regression test suite to achieve a trade-off between cost

and coverage [25]. Regression test case prioritization and

selection are essential during a software maintenance phase;

an improvement to the existing Ant Colony Optimization

algorithm is made, and the resulting algorithm is named

Enhanced ACO_TCSP, resulting in minimal runtime and

maximum coverage [26]. A hybrid Spider Monkey method-

based optimization algorithm was proposed and applied to

optimize the regression test suite to find the minimal test cases

needed to perform regression testing [27]. Tetrad optimization

techniques based on evolutionary algorithms, such as an ant

colony and bee colony, and genetic and greedy approach

optimization methods were used for the test case selection and

prioritization problem related to regression testing [28]. The

related works focused on existing methods for performance

regression causing code change identification are given in

Tabe 1.

Table 1. Studies on performance regression identification

Ref.

No./Year
Year Method

[10] 2022

• Performance regression causing code modification identification

• Metrics are used to characterize the structural code properties like lines of code

• Multi-objective evolutionary algorithms like NSGA-II, SPEA2, and IBEA are used

• Git project commits used for experimentation

• IBEA outperforms other algorithms

[29] 2020

• Machine Learning Model to identify performance regression

• Boosted decision tree, decision forest and SVM are used, and SVM attained best results

• Static and dynamic indicators to describe structural characteristics are used

• Solutions evaluated using hit-and-dismiss rates

• Git Project commits are taken for experimentation

[30] 2024

• Early detection of performance regressions

• Initially, component level performance deviation is identified and later mapped to the architecture

level.

• Finally, system-level performance regressions are evaluated

• Experimentation conducted using Tea store and Train ticket open-source systems

[31] 2022

• Automated performance regression detection

• Random forest classifiers are used

• Metrics are estimated through aspects like synchronization, loop, external call, etc.

• Experiments conducted using systems like Hadoop, Cassandra and openJPA

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

360

Fig. 1 Flowchart MNSLS approach

3. Proposed Method
The overall process of the research work is illustrated in

Figure 1. Detailed discussion is provided in subsequent

sections. From the database of previous historic commits (Git

project), the static and dynamic information are extracted.

This information is applied to the evaluation metrics, which

are used in the formation of identification rules to identify the

problematic code modifications/commits. The proposed

MNSLS algorithm uses these evaluation metrics and generates

the identification rules. For a new commit or code

modification, this rule is used to identify whether it causes

performance regression. If regression is identified,

benchmarks will be used to assess the deviations. The updates

are then stored back in the commits database. Through this

process, the necessity to check for performance regression

after every code modification could be avoided. The research

problem is identifying the code modifications that cause

performance regression instead of evaluating all the modified

codes, saving time, effort and money. The problematic code

modifications are identified using a set of static and dynamic

metrics. These metrics measure the structural impact that code

modifications create and are detailed in Section 3.1. An

evolutionary algorithm-based approach to solving the above

problem has been experimented and the steps are detailed in

this section.

3.1. Evaluation Metrics Used for Profiling

These metrics characterize and profile the code

modifications that cause performance regression. There is a

wide range of static and dynamic metrics available that are

used to profile the code modifications [6][10]. The dynamic

evaluation metrics used in the present research work are listed

in Table 2. These evaluation metrics are indicators that predict

the code modifications that cause performance regression.

Static or Static and dynamic information are needed to derive

the metric value.

The process of collecting static and dynamic information

and applying it to evaluation metrics is performed as follows:

first, the static and dynamic information is collected, and this

step is detailed below. Next, the collected information is

applied to the evaluation metrics listed in Table 1, and the

prediction about the problematic code modifications is based

on the hit and dismiss rate objective function values. The

procedure to collect static and dynamic information [6] is

briefed in this section and is illustrated in Figure 2. B1 and B2

represent sample benchmarks for a project. Dynamic

information is collected whenever the benchmarks are

executed against a commit. It is usually done when a

performance change is predicted or execution happens at a

prespecified interval.

Thus, dynamic information is not available for old

commit2 with benchmark B2. Every new commit must be

verified to determine whether it causes performance changes

for the 2 benchmarks. To check whether the new commit

affects the performance of benchmark B1, the static

information from the new commit and dynamic information

from old commit 2 are used.

Fig. 2 Static and dynamic information

Static and dynamic

information from previous

commits

Evaluation

metrics

NSGA-II with

Controlled Elitism

algorithm

Identification rules

Performance

regression

predicted?

New

commit
Code

modification is

not problematic

No

Yes

Conduct performance test

Record information to

database

Static

Information

New

Commit

Static

Information

Old Commit 2

Dynamic

Information

Static

Information

Old Commit 1

Dynamic

Information
Dynamic

Information

B1 B2

Benchmarks

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

361

Similarly, to verify whether performance with respect to

benchmark B2 changes due to the new commit, the static

information of the new commit and static and dynamic

information from old commit 1 are used. This is because

dynamic information for old commit 2 with benchmark B2 is

not available; thus, it is retrieved from the previous commit 1,

for which the dynamic information of B2 is available. Thus,

the static and dynamic information is collected through this

process to predict performance change against a benchmark

and decide to execute a benchmark test with the new commit.

