
International Journal of Engineering Trends and Technology Volume 73 Issue 1, 120-135, January 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I1P110 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Latency Analysis of WebSocket and Industrial Protocols

in Real-Time Digital Twin Integration

Mohammed Hlayel1,2*, Hairulnizam Mahdin2, Husaini Aza Mohd Adam3

1 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.
2Fatima College of Health Sciences, Institute of Applied Technology, Abu Dhabi, UAE.

3Kolej Komuniti Seberang Jaya, Pulau Pinang, Permatang Pauh, Malaysia.

 *Corresponding Author : mohammed.hlayel@fchs.ac.ae

Received: 19 September 2024 Revised: 09 November 2024 Accepted: 23 December 2024 Published: 31 January 2025

Abstract - Integrating digital twins with industrial automation, particularly in remote environments, demands efficient real-time

communication to synchronize virtual models with physical devices. Latency and resource usage are critical for ensuring

seamless operation, especially when considering IEC 61588 standards, which mandate response times under 100 milliseconds

for real-time systems. This paper presents a comparative analysis of WebSocket as an intermediary protocol with Siemens S7,

benchmarked against widely used industrial communication protocols, including MQTT, Modbus, and OPC UA. The study

focuses on real-time performance and resource efficiency in remote setups, using Amazon Web Services (AWS) cloud-based

Node-RED as the protocols’ server. Although WebSocket is not an industrial automation standard, it demonstrated competitive

latency and resource efficiency, particularly when integrated with Siemens S7 for remote operations. The results show that

WebSocket with S7 outperforms other protocols like MQTT, while Modbus and OPC UA exhibit higher latency in cloud-based

Node-RED environments. OPC UA’s performance significantly improved after optimizing the currently used Node-RED’s server

sampling parameters. These findings underscore the need for further optimization of Node-RED nodes to enhance protocol

handling in remote industrial settings, as performance still lags behind local configurations.

Keywords - Digital Twin, Modbus, MQTT, OPC UA, WebSocket, Real-Time communication.

1. Introduction
Since the introduction of Industry 4.0, the Fourth

Industrial Revolution, industrial automation has been

modified and extended by integrating physical devices with

counterpart physical models, which are computationally

referred to as Digital Twins [1]. Digital twins are

representations of real physical objects that can be monitored,

analyzed, and optimized in real time in industrial processes

[2]. They bridge the physical and digital worlds, facilitating

predictive maintenance, performance optimization, and

enhanced decision-making [3, 4]. Depending on the level and

scope of the system being modeled, there are various types of

digital twins, including process, product, and system twins.

This study focuses on a Unity-based Digital Twin Prototype

(DTP), a specific kind of system twin used in the initial

automation design phases to simulate industrial processes

such as automated sorting systems and PLC-controlled

operations without the presence of the physical machine

counterpart [5]. For smooth and effective process

visualization, communication between physical devices, like

Siemens S7 PLCs, and the digital twin must take place in real-

time as industrial standards, ensuring the simulation mirrors

real-world industrial conditions [6]. The reliance on the

mature communication protocols is based on the integration

between the digital twin and physical devices, e.g.,

Programmable Logic Controllers (PLCs), on which

information transfer is based on real-time data transmission,

particularly in remote applications where latency, reliability,

and the management of resources play a crucial role [7-9].

Latency, which represents the phase delay between the input

of a system and the output, plays a vital role in the

performance of real-time communication. Additionally,

consuming CPUs and memories is essential and significant

concerning attaining the robustness that explains the steady-

state operation of digital twins that scales without being

resource-constrained [10-12]. Yet when the development of

Industry 4.0 began, currently available industrial

communication protocols (MQTT, Modbus, OPC UA) were

mainly known to have the problem of real-time

synchronization, particularly in remote environments. This

gap is significant as it limits the potential applicability of

digital twin systems for industrial automation, with latency

and resource constraints playing a dominant role.Prevalent,

standardized industrial protocols for the exchange of real-time

messages between program logic PLCs and machines are

MQTT (Message Queuing Telemetry Transport) [13], OPC

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

121

Unified Architecture (OPC UA) [14], S7comm (S7

Communication) [15], and Modbus [16]. Such protocols are

mainly implemented in local network settings where the PLC

and the associated machines are in one physical location.

However, the digital twin approach expands the scope of

communication beyond local environments, requiring

solutions that overcome distance constraints while still

maintaining real-time communication between the physical

PLC and the virtual model of the digital twin [17, 18].

Although Industry 4.0 researchers have suggested several

real-time communication approaches, most do not propose

and experimentally validate the performance of their approach

with practical latency measurements, typically using protocol

specifications without taking into account the real-world

nature of network environments or the conditions under which

these protocols may be implemented. This deficiency

highlights the critical function of the IEC 61588 standard (i.e.,

the Precision Time Protocol (PTP), which requires a response

time of 100 ms (for real-time use) to a maximum of 200 ms

for simulation use) [19]. Regarding the synchronization of

time-critical systems, the IEC 61588 standard is of

fundamental importance for the precision and effectiveness of

industrial automation.