3.2. Identification Rule

The multi-objective optimization problem in this research

work is the generation of identification rules that can

successfully identify the code modifications that cause

performance regression, and the problem is characterized by

two objective functions, namely, hit and dismiss rates,

respectively. The objective functions are detailed in Section

3.3.

Seven evaluation metrics detailed in the previous section

form the search space with different associated values, subject

to upper and lower bound limits and are represented as rules

in the form of the tree. These identification rules are used to

predict whether a new commit is problematic or not. If the

commits are found to be problematic, a benchmark test is

executed, and the static and dynamic information is observed

to record the metric value, which is used to update the

identification rule in future. An example rule is given below

and the same is illustrated in Figure 3, in the form of a tree.

The population of solutions used in the evolution process are

given in the form of a tree [10]. ((((DM<18) OR (AM>38))

AND (PTCM>0.1%)) OR ((DMB<0.50) OR (PML>5%)))

3.3. Objective Functions

The solutions attained using the MNSLS algorithm were

evaluated using the following two objectives: hit rate and

dismiss rate. These objective functions are described in this

section.

Table 2. Evaluation metrics

Metric Description Data

Number of methods that are deleted (DM)
Refactoring is the indicative reason for deleted methods,

which may affect the performance.
Static

Number of methods that are added (AM) The newly added functions may also affect the performance. Static

Number of methods that are deleted and are

reached in benchmark execution (DMB)

Refactoring is the indicative reason for deleted methods, and if

they are reached in the benchmark execution process, it may

affect the performance.

Static and

Dynamic

The percentage of changed top-called

methods (PTCM)

It implies that the percentage of altered top-level methods may

affect performance.

Static and

Dynamic

The percentage of changed top-called

methods, by at least 10%, changes to its

static instruction length (PTCM10)

It implies the percentage of top-called methods that are altered

by 10% magnitude with respect to static instruction length,

and these changes are of high risk.

Static and

Dynamic

The percentage of static method length

change (PML)

This metric implies the percentage of changes made to the

static instruction length of a method, and if beyond the

threshold value, are likely to degrade the performance

Static

The percentage of static method length

change is called by benchmark (PMLB)

The description is the same as the above metric, and

additionally, the function is called by the benchmark.

Static and

Dynamic

Fig. 3 Identification rule - Tree representation

OR

OR AND

OR >

<
> PTCM 0.1%

DM 18 38 AM

> <

DMB 0.5

0

PML 5

%

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

362

Fig. 4 MNSLS Algorithm

No

Yes

Start

Initialize parameters

Initialize parent population 𝑃𝑝𝑜𝑝(𝑔) of size 𝑁𝑃 randomly

Offspring population generation 𝑂𝑝𝑜𝑝(𝑔) by performing crossover and mutation

A

Compute fitness function value of 𝑃𝑝𝑜𝑝(𝑔) and 𝑂𝑝𝑜𝑝(𝑔) solutions

Unite 𝑃𝑝𝑜𝑝(𝑔) and 𝑂𝑝𝑜𝑝(𝑔) to form combined population 𝐶𝑝𝑜𝑝(𝑔) of size 2𝑁𝑃

Perform nondominated sorting and crowding distance sorting with controlled elitism to select

population for next generation, 𝑃𝑝𝑜𝑝(𝑔)+1

Termination condition?

Yes

Stop

Generation multiple of

𝐿𝑆𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙?

Perform local search

No

A

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

363

3.3.1. Objective function 1 - Hit rate

 Let 𝐻𝑇 be the variable denoting the count of total

commits, which causes performance regression. 𝐻𝐷 denotes

the count of detected commits that cause performance

regression. Hit rate gives the measurement value for the count

of detected commits, which causes performance regression

with respect to total commits, which causes performance

regression. Equation 1 gives the hit rate calculation for a

solution 𝑠𝑜𝑙.

𝐻𝑖𝑡𝑟𝑎𝑡𝑒(𝑠𝑜𝑙) =
|𝐻𝐷∩𝐻𝑇|

𝐻𝑇
 (1)

Hit values range between 0 and 1, and a hit value of 1

implies that all problematic commits are detected by the

solution, which is attained through the evolutionary algorithm.

3.3.2. Objective function 2 - Dismiss rate

Let 𝐷𝑇 be the variable denoting the count of total commits

that do not cause performance regression. 𝐷𝐷 denotes the

count of detected commits that do not cause performance

regression.Dismiss rate gives the measurement value for the

count of detected non-problematic commits that do not cause

performance regression with respect to total nonproblematic

commits. Equation 2 gives the dismiss rate calculation for a

solution 𝑠𝑜𝑙.

𝐷𝑖𝑠𝑚𝑖𝑠𝑠𝑟𝑎𝑡𝑒(𝑠𝑜𝑙) =
|𝐷𝐷∩𝐷𝑇|

𝐷𝑇
 (2)

The dismiss rate value ranges between 0 to 1; a dismiss

rate value of 1 implies that all nonproblematic commits are

detected. An optimal solution will have both hit rate and

dismiss rate values as 1, and finding one such solution or rule

is difficult. Thus, the objective of the search process using the

MNSLS evolutionary algorithm is to find solutions through

simultaneous optimization of the conflicting objective

functions, with a good trade-off between both hit rate and

dismiss rates.

3.4. Proposed MNSLS Method

The flowchart of the proposed MNSLS method is

illustrated in Figure 4.

3.4.1. NSGA-II with Controlled Elitism

Nondominated sorting genetic algorithm-II (NSGA-II)

[12] is a modified and improved version of the NSGA

algorithm with elitism preserving, nondominated-based

ranking and crowding distance properties. The initial

population of size 𝑁𝑃 is randomly generated within the

variable boundary conditions, and this parent population is

represented as 𝑃𝑝𝑜𝑝. The objective function value is calculated

for all solutions. The population is sorted and arranged

through their nondomination factor, and the solutions are

assigned with a fitness value equal to their level of

nondomination (fitness 1 represents the best level). The

offspring population represented as 𝑂𝑝𝑜𝑝 is generated through

tournament selection, crossover and the mutation process. In

the NSGA-II approach, parent and offspring populations 𝑃𝑝𝑜𝑝

and 𝑂𝑝𝑜𝑝 are combined together and are represented as 𝐶𝑝𝑜𝑝

(𝐶𝑝𝑜𝑝 = 𝑃𝑝𝑜𝑝 + 𝑂𝑝𝑜𝑝) of size 2𝑁𝑃. The new population for

the next generation is chosen through nondominated sorting

and crowding distance sorting methods. Though the NSGA-II

algorithm is widely adapted to solve numerous optimization

problems, there are a few factors that could be addressed to

further leverage the search standards like, uncontrolled elitism

could be restricted. Maintaining diversity lateral to the pareto

front and accelerating the algorithm’s convergence speed are

a few additions that can contribute to a better search and

optimize process. A diversity of solutions along and lateral to

the non-dominated front is needed to have good convergence.

The controlled Elitism technique [32] improves lateral

diversity, as detailed below. As discussed above, maintaining

lateral diversity with respect to the non-dominated front or

pareto front is vital and helps overcome excessive

exploitation. When this lateral diversity is lost, it affects the

search process and leads to exploitation in the region of

current promising solutions. This is depicted in Figure 5 [32].

The controlled elitism technique controls the rate of

exploitation over exploration by adaptively restricting the

count of solutions chosen from the best front (nondominated

set of solutions). A geometric distribution restricts the number

of solutions chosen from a front, ensuring solutions across all

the fronts are selected, thus controlling elitism.

The geometric distribution is given by,

𝐶𝑖 = 𝐶
1−𝑟

1−𝑟𝐹
𝑟𝑖−1 (3)

Variable 𝐶𝑖 represents the count of solutions to be

selected from the 𝑖𝑡ℎ front, where (𝑖 = 1,2, . . 𝐹). Variable 𝑟

denotes the reduction rate, which is a user-specified value and

is less than 1 (𝑟 < 1). This value range ensures solutions

selected from the first front (best-nondominated front) are

higher, and from the subsequent fronts, the count of solutions

selected is exponentially reduced. 𝐶 represents the count of

solutions to be selected in total.

Fig. 5 Controlled elitism

 Diversity along front

F 2

F 1





























Pareto optimal front

Front 1 Front 2
Front 3

Diversity lateral

to front

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

364

Fig. 6 Improved and controlled local search

3.4.2. Local Search

To accelerate and improve the convergence speed of the

algorithm, a local search is performed and is detailed

subsequently. Local search techniques are known to improve

the convergence properties by intensifying the search to find

better solutions in the proximity region of promising solutions.

These methods exploit the promising solutions attained so far,

refine them, and optimize them further to improve fitness. The

general practice is to choose solutions from the non-dominated

front and to perform local search on these solutions to identify

a better one. The proposed improved and controlled local

search differs from the existing techniques by choosing

candidate solutions from all available fronts to perform local

search. The algorithm for local search is given in Figure 6.

For instance, if there are 𝐹 non-dominated fronts

available in a generation as an outcome of the NSGA-II

algorithm, one solution from each front is selected to perform

local search in order to identify a better neighbourhood, the

candidate solutions selected to perform local search are stored

in set 𝐶𝑆. Next, a direct search-based local search method

called Nelder-Mead [33] is used to search the proximity of the

neighbourhood regions of these candidate solutions to identify

a fitter solution. A solution 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 that is

identified through local search is evaluated and compared

with all the solutions in the first non-dominated front, and if it

dominates any solution in this front, then 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

is added, and the dominant solution is removed. The

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is also added to the first non-dominated

front if it is not dominated by any solution in this front. In

either case, a fitter solution is included in the first/best non-

dominated front, thus exploiting the potential solutions and

further improving the search process. Since the local search

method increases the search cost, and to avoid exploitation at

a high rate, local search is performed in regular intervals

(𝐿𝑆_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙), which makes it a controlled local search

method. This improved and controlled local search method

contributes to enhancing the rate of convergence of the

proposed MNSLS algorithm.

4. Experimentation and Results
The parameter settings, performance indicators and the

algorithms chosen for comparison are all detailed in this

section. The open-source Git project is used for performance

evaluation. Performance test bookmarks exist for the same,

spanning across different projects. The database of around

8596 Git project commits, as listed in the PRICE approach

[10], is used for evaluation. All the commits are taken for

experimentation.