Timely data exchange within those constraints is

fundamental to exploiting the capabilities of Industry 4.0

technologies and ensuring proper operational efficiency in

distributed systems. This paper targets these problems by

proposing the WebSocket with Siemens S7 as an

implementable solution. Through empirical latency

measurements in both on-site and cloud scenarios, this work

confirms the protocol's performance according to the stringent

bounds of IEC 61588, pointing to its ability to mitigate latency

and minimize resource consumption even in distant

installations. These results help to close the gap between

abstract protocol descriptions and practical use in the real

world of Industry 4.0 and provide a new solution for real-time

communication in the industry of Industry 4.0.

WebSocket has become a potential solution for

integrating and using industrial communication along with

MQTT, allowing real-time remote data exchange [20, 21].

This study introduces the WebSocket with the Siemens S7

communication protocol (S7) approach. It assesses its

suitability along with other well-known industrial protocols

(e.g., MQTT, Modbus, and OPC UA), in this regard

considering the efficiency that these protocols achieve for the

real-time connectivity and resource management of the digital

twin paradigm. Although WebSocket has promise as a

lightweight transport protocol for remote control, its

performance in handling high-quality, industrial standard

precision real-time data exchange remains to be explored.

Furthermore, the rapid rise in usage of Node-RED [22] as a

scalable and flexible platform for the management of external

communication protocols has been crucial in bypassing the

immutable IP policy, VPN, port forwarding, or complex and

risky network rework traditionally found in the use of real-

time protocol. This also points to the necessity of assessing the

adequacy of Node-RED for remote applications. Although the

platform Node-RED provides good extensibility and

scalability, the capability of its nodes to work in real-time

communication, mainly when latency is a critical factor of the

flow, needs careful evaluation. This study also evaluates

Node-RED's performance and the resource implications of

using different protocols to manage digital twin operations

hosted on Amazon Web Services (AWS) [23]. In addition, this

paper systematically studies latency and the resource

consumption of WebSocket with S7, MQTT, Modbus, and

OPC UA protocol. It mainly focuses on WebSocket's real-time

performance and resource consumption in a cloud-based

digital twin system. The experiment comprises a Unity-based

digital twin prototype, a Siemens S7-1500 PLC emulator, and

an AWS-based Node-RED, with performance metrics on

latency, CPU, and memory usage across these protocols. It

offers insights into the most suitable communication protocols

for low-latency and resource-efficient real-time data exchange

in remote industrial environments by evaluating protocol

efficiency and resource management. These findings inform

the choice of protocols for digital twin insertion and highlight

the potential use of Node-RED nodes and WebSocket as

alternative intermediate communication channels.

The following literature review provides in-depth insight

into the characteristics and shortcomings of protocol-

dependent features and constraints that apply to processing

real-time information flows in remote digital twin systems on

which this work is founded. Rocha et al. [24] conducted a

computational comparison of OPC UA and MQTT between

industrial plants and cloud servers. The authors determined

that MQTT resulted in lower latency and scalability than OPC

UA, particularly for remote applications. This study

emphasized the critical role of protocol selection in achieving

efficient data exchange in industrial IoT applications,

especially in scenarios where low latency and scalability are

paramount for remote interactions. [24]

Arda Kocamuftuoglu, Okan Akbay, and Serkan [25]

reported a comparative study of some industrial

communication protocols (Modbus and MQTT) in IoT

environments. They also pointed to the need for protocol

selection in relation to device hardware potential and

communication principles, emphasizing the enduring aspect

of IoT platforms. Nevertheless, their study did not focus on

the particular problems of remote data transfer, which is the

aim of the present work. In addition, Putpuek et al. [26]

investigated the performance of OPC UA and MQTT in the

ETAT Smart Lab Application, with the aim of data transfer

from RS-485 Modbus sensors to the PLCnext platform. The

findings showed that OPC UA outperformed MQTT regarding

reduced latency when transmitting sensor data to the PLCnext

platform. However, they also noted that MQTT's simpler

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

122

architecture made it more suitable for smaller-scale, resource-

constrained IoT devices, underscoring the trade-offs between

performance and simplicity depending on the application.

Ventuneac and Gaitan [27] implemented an IIOT gateway

with the Sitara AM335X processor and measured the behavior

of the Modbus and the OPC UA protocols performed in an

industrial context. Their results showed Modbus's better

performance in local-scale applications with fast serial

communication. Nevertheless, when incorporated with OPC

UA, the system introduced latency, a known issue due to

operating system limitations, thereby highlighting the

limitations in the scalability of these protocols for remote

operation. Walczak and Hetmanczyk [28] also investigated

the characteristics of different IIoT protocols, such as OPC

UA, MQTT, and Modbus TCP.

Their results demonstrated that although OPC UA offers

a secure encryption capability and is well suited for

sophisticated industrial applications, it increases network

traffic more than MQTT, particularly for large data sets. On

the other hand, MQTT was found to be more bandwidth-

efficient and especially useful for transmitting short payloads

and limited bandwidths. Fette and Melnikov [29] introduced

WebSocket as a protocol for low-latency and real-time

solutions for web-based applications and highlighted its

potential to replace inefficient polling mechanisms in web

applications. Although their study did not focus on industrial

automation, we believe the protocol’s design for bidirectional

communication with minimal overhead makes it a strong

candidate for adaptation in industrial environments as an

intermediate transport mechanism, particularly for

applications like remote digital twin integrations.