4.1. Parameter settings

The parameters in the proposed MNSLS algorithm and

their associated values are listed in Table 3.

Table 3. Algorithm parameters and their value

Parameter Value

Population size (𝑁𝑃) 100

Mutation rate 0.2

Crossover rate 0.8

Number of iterations 10000

Runs 30

Local search Interval (𝐿𝑆_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 10

Local search number of iterations (𝐿𝑆𝐼𝑡𝑐𝑜𝑢𝑛𝑡) 100

The threshold limits of the evaluation metrics, which form

the variables of the search algorithm used to find the optimal

identification rule, are set at the value as given in [10] and are

listed in Table 4.

Table 4. Evaluation metrics and their threshold value

Evaluation metric
Threshold

value

Number of methods that are deleted (DM) 20

Number of methods that are added (AM) 44

Number of methods that are deleted and

are reached in benchmark execution

(DMB)

0.553

The percentage of changed top-called

methods (PTCM) 0.597%

The percentage of changed top-called

methods, by at least 10%, changes to its

static instruction length (PTCM10)

30%

The percentage of static method length

change (PML) 500%

The percentage of static method length

change is called by benchmark (PMLB) 14%

4.2. Performance Metric- Hypervolume

Hypervolume (HV) [34, 35] is a performance metric used

to analyze and compare the performance of the algorithms.

HV metric assesses the convergence and diversity properties

of the attained non-dominated solution set and does not

require a true front for evaluation.

HV gives the area between the attained non-dominated

front and a reference point. The reference points used include

the worst objective function value from the attained solution

set for each objective. The higher the HV value, the better the

solution quality.

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

365

4.3. Nonparametric Statistical Test- Mann-Whitney 𝑼 Test

To further strengthen the findings, a statistical test is

conducted between the algorithms taken for comparison.

Mann-Whitney 𝑈 test [36] is used for this purpose and is also

called the Wilcoxon Rank Sum Test. It is a pair pairwise

comparison test and interprets if there is any significant

difference between the population group. The null hypothesis

is that there is no significant difference between the two

populations, and they are equal.

The 𝑝-value less than 0.05 indicates a significant

difference between the algorithms to rule out the null

hypothesis. The MNSLS algorithm is compared with three

other state-of-the-art algorithms, NSGA-II [12], SPEA2 [12],

PESA-II [15] and IBEA [34] algorithms. A 10-fold cross-

validation is used, with nine folds for training and one-fold for

testing, making a total of 300 runs per algorithm.

4.4. Results

The pareto fronts obtained by MNSLS and the other

algorithms taken for comparison are given in Figure 7. The

attained front using the proposed MNSLS method, as shown

in Figure 7(a), is promising and evident through the following

statistical test results. The statistical test results are given in

Table 5, which gives the obtained 𝑝-value using the Mann-

Whitney 𝑈 test.

From the statistical test results, it can be observed that the

𝑝-value of MNSLS, when compared to all three other

algorithms, is less than 0.05, which shows there is a significant

difference between the algorithms. Even the results of other

algorithms have significant differences except for SPEA2 and

PESA-II algorithms, as there is no significant difference in

performance between them as the 𝑝-value is 0.06, which is

greater than the threshold value of 0.05.

(a)

(b)

(c)

(d)

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

366

(e)

Fig. 7 Obtained pareto fronts (a) MNSLS, (b) NSGA-II, (c) SPEA2, (d) PESA-II, (e) IBEA.

Table 5. Mann-Whitney 𝑼 statistical test results using HV metric
Algorithm B

Algorithm A NSGA-II SPEA2 PESA-II IBEA

IMP-NSGA-II 0.021 5.98E -09 7.8E -15 2.17E-16

NSGA-II

2.59E -07 2.3E -16 2.19E-16

SPEA2

0.06 2.23E-16

PESA-II

2.18E-16

Table 6. Evaluation metric values attained vs. actual

 PMLB PML PTCM10 PTCM

Identification rule value <1.1% <0.25% >28 <0.1

Actual value for commit 0.063% -0.024% 115% -0.015%

The evaluation metric values attained using the MNSLS

algorithm are analysed to further strengthen the results.

Commit 0719f3ee is taken for this purpose, the obtained

evaluation metric value through MNSLS and the actual

Commit metric value [10] are presented in Table 6, and it can

be seen that the predicted value for all the evaluation metrics

is appropriate and shows that the code modifications are

problematic.

4.5. Comparison with Other Regression Identification

Techniques

It is evident from the results discussed in Section 3.4 that

the proposed MNSLS algorithm best solves the multi-

objective optimization problem, which includes hit rate and

dismiss rate as objectives used to detect the code modification

that causes performance regression. The proposed method of

regression identification using MNSLS is further compared

with another evolutionary optimization-based regression

identification approach called PRICE [10]. This helps to

strengthen the results of the proposed approach. PRICE

approach represented using IBEA as the evolutionary

algorithm is taken for comparison. As discussed in the

previous section, 10-fold cross-validation is used, where nine-

fold is used for training, and one-fold is used for testing. The

rule generated using the training dataset is used for evaluation

during testing. The approaches were compared using the hit

rate and dismiss rates.