However, further exploration is required to determine

WebSocket’s performance in PLC-based and industrial

settings. Despite the vast collection of industrial

communication protocol research, there are still open

questions about latency, particularly within the context of

remote digital twin integration. Several works [24–28] have

focused on the local network performance while disregarding

the remote operation's scalability issues and the latency

consideration. In addition, those kinds of research are often

conducted by employing randomly generated data, which do

not follow the inherent sequential property of the industrial

real-time data flow, as the data procession is significant in

PLCs' environments. On the contrary, this paper considers the

simulation of a realistic DTP representing a real machine's

functional behavior in the industrial process. It affords a more

accurate simulation of industrial processes. Moreover, this

work systematically compares the latency performance and

resource consumption of MQTT, Modbus, and OPC UA in

remote real-time applications against those shared by local

network environments and those intermediate platforms

offered by the Node-RED. The goal is to circumvent the need

for a VPN, fixed IP address, port forwarding, complicated

networking setup, etc. It also extends earlier research by

examining the viability of using WebSocket as a middle

protocol and an out-of-box replacement protocol to traditional

industrial (e.g., Modbus, OPC UA, or MQTT) communication

protocols, i.e., for real-time data transfer and system's

effectiveness in remote digital twin applications.

2. Materials and Methods
2.1. Methodology

The experiments presented in this work are devoted to the

performance evaluation of different communication protocols

in real-time, integrating digital twins with Siemens PLCs, and

considering environmental conditions, namely local and

remote. The following process and procedure are explained in

detail in the subsequent subsections. The experimental testbed

consists of a digital twin application developed on Unity3D,

representing the simulated version of an automated sorting

system that communicates with a Siemens S7-1500 PLCSIM

Advanced emulator using Node-RED as the deployed

communication hub, both locally and on AWS, emulating

operations remotely to enable protocol-specific routing and

conversion. The hardware specifications of all these devices

used in the experiment, namely Samsung Tab Active 3, central

computer, AWS EC2 instance, and Siemens PLC simulator,

are highlighted in detail in Table 1.

Automation commands from the digital twin are handled

by WebSocket, MQTT, Modbus, and OPC UA protocols.

Each of them had been implemented based on existing

libraries and, where possible, tuned for the best performance

under real-time conditions: WebSocket sends JSON-encoded

Boolean values every constant interval of time (50 ms);

MQTT adopts byte arrays with Quality of Service level 0;

Modbus uses 16-bit registers to minimize useless overhead;

whereas OPC UA leverages session-based read/write

operations and optimized polling intervals. These protocols

enabled the digital twin to have bidirectional communication

with the PLC for simulating various operations: conveyor

control, sensor on/off, and sorting of packages. The

experiment procedure, starting from the delivery of the

commands created in Unity Digital Twin, proceeds through

Node-RED and is delivered to Siemens PLC, followed by the

delivery back to the Digital Twin. Latency is estimated as a

Round Trip Time (RTT) using high-precision timers available

within Unity. Resource usage, such as CPU and memory, are

measured on the system side using a Python script. Further,

network performance shall be monitored using Wireshark.

Additionally, performance metrics (latency, throughput, error

rate) have been considered in the environment for load and

network conditions). Amazon Web Services (AWS) with

Node-RED Server established a direct interface between the

nodes and the platform without static IP/VPN configuration.

Furthermore, network throughput was analyzed using

Wireshark to compare the effectiveness of each protocol.

Wireshark logged network traffic during the experiment and

provided insights into network load and throughput patterns.

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

123

Table 1. Hardware specifications

Device Main Computer Samsung T. Active3 AWS EC2 Instance Siemens PLC

Model Desktop SM-T575 t3.micro S7-1500

CPU
12th Gen Intel(R) i5,

2.5 GHz

Samsung Exynos 9810, 2.7

GHz Octa-Core

Intel(R) Platinum

8259CL, 2.50 GHz
CPU 1517TF-3 PN/DP

RAM 48 GB DDR4 4 GB 1 GB 3 MB

Storage 500 GB SSD 64 GB 8 GB 8 MB

System Windows 11 Pro 64-bit Android 13 Linux AMI x86_64 Firmware V2.9

WLAN/NIC
Realtek PCIe GbE, Data rate:

2.5 GB/sec

Wi-Fi, 802.11 a/b/g/n/ac, 600

Mbps

Elastic Network Adapter

(ENA)

PROFINET interfaces:

TCP/IP

2.2. Experimental Setup

The architecture and data flow of the local and remote

setup are illustrated in Figures 1 and 2. The setup included the

following components:

2.2.1. Digital Twin Model

Developed in Unity3D (version 2022.3.17f1) [30], the

digital twin simulates an automated box-sorting plant,

featuring processes such as piston activation, conveyor belt

movement, and box detection. Unity3D was selected for its

versatility in simulating complex industrial processes and its

ability to support remote testing. The designed DTP

communicates with the PLC using Boolean values (for binary

states) as the primary data type for transmitting DTP

component status. The interaction between the digital twin and

the PLC, along with protocol-specific data transmission, is

detailed in Figure 1.

2.2.2. Siemens S7-1500 PLCSIM

 The Siemens PLCSIM Advanced [31] (PLC Simulator)

was employed to simulate the PLC's behavior for controlling

the processes replicated by the digital twin. Programmed via

the TIA Portal, PLCSIM was chosen for its ability to emulate

real-time operations of the S7-1500 accurately, allowing

comprehensive testing of multiple communication protocols.

PLCSIM’s capability to simulate real-time industrial

processes made it an effective tool for analyzing protocol

performance in a controlled, repeatable environment without

requiring physical hardware.

2.2.3. AWS Cloud Infrastructure

 AWS provided the necessary cloud-based infrastructure

for the experiment. This setup enabled testing under

conditions that mimic real-world industrial scenarios where

the digital twin and the PLC are not co-located, introducing

latency and network reliability challenges.

2.2.4. Node-RED Server

 Node-RED acted as the communication hub between the

digital twin and Siemens PLC. Node-RED facilitated

protocol-specific data flow, ensuring proper routing and

conversion of data between the digital twin and the PLC.

2.3. System Architecture

The system architecture presented in Figure 1 aimed to

replicate a typical remote industrial setup, where real-time

data exchange between a digital twin and a physical PLC is

required. The architecture was designed with scalability and

real-world applicability, focusing on remote monitoring and

control. The key architectural components included:

2.3.1. DTP on Unity Player

The digital twin prototype, running on Unity Player on a

local PC, simulated an automated sorting plant. It

communicated with the Siemens S7-1500 PLC through the

Node-RED server hosted locally and on AWS. The digital

twin visualized the process and issued commands to the PLC

based on either user input or pre-programmed routines, as

depicted in Figure 2.

2.3.2. Siemens S7-1500 PLC

The emulated PLC, located at a remote site, controlled

physical processes based on data received from the digital

twin. It communicated with the Node-RED server over the

internet using the protocols under evaluation (WebSocket/S7,

MQTT, Modbus, and OPC UA). The PLC processed incoming

data in real-time and sent feedback to the digital twin for

further actions and visualization.

2.3.3. Node-RED Servers on Local PC and AWS Cloud

Node-RED acted as the central communication hub for

routing data between the DTP and the Siemens PLC, deployed

on a local server (PC) and a cloud-based instance (AWS). The

local Node-RED server managed low-latency communication

between the digital twin and Siemens PLC, providing real-

time interactions and performance benchmarking for

WebSocket, MQTT, Modbus, and OPC UA in a controlled

environment. This setup is suitable for direct protocol

comparisons under optimal conditions before extending the

tests to remote operations. Meanwhile, the AWS Node-RED

server facilitated remote operations, simulating industrial

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

124

applications with variable latency, ensuring the system's

ability to handle complex, long-distance data routing while

maintaining scalability and reliability across different network

conditions.

2.3.4. Data Flow

The data flow followed a cyclic process, where the DTP

sent commands to the PLC via the Node-RED server. The

PLC processed these commands and responded, and the

responses were relayed back to the DTP for visualization or

further action. Each protocol was tasked with managing

specific data types, and the latency of these transmissions was

measured and analyzed.

Fig. 1 Framework architecture

Fig. 2 PLC Logic Dataflow Chart

This experimental setup and architecture were designed

to evaluate the performance of different communication

protocols under realistic remote conditions, focusing on

latency, resource efficiency, and protocol-specific challenges.

By using scalable and flexible tools like Unity, Node-RED,

and AWS, the experiment provides insights into the practical

application of these protocols in industrial automation and

digital twin integration.

2.4. Implementation of Communication Protocols

This study leveraged various libraries in C# and

frameworks to implement and test communication protocols

within a real-time, remote digital twin environment. Each I/O

component communicated continuously via the respective

protocol, facilitating seamless interaction between the virtual

environment and the PLC controller, as detailed in Figure 2.