The comparison results with respect to hit rate and

dismiss rate between the approaches are presented in Figure

8a and Figure 8b, respectively. The hit rate of the proposed

MNSLS algorithm-based approach ranges from 60% to 100%,

whereas for PRICE, it is about 48% to 100%. Thus, the hit rate

is higher with the proposed approach. The dismiss rate of the

proposed approach varies from 15% to 98%, and for the Price

approach, it is about 17% to 97%; on average, the dismiss rate

of the proposed MNSLS algorithm-based approach is better.

To further strengthen the claim, the precision, recall, F1

and AUC scores are calculated using hit and dismiss rates. The

results of the above metrics using the proposed MNSLS and

PRICE [10] approach are given in Table 7.

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

367

Fig. 8 (a) Hit rate of MNSLS vs. PRICE

Fig. 8 (b) Dismiss rate of MNSLS vs. PRICE

Table 7. Results of MNSLS approach with different metrics, comparing with PRICE

 Pre. Recall F1 AUC

MNSLS 0.89 0.84 0.90 0.87

PRICE 0.81 0.76 0.79 0.78

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

368

From the results, it is evident that the proposed MNSLS

approach identifies the problematic codes better when

compared to the other approach taken for comparison. The

results using the hypervolume metric and statistical tests prove

the same as well. The proposed memetic algorithm using the

controlled local search procedure aids in better exploitation by

finding better solutions in the proximity of promising solution

regions at regular intervals, whereas the other existing

evolutionary algorithm-based methods applied to regression

identification problems are based on a global search method

or algorithms which is not adapted to this problem. The

proposed MNSLS algorithm based on both global and local

search approaches attains better solutions, resulting in better

identification.

4.6. Limitations

The proposed method identifies code changes that occur

in functions. However, considering the code changes in

statements will make the detection model more efficient; the

same is the scope for future work. The generalization aspect

of the proposed work has practical implications to be

considered, and the same is true of the scope of future work.

Thus, applying the proposed method to other projects will give

better results concerning real-world problems.

5. Conclusion
In this research work, identifying the code modifications

that are problematic and cause performance regression using

the evolutionary algorithm is presented. Evaluation metrics

that characterize the code modifications act as the input

variables for the algorithm. The identification rule that

predicts the problematic code modifications is defined as the

search problem with two objectives: hit rate and dismiss rate.

Deriving this identification rule through an evolutionary

algorithm is the major research objective. Memetic algorithm

using NSGA-II and Local Search (MNSLS) is proposed. In

MNSLS, the NSGA-II algorithm with controlled elitism is

used as a global search algorithm. New, improved and

controlled local search techniques are used to enhance the

search performance and attain pareto optimal solutions that

form the best trade-off between the two objectives.

Commits from the Git project are used as the dataset for

experimentation. MNSLS algorithm is compared with three

other state-of-the-art evolutionary algorithms. Hypervolume

metric is used as the performance indicator to evaluate the

quality of the solutions obtained and further, used to compare

the performance between the algorithms. To strengthen the

findings, the Mann-Whitney 𝑈 test, which is a nonparametric

statistical test, is conducted.

To further investigate the performance of the overall

approach for performance regression identification using the

MNSLS algorithm, a comparative study is conducted between

the MNSLS-based regression identification approach and the

IBEA algorithm-based PRICE approach for regression

identification. Through the results obtained using the above

experimentation, it is evident that the proposed technique

results are better than those of the other evolutionary

algorithms and regression detection approach, and the

identification rules that are attained appropriately classify and

identify the problematic code modifications.

This research could further be expanded to analyse the

effectiveness of evaluation metrics in identifying problematic

commits. This work will be performed in the future by

including several other metrics and studying the contribution

of various metrics. Another extension is to analyse the

performance of the proposed evolutionary algorithm-based

regression identification with other machine learning-based

models used for regression identification. Further, extending

and conducting experimentation with other projects improves

the generalization aspect of the identification model.

References
[1] Jinfu Chen, and Weiyi Shang, “An Exploratory Study of Performance Regression Introducing Code Changes,” 2017 IEEE International

Conference Software Maintenance and Evolution (ICSME), Shanghai, China, pp. 341-352, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[2] King Chun Foo et al., “Mining Performance Regression Testing Repositories for Automated Performance Analysis,” Proceedings of the

IEEE 10th International Conference on Quality Software, Zhangjiajie, China, pp. 32-41, 2010. [CrossRef] [Google Scholar] [Publisher

Link]

[3] Peng Huang et al., “Performance Regression Testing Target Prioritiza-Tion Via Performance Risk Analysis,” Proceedings of the ACM

36th International Conference on Software Engineering, New York, United States, pp. 60-71, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[4] Michael Pradel, Markus Huggler, and Thomas R. Gross, “Performance Regression Testing of Concurrent Classes,” Proceedings of the

International Symposium on Software Testing and Analysis, New York, United States, pp. 13-25, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[5] Shadi Ghaith et al., “Profile-Based, Load-Independent Anomaly Detection and Analysis in Performance Regression Testing of Software