EN
D

 D
EV

IC
ES

LO
CA

L TCP/IP
PLC Com

m
unication Protocol

S7

W
AN

 C
O

N
N

EC
TI

O
N

D
T

Re
qu

es
t /

 R
es

po
ns

e

S7

LO
CA

L

CLIENT
APPS

RE
M

O
TE

 T
CP

/I
P

PL
C

Co
m

m
un

ic
at

io
n

Pr
ot

oc
ol

RE
M

O
TE

Start Push
Button

Conveyor Belt 2
ON

Conveyor Belt 1
ON

Pneumatic
Actuator_1_Forward

TRUE

Pneumatic
Actuator_1_ON_

Sensor

Pneumatic
Actuator_1_Reverse

TRUE

FALSE

Pneumatic
Actuator_1_OFF_

Sensor

TRUE

FALSE

Package Scanner
Sensor

Pneumatic
Actuator_2_Forward

Pneumatic
Actuator_2_ON_

Sensor

Pneumatic
Actuator_2_Reverse

TRUE

FALSE

Pneumatic
Actuator_1_OFF_

Sensor

TRUE

FALSE

TRUE

Pneumatic
Actuator_3_Forward

InfraRed Sensor 3

Pneumatic
Actuator_2_Reverse

FALSE

TRUE

FALSE

InfraRed Sensor 2

TRUE

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

125

Using methods such as Session.Read and Session.Write,

the Opc.Ua.Client library [32] was employed to manage the

OPC UA connection for direct data handling. OPC UA

handles each Boolean value as a separate operation, resulting

in individual write actions for every data point. This approach,

while precise, can increase the frequency of operations and,

thus, the overall traffic, especially when dealing with multiple

Boolean values. The data exchange involved Boolean values

formatted according to OPC UA standards. A coroutine

running at 50-millisecond intervals ensured timely updates.

Testing revealed that reducing polling intervals could

burden the network and system, potentially compromising

stability, while OPC subscriptions introduced higher latency.

Thus, polling was confirmed as the more effective method for

maintaining low latency in real-time applications. For Modbus

communication, the Modbus_Client class in Unity, utilizing

the EasyModbus library [33], facilitated real-time interactions

with a Modbus server. Modbus efficiently packs multiple

Boolean values into a single 16-bit word, minimizing

overhead and optimizing network traffic. The class is

connected to the PLC via a specified IP and port, executing

key operations like ReadHoldingRegisters for data retrieval

and WriteSingleRegister for sending commands. Data updates

occurred every 50 milliseconds, balancing system

performance with network traffic management. The

MqttClient class of uPLibrary.Networking.M2Mqtt library

[34], managed MQTT communication by initializing a

MqttClient and setting up subscription and publication topics.

MQTT also handles data efficiently by packing multiple

Boolean values into byte arrays, which reduces the frequency

of transmissions and lowers overhead. This format allows for

the transmission of simple Boolean flags and more complex

data structures. Periodic data publishing was driven by system

state changes, using QoS 0 to ensure reliable delivery. The

script also included an event handler to decode incoming

MQTT messages into their original data types, updating

system variables accordingly. The WebSocketSharp library

[35] within the Unity framework provided a robust solution

for real-time data communication, which is critical for

maintaining synchronous operations between virtual models

and physical systems. Unlike Modbus and MQTT settings, we

configured WebSocket to send individual Boolean values

encapsulated in JSON objects, which results in more frequent,

smaller data packets being transmitted. While offering

flexibility in handling various data types, this approach can

lead to more varied traffic patterns due to the framing and

sending of each message separately. WebSocket's ability to

handle individual requests dynamically is useful in

applications requiring frequent updates, but it may increase

network traffic depending on the application's demands.

2.5. Latency and Resource Management Measurement

2.5.1. Latency Measurement

The latency measured was the RTT from when a Boolean

write command is triggered from the DTP automation model

and the receipt of the processed response from the Siemens

PLC emulator, which includes the overall time for

transmitting a command, processing by the PLC, and

returning the processed response as response to the triggered

input. In the interest of precision and consistency, this

measurement process has been wholly automated with C#

scripts integrated into the Unity3D environment. High-

resolution timing was captured using the

system.Diagnostics.Stopwatch class, starting the timer upon

issuance of a command by the DTP and stopping upon receipt

of the response. C# scripts enabled RTT logging for each

protocol, minimizing manual intervention and errors.

WebSocket commands were sent as JSON-encoded Boolean

values, MQTT used byte arrays, Modbus relied on its concept

of register-based interaction, and OPC UA leveraged session-

based read/write operations. Results of RTT for each

individual protocol for operating the DTP machine following

the same procedure and PLC sequences were dynamically

logged into CSV files for subsequent analysis, capturing

latency under various network conditions, including local and

AWS-hosted environments.

2.5.2. Resource Usage Measurement

To monitor resource utilization (CPU and memory)

during protocol operations, a custom Python script was used

to capture real-time performance data for critical processes:

Unity (digital twin model), PLCSIM (Siemens PLC

simulator), and Node-RED (communication hub). The script

tracked resource usage through Process IDs (PIDs) and logged

data into a CSV file for analysis. This approach enabled

measurement of overall system performance and individual

process load across local and cloud Node-RED instances. The

data captured included:

• System-wide CPU and memory usage.

• Per-process resource usage for Unity, PLCSIM, and

Node-RED.

• Each attempt's Start and end markers allow for correlation

with experimental phases.

3. Results and Discussion
The experiments were conducted under controlled

conditions, with each protocol tested 100 times to ensure the

reliability of the results. The latency data were recorded and

analyzed using statistical methods to determine each

protocol's average, median, minimum, maximum, and

standard deviation of round-trip time.

This analysis examines the performance of four industrial

communication protocols—WebSocket/S7, Modbus, MQTT,

and OPC UA—through their RTT efficiency and resource

usage within a simulated environment using Unity, PLCSIM,

and Node-RED applications. The results provide insights into

the strengths and weaknesses of each protocol, particularly in

scenarios where minimizing latency and optimizing resource

consumption are essential.