Systems,” 2013 17th European Conference on Software Maintenance and Reengineering, Genova, Italy, pp. 379-383, 2013. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1109/ICSME.2017.13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Exploratory+Study+Of+Performance+Regression+Introducing+Code+Changes&btnG=
https://ieeexplore.ieee.org/abstract/document/8094434
https://ieeexplore.ieee.org/abstract/document/8094434
https://doi.org/10.1109/QSIC.2010.35
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mining+Performance+Regression+Testing+Repositories+For+Automated+Performance+Analysis&btnG=
https://ieeexplore.ieee.org/abstract/document/5562942
https://ieeexplore.ieee.org/abstract/document/5562942
https://doi.org/10.1145/2568225.2568232
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Regression+Testing+Target+Prioritiza-Tion+Via+Performance+Risk+Analysis&btnG=
https://dl.acm.org/doi/abs/10.1145/2568225.2568232
https://doi.org/10.1145/2610384.2610393
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Regression+Testing+Of+Concurrent+Classes&btnG=
https://dl.acm.org/doi/abs/10.1145/2610384.2610393
https://doi.org/10.1109/CSMR.2013.54
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Profile-based%2C+load-independent+anomaly+detection+and+analysis+in+performance+regression+testing+of+software+systems&btnG=
https://ieeexplore.ieee.org/abstract/document/6498493

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

369

[6] Augusto Born De Oliveira et al., “Perphecy: Performance Regression Test Selection Made Simple but Effective,” IEEE International

Conference on Software Testing, Verification and Validation (ICST), Tokyo, Japan, pp. 103-113, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[7] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund, “Accurate Modeling of Performance Histories for Evolving Software Systems,”

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), San Diego, CA, USA, pp. 640-652, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Valente, “Prioritizing Versions for Performance Regression Testing:

The Pharo Case,” Science of Computer Programming, vol. 191, pp. 1-25, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[9] M. Harman, “Making the Case for MORTO: Multi Objective Regression Test Optimization,” IEEE Fourth International Conference on

Software Testing, Berlin, Germany, pp. 111-114, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[10] Deema Alshoaibi et al., “Search-Based Detection of Code Changes Introducing Performance Regression,” Swarm Evolutionary

Computation, vol. 73, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] Mohamed Wiem Mkaouer et al., “High Dimensional Search-Based Software Engineering: Finding Tradeoffs Among 15 Objectives for

Automating Software Refactoring using NSGA-III,” Proceedings of Annual Conference on Genetic and Evolutionary Computation, New

York, United States, pp. 1263-1270, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[12] K. Deb et al., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6,

no. 2, pp. 182-197, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[13] Eckart Zitzler, MarcoLaumanns, and Lothar Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” ETH Zurich,

Computer Engineering and Networks Laboratory, vol. 103, pp. 1-22, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[14] S. Brindha, and S. Miruna Joe Amali, “A Robust and Adaptive Fuzzy Logic Based Differential Evolution Algorithm using Population

Diversity Tuning for Multi-Objective Optimization,” Engineering Applications of Artificial Intelligence, vol. 102, pp. 1-14, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[15] David W. Corne et al., “PESA-II: Region-Based Selection in Evolutionary Multiobjective Optimization,” Proceedings of the 3rd Annual

Conference on Genetic and Evolutionary Computation, San Francisco, CA, United States, pp. 283-290, 2001. [Google Scholar] [Publisher

Link]

[16] Vimal Savsani, and Mohamed A. Tawhid, “Non-Dominated Sorting Moth Flame Optimization (NS-MFO) for Multi-Objective Problems,”

Engineering Applications of Artificial Intelligence, vol. 63, pp. 20-32, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[17] Qingfu Zhang, and Hui Li, “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition,” IEEE Transactions on

Evolutionary Computation, vol. 11, no. 6, pp. 712-731, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[18] W.E. Hart, N. Krasnogor, and J.E. Smith, Memetic Evolutionary Algorithms, Recent Advances in Memetic Algorithms, pp. 3-27, 2005.

[CrossRef] [Google Scholar] [Publisher Link]

[19] Sezin Afsar et al., “Multi-Objective Enhanced Memetic Algorithm for Green Job Shop Scheduling with Uncertain Times,” Swarm and

Evolutionary Computation, vol. 68, pp. 1-14, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[20] M. Manikandan, S. Sakthivel, and V. Vivekanandhan, “Efficient Clustering using Memetic Adaptive Hill Climbing Algorithm in WSN,”

Intelligent Automation and Soft Computing, vol. 35, pp. 3169-3185, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[21] Tansel Dokeroglu, and Ender Sevinc, “Memetic Teaching-Learning-Based Optimization Algorithms for Large Graph Coloring Problems,”

Engineering Applications of Artificial Intelligence, vol. 102, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[22] Ruchika Malhotra, Megha Khanna, and Rajeev R. Raje, “On the Application of Search-Based Techniques for Software Engineering

Predictive Modeling: A Systematic Review and Future Directions,” Swarm and Evolutionary Computation, vol. 32, pp. 85-109, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[23] Annibale Panichella et al., “Improving Multi-Objective Test Case Selection by Injecting Diversity in Genetic Algorithms,” IEEE

Transactions on Software Engineering, vol. 41, no. 4, pp. 358-383, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[24] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb, “Cost-Effective Test Suite Minimization in Product Lines Using Search Techniques,”