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

126

3.1. Round Trip Time Analysis

The average RTT and distribution for each protocol were

evaluated, as illustrated in Figure 3. WebSocket with S7

emerged as the top performer, with an average RTT of 43.8

milliseconds (ms) in local environments, making it ideal for

real-time applications that require fast data exchange.

Modbus, with an average RTT of 70.8 ms, is moderately

efficient and suitable for scenarios where WebSocket may not

be applicable.

When the setup was extended to cloud-based

environments for simulating remote environments, as shown

in Figure 4, the performance of these protocols shifted.

WebSocket/S7 outperformed other protocols, with an average

RTT of 87 milliseconds. This performance demonstrates

WebSocket’s ability to handle real-time communication, even

in remote cloud environments. The increase in RTT from 43.8

ms in local environments to 87 ms in cloud setups is mainly

attributable to the network latency time to the AWS servers,

which averages around 21 milliseconds halfway.

Fig. 3 Round Trip Time Distribution in Local Setup

Fig. 4 Round Trip Time Distribution in Remote Setup

Given that the ping time from the PLCSIM to AWS was

also measured at around 21 milliseconds, the RTT increase in

the cloud setup mirrors the additional network latency,

suggesting that WebSocket and S7 server nodes efficiently

handle message transmission without introducing significant

internal delays. The results indicate that the bulk of the RTT

increase is due to the natural network latency associated with

cloud-based communication. WebSocket with S7 still

transmits data nearly as efficiently as the base ping time. This

highlights WebSocket’s ability to maintain its real-time

communication properties even in remote setups, as it incurs

minimal additional overhead beyond the inherent network

latency.

On the other hand, Modbus experiences a significant RTT

increase, averaging 194 milliseconds in cloud environments,

nearly three times its local performance. This suggests

Modbus is more sensitive to network latency and distance

when communicating with a cloud server using Node-RED.

One possible explanation for this significant RTT increase is

the Node-RED Modbus server node, which may introduce

additional processing overhead and delays. Unlike protocols

like WebSocket optimized for lightweight, continuous data

flow, Modbus was initially designed for local networks and

might not perform as efficiently in cloud-based environments,

mainly when relying on intermediary systems like Node-RED.

Its older protocol design and reliance on a polling mechanism

may not be optimized for high-latency networks, making it

less suitable for real-time, cloud-based applications.

MQTT and OPC UA exhibited similar RTTs of 93-94

milliseconds locally, with MQTT's RTT increasing to around

133 milliseconds in cloud environments. This 40 ms increase

is comparable to the increase observed with WebSocket,

suggesting that the MQTT Node-RED server nodes manage

network latency effectively. Despite the additional overhead

introduced by cloud communication, MQTT's performance

remains stable, indicating its suitability for remote real-time

applications. However, OPC UA experiences a more

considerable RTT increase, rising to 162 milliseconds in cloud

environments. This higher RTT can be attributed to OPC UA’s

more complex data encapsulation processes, which likely

increase its sensitivity to network latency.

Additionally, Node-RED’s OPC UA server nodes may

introduce further latency due to their handling of sampling

intervals and data transmission, particularly in cloud

environments where network conditions are less stable. These

factors make OPC UA less efficient for real-time

communication in Node-Red cloud-based setups than

protocols like MQTT and WebSocket. The variability in

RTTs, depicted in Figure 3 and further detailed in the cloud

comparison (Figure 4), emphasizes WebSocket’s consistency,

as indicated by its narrower box plot. This suggests that

WebSocket provides more predictable performance locally

and over the cloud.

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

127

Fig. 5 Comparison of average RTT in local and remote setup

Table 2. Comparative Summary of Communication Protocols in Local and Cloud Setups

Protocol Average RTT (ms) Median RTT (ms)
Min RTT

(ms)

Max RTT

(ms)

Standard

deviation (ms)

Significance

(ANOVA)
 Local Cloud Local Cloud Local Cloud Local Cloud Local Cloud

WebSocket 43.8 87.0 47.0 88.0 10.0 30.0 111.0 136.0 16.2 16.0 ***

MQTT 94.1 133.0 94.5 130.0 36.0 38.0 147.0 256.0 18.0 38.0 ***

Modbus 70.8 194.0 71.0 194.0 27.0 19.0 106.0 336.0 15.4 42.0 ***

OPC UA 93.1 162.0 98.0 159.0 7.0 28.0 147.0 290.0 28.6 35.0 ***

In contrast, the more significant variability in RTTs

observed with OPC UA, and to a lesser extent with MQTT,

particularly in cloud environments, indicates that these

protocols may experience more fluctuations in performance,

likely due to their sensitivity to network conditions and data

handling processes. While Figure 5 provides an overview of

the communication performance of the various protocols in

local and remote setups, Table 2 summarizes the vital

statistical metrics, including the mean, median, standard

deviation, minimum, and maximum round trip times for each

protocol.