Journal of Systems and Software, vol. 103, pp. 370-391, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[25] Wei Zheng et al., “Multi-Objective Optimisation for Regression Testing,” Information Sciences, vol. 334-335, pp. 1-16, 2016. [CrossRef]

[Google Scholar] [Publisher Link]

[26] Shweta Singhal et al., “Multi-Objective Fault-Coverage Based Regression Test Selection and Prioritization Using Enhanced ACO_TCSP,”

Mathematics, vol. 11, no. 13, pp. 1-21, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[27] Arun Prakash Agrawal, Ankur Choudhary, and Parma Nand, “An Efficient Regression Test Suite Optimization Approach Using Hybrid

Spider Monkey Optimization Algorithm,” International Journal of Swarm Intelligence Research, vol. 12, no. 4, pp. 57-80, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[28] Shweta Singhal et al., “Empirical Evaluation of Tetrad Optimization Methods for Test Case Selection and Prioritization,” Indian Journal

of Science and Technology, vol. 16, pp. 1083-1044, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ICST.2017.17
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Perphecy%3A+Performance+Regression+Test+Selection+Made+Simple+But+Effective&btnG=
https://ieeexplore.ieee.org/abstract/document/7927967
https://doi.org/10.1109/ASE.2019.00065
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accurate+modeling+of+performance+histories+for+evolving+software+systems&btnG=
https://ieeexplore.ieee.org/abstract/document/8952290
https://doi.org/10.1016/j.scico.2020.102415
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prioritizing+Versions+For+Performance+Regres-Sion+Testing%3A+The+Pharo+Case&btnG=
https://www.sciencedirect.com/science/article/pii/S0167642320300265?via%3Dihub
https://doi.org/10.1109/ICSTW.2011.60
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Making+the+case+for+MORTO%3A+multi+objective+regression+test+optimization&btnG=
https://ieeexplore.ieee.org/abstract/document/5954399
https://doi.org/10.1016/j.swevo.2022.101101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Search-based+detection+of+code+changes+introducing+performance+regression&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2210650222000712?via%3Dihub
https://doi.org/10.1145/2576768.2598366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+dimensional+search-based+software+engineering%3A+finding+tradeoffs+among+15+objectives+for+automating+software+refactoring+using+nsga-iii&btnG=
https://dl.acm.org/doi/abs/10.1145/2576768.2598366
https://doi.org/10.1109/4235.996017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Fast+and+Elitist+Multiobjective+Genetic+Algorithm%3A+NSGA-II&btnG=
https://ieeexplore.ieee.org/abstract/document/996017
https://doi.org/10.3929/ethz-a-004284029
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+E.+Zitzler%2C+M.+Laumanns%2C+and+L.+Thiele%2C+%E2%80%9CSPEA2%3A+Improving+the+Strength+Pareto+evolutionary+algorithms&btnG=
https://www.research-collection.ethz.ch/handle/20.500.11850/145755
https://doi.org/10.1016/j.engappai.2021.104240
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Robust+and+Adaptive+Fuzzy+Logic+Based+Differential+Evolution+Algorithm+using+Population+Diversity+Tuning+for+Multi-Objective+Optimization&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0952197621000877?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PESA-II%3A+region-based+selection+in+evolutionary+multiobjective+optimization&btnG=
https://dl.acm.org/doi/abs/10.5555/2955239.2955289
https://dl.acm.org/doi/abs/10.5555/2955239.2955289
https://doi.org/10.1016/j.engappai.2017.04.018
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Non-dominated+sorting+moth+flame+optimization+%28NS-MFO%29+for+multi-objective+problems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0952197617300829?via%3Dihub
https://doi.org/10.1109/TEVC.2007.892759
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MOEA%2FD%3A+a+multiobjective+evolutionary+algorithm+based+on+decomposition&btnG=
https://ieeexplore.ieee.org/abstract/document/4358754
https://doi.org/10.1007/3-540-32363-5_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=W.+E.+Hart%2C+N.+Krasnogor%2C+and+J.+E.+Smith%2C+Memetic+evolutionary+algorithms+in+Recent+Advances+in+Memetic+Algorithms&btnG=
https://link.springer.com/chapter/10.1007/3-540-32363-5_1
https://doi.org/10.1016/j.swevo.2021.101016
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Objective+Enhanced+Memetic+Algorithm+For+Green+Job+Shop+Scheduling+With+Uncertain+Times&btnG=
https://www.sciencedirect.com/science/article/pii/S2210650221001784?via%3Dihub
https://doi.org/10.32604/iasc.2023.029232
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Clustering+using+Memetic+Adaptive+Hill+Climbing+Algorithm+in+WSN&btnG=
https://www.techscience.com/iasc/v35n3/49377
https://doi.org/10.1016/j.engappai.2021.104282
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Memetic+Teaching-Learning-Based+Optimization+algorithms+for+large+graph+coloring+problems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0952197621001299?via%3Dihub
https://doi.org/10.1016/j.swevo.2016.10.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+The+Application+Of+Search-Based+Techniques+For+Software+Engineering+Predictive+Modeling%3A+A+Systematic+Review+And+Future+Directions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2210650216303418?via%3Dihub
https://doi.org/10.1109/TSE.2014.2364175
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+multi-objective+test+case+selection+by+injecting+diversity+in+genetic+algorithms&btnG=
https://ieeexplore.ieee.org/abstract/document/6936894
https://doi.org/10.1016/j.jss.2014.08.024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cost-Effective+Test+Suite+Minimization+In+Product+Lines+Using+Search+Techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121214001757?via%3Dihub
https://doi.org/10.1016/j.ins.2015.11.027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-objective+optimisation+for+regression+testing&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0020025515008452?via%3Dihub
https://doi.org/10.3390/math11132983
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Objective+Fault-Coverage+Based+Regression+Test+Selection+and+Prioritization+Using+Enhanced+ACO_TCSP&btnG=
https://www.mdpi.com/2227-7390/11/13/2983
http://doi.org/10.4018/IJSIR.2021100104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Regression+Test+Suite+Optimization+Approach+Using+Hybrid+Spider+Monkey+Optimization+Algorithm&btnG=
https://www.igi-global.com/article/an-efficient-regression-test-suite-optimization-approach-using-hybrid-spider-monkey-optimization-algorithm/290280
https://doi.org/10.17485/IJST/v16i14.2109
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+Evaluation+of+Tetrad+Optimization+Methods+for+Test+Case+Selection+and+Prioritization&btnG=
https://indjst.org/articles/empirical-evaluation-of-tetrad-optimization-methods-for-test-case-selection-and-prioritization