The table highlights the differences in RTTs between

local and cloud environments for each protocol. An ANOVA

test was conducted to assess the statistical significance of the

differences between the protocols, with the results showing a

highly significant difference (p < 0.001) across all protocols,

denoted by three asterisks (***). This significance indicates

that the differences in RTTs across the protocols and between

local and cloud environments are not due to random variation

but reflect meaningful distinctions in protocol performance.

3.2. CPU Usage Analysis

The CPU usage captured data across different protocols

was analyzed, with the results divided by the 12 available CPU

cores. This accurately assesses the CPU demands per protocol,

as shown in Figures 6, 7, and 8. The accompanying Table 3

further details the statistical metrics, including mean, median,

and standard deviation of CPU usage across protocols,

providing a more granular understanding of the CPU demands

associated with each protocol. The data highlights the

significant differences in CPU requirements, with WebSocket

being more efficient in some scenarios but still demanding in

others. Modbus and OPC UA show similar trends, varying

efficiency depending on the application, while MQTT

consistently demands more processing power, particularly in

Unity.

Figure 6 highlights the average CPU usage and the

variability across different protocols. MQTT emerges as the

most CPU-intensive protocol in Unity, with an average usage

of 4.65%, closely followed by WebSocket at 4.36%. In

contrast, OPC UA demonstrates the most efficient

performance in Unity, with the lowest average CPU usage of

2.06%, making it a strong candidate for CPU-constrained

environments, followed by Modbus with a moderate usage

level. In the PLCSIM environment, although the difference in

CPU consumption between protocols is slight, WebSocket/S7

(S7 only communicates with PLCSIM) consumes the most

CPU resources, with an average usage of 2.71%, indicating

higher resource demands in this specific setting. Modbus and

OPC UA follow closely, with averages of 2.20% and 2.32%,

43.8

70.8

94.1 93.187

194

133

162

0

50

100

150

200

250

WebSocket Modbus MQTT OPC UA

A
v
er

ag
e

R
T

T
 (

m
s)

Type Local Cloud

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

128

respectively. Interestingly, MQTT shows lower CPU usage in

PLCSIM, averaging 1.75%, compared to its higher demands

in Unity. For Node-RED, WebSocket/S7 is the most efficient

protocol, requiring the least CPU, with an average usage of

just 0.09%, making it ideal for lightweight applications.

Modbus and OPC UA also perform relatively higher in this

environment, with averages of 0.35% and 0.27%,

respectively. Although MQTT is also relatively efficient in

Node-RED, it shows higher variability, suggesting less

consistent performance. Figure 7 illustrates the trends in CPU

usage across multiple trials. WebSocket and OPC UA exhibit

consistent CPU usage patterns, particularly in Unity and

Node-RED applications, indicating stable performance over

time. In contrast, Modbus and MQTT display more significant

variability, with noticeable fluctuations in CPU usage,

particularly in Unity. This suggests potential inefficiencies or

inconsistent processing demands for these protocols. Figure 8

compares the average CPU usage across all protocols,

reinforcing that WebSocket is highly efficient in Node-RED

but demands slightly more processing power in Unity and

PLCSIM.

Fig. 6 CPU usage distribution

Table 3. Statistical metrics of CPU and memory usage across unity, PLCSIM, and Node-RED

Protocol Unity_CPU *** PLCSIM_CPU ** NodeRED_CPU ***
 Mean Median SD Min Max Mean Median SD Min Max Mean Median SD Min Max

MQTT 4.65 4.73 2.14 1.18 9.56 1.75 1.38 2.68 1.18 9.70 0.18 0.16 0.15 0.03 1.20

Modbus 2.70 2.39 2.41 1.18 9.70 2.20 1.38 2.55 1.18 9.70 0.35 0.13 0.57 0.03 2.68

OPC UA 2.06 1.38 1.67 1.18 8.40 2.32 1.38 2.68 1.18 9.70 0.27 0.08 0.44 0.04 1.99

WebSocket 4.36 4.18 2.02 1.18 9.80 2.71 1.38 3.00 1.18 9.80 0.09 0.00 0.19 0.03 1.16
 Unity_Memory *** PLCSIM_Memory *** NodeRED_Memory ***

MQTT 9.37 9.39 0.06 9.21 9.45 1.48 1.52 0.12 1.08 1.52 1.09 1.09 0.01 1.07 1.12

Modbus 8.51 8.22 0.49 7.91 9.95 0.60 0.11 0.67 0.10 1.51 1.13 1.11 0.05 1.04 1.30

OPC UA 9.37 9.41 0.15 8.87 9.59 1.46 1.53 0.54 0.23 2.87 1.16 1.16 0.02 1.10 1.18

WebSocket 8.48 8.51 0.16 8.10 8.86 0.12 0.09 0.19 0.09 1.51 1.05 1.05 0.01 1.04 1.06

Fig. 7 Average CPU Usage Trend

MQTT demonstrates the highest CPU usage in Unity,

eflecting its processing demands, while OPC UA maintains

the lowest consumption across environments. Modbus, on the

other hand, offers balanced performance across all

applications but exhibits some variability. In summary,

protocol selection should consider not just average CPU usage

but also the consistency of performance across different

environments. WebSocket excels in lightweight scenarios

such as Node-RED, while OPC UA proves to be more suitable

for CPU-constrained environments like Unity. Depending on

the application, MQTT and Modbus show higher variability in

specific environments, potentially affecting overall system

stability.