Brindha Subburaj & J. Uma Maheswari / IJETT, 73(1), 357-370, 2025

370

[29] Max Mendelson, “Identifying Performance Regression from The Commit Phase Utilizing Machine Learning Techniques,” Master Thesis,

Rochester Institute of Technology, Rochester, USA, 2020. [Google Scholar] [Publisher Link]

[30] Lizhi Liao et al., “Early Detection of Performance Regressions by Bridging Local Performance Data and Architecture Models,” Arxiv, pp.

1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[31] Jinfu Chen, Weiyi Shang, and Emad Shihab, “PerfJIT: Test-Level Just-in-Time Prediction for Performance Regression Introducing

Commits,” IEEE Transactions on Software Engineering, vol. 48, no. 5, pp. 1529-1544, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[32] Kalyanmoy Deb, Salient Issues of Multi-Objective Evolutionary Algorithms, Multi-Objective Optimization using Evolutionary

Algorithms, Wiley, pp. 414-417, 2001. [Google Scholar]

[33] J.A. Nelder, and R. Mead, “A Simple Method for Function Minimization,” The Computer Journal, vol. 7, no. 4, pp. 308-313, 1965.

[CrossRef] [Google Scholar] [Publisher Link]

[34] Eckart Zitzler, and Simon Künzli, “Indicator-Based Selection in Multiobjective Search,” Parallel Problem Solving from Nature-PPSNVIII,

pp. 832-842, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[35] Johannes Bader, and Eckart Zitzler, “HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization,” Evolutionary

Computation, vol. 19, pp. 45-76, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[36] G.W. Corder, and D.I. Foreman, Comparing Two Unrelated Samples: The Mann-Whitney U-Test and the Kolmogorov-Smirnov Two-

Sample Test, Nonparametric Statistics: A Step-by-Step Approach, Wiley, pp. 71-80, 2014. [Google Scholar]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identifying+performance+regression+from+the+commit+phase+utilizing+machine+learning+techniques&btnG=
https://repository.rit.edu/theses/10406/
https://doi.org/10.48550/arXiv.2408.08148
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Early+Detection+of+Performance+Regressions+by+Bridging+Local+Performance+Data+and+Architecture+Models&btnG=
https://arxiv.org/abs/2408.08148
https://doi.org/10.1109/TSE.2020.3023955
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PerfJIT%3A+Test-Level+Just-in-Time+Prediction+for+performance+regression+introducing+commits&btnG=
https://ieeexplore.ieee.org/abstract/document/9197704
https://ieeexplore.ieee.org/abstract/document/9197704
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Salient+Issues+of+Multi-Objective+Evolutionary+Algorithms+in+Multi-Objective+Optimization+using+Evolutionary+Algorithms&btnG=
https://doi.org/10.1093/comjnl/7.4.308
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Simple+Method+For+Function+Minimization&btnG=
https://academic.oup.com/comjnl/article-abstract/7/4/308/354237
https://doi.org/10.1007/978-3-540-30217-9_84
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Indicator-Based+Selection+In+Multiobjective+Search&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-30217-9_84
https://doi.org/10.1162/EVCO_a_00009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HypE%3A+An+Algorithm+for+Fast+Hypervolume-Based+Many-Objective+Optimization&btnG=
https://direct.mit.edu/evco/article-abstract/19/1/45/1363/HypE-An-Algorithm-for-Fast-Hypervolume-Based-Many?redirectedFrom=fulltext
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparing+Two+Unrelated+Samples%3A+The+Mann-Whitney+U-Test+and+the+Kolmogorov-Smirnov+Two-Sample+Test%2C+Nonparametric+Statistics%3A+A+Step-by-Step+Approach&btnG=