3.3. Memory Usage Analysis

Regarding memory usage (Figure 9 and Table 3),

WebSocket exhibits the lowest and most stable memory

consumption, making it the most efficient protocol in this

context. Modbus shows higher and more consistent memory

usage around 9 MB, reflecting reliable yet greater

consumption.

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

129

Fig. 8 Comparison of CPU usage average

MQTT and OPC UA demonstrate more variable memory

usage, with OPC UA showing a higher average than MQTT,

indicating that both protocols have less predictable

performance.

In the PLCSIM environment, WebSocket continues to be

the most memory-efficient protocol, with the lowest average

memory usage. Modbus and MQTT show moderate and

consistent memory consumption, making them reliable

options for applications where predictable resource usage is

critical. However, OPC UA exhibits higher variability while

slightly lower in average memory consumption, which could

lead to occasional memory spikes, making it potentially less

stable in resource demands.

Fig. 9 Memory usage distribution

In Node-RED, WebSocket remains the most memory-

efficient protocol, with the lowest and most consistent usage.

This reinforces its suitability for lightweight and resource-

constrained environments. Modbus and MQTT consume

slightly more memory but maintain relative consistency,

ensuring predictable resource usage. However, OPC UA

exhibits the most variability in memory consumption again,

suggesting it may introduce unpredictability in such

applications, which could be problematic for environments

requiring stable memory performance.

Figure 10 summarizes the memory consumption patterns

for all protocols across different environments. WebSocket

consistently demonstrates the lowest memory usage across all

applications, highlighting its efficiency in these contexts.

Modbus exhibits slightly higher memory usage but remains

relatively consistent, followed by MQTT.

At the same time, OPC UA shows more significant

variability, particularly in Node-RED, suggesting potential

fluctuations in its memory demands. In Unity, all protocols

consume significantly more memory, ranging from 8.5 to 9.4

MB, with more minor differences in their performance.

Overall, the image reinforces WebSocket’s efficiency,

especially in resource-constrained environments, with

Modbus and MQTT being reliable options for more

predictable memory usage. At the same time, OPC UA may

introduce some unpredictability in memory-heavy scenarios.

3.4. Correlation between RTT and Resources Usage

The correlation analysis in Table 4 reveals distinct

relationships between RRT and resource usage across

different protocols. PLCSIM shows a strong negative

correlation (-0.8) with CPU usage, indicating that lower

latency is related significantly to higher CPU utilization in this

environment. In contrast, NodeRED exhibits a moderate

positive correlation (0.5) with CPU usage, suggesting that

higher CPU loads might increase latency due to overhead.

0

1

2

3

4

5

NodeRED PLCSIM Unity

A
v
er

ag
e

C
P

U
 U

sa
g
e

(%
)

WebSocket Modbus MQTT OPC UAProtocol

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

130

Fig. 10 Comparison of average memory consumption

Table 4. Correlation between Round Trip Time and Resource Usage

T
E

R
M

S

M
Q

T
T

M
o

d
b

u
s

O
P

C
 U

A

W
eb

S
o

ck
et

C
o

rr
el

a
ti

o
n

CPU

Unity 55.8 32.3 24.7 52.3 -0.3

PLCSIM 21 26.4 27.9 32.5 -0.8

NodeRED 2.2 4.2 3.2 1.1 0.5

Memory

Unity 9.4 8.5 9.4 8.5 0.9

PLCSIM 1.48 0.6 1.46 0.12 1

NodeRED 1.09 1.13 1.16 1.05 0.7

RRT (ms) 94.1 70.8 93.1 43.8

Memory usage consistently shows strong positive

correlations with round-trip time, particularly in PLCSIM

(1.0), implying that increased memory demands generally lead

to longer round-trip times. Overall, protocols like WebSocket,

which efficiently manage CPU and memory resources, appear

better suited for low latency scenarios.

3.5. Bandwidth Analysis

Wireshark was used to capture and interpret network

traffic to assess the bandwidth efficiency of WebSocket,

MQTT, Modbus, and OPC UA protocols. The analysis

focused on throughput, total data size, and packet distribution

metrics. Results are shown in Table 5 and in Figures 11 and

12. WebSocket exhibited the lowest average throughput of

1159 bytes per second, with a total data transmission of 34 KB

and a consistent packet size variability of 46%. As shown in

Figure 11, this performance is contributed by the following

advantages of WebSocket's lightweight JSON-based format

and its friendliness to resource-constrained environments. The

actual distribution of transmitted bytes (shown in Figure 12)

also highlights the robustness of WebSocket in fluctuating

environments. Modbus achieved moderate throughput of 4023

bytes per second, balancing a total size of 118 KB with

minimal variability (28%) in packet sizes. Its small 16-bit

word size resulted in a mean packet size of 3450 bytes and less

variability than other protocols (see Table 5).

Fig. 11 Bandwidth usage trends across protocols over time

0

2.5

5

7.5

10

PLCSIM NodeRED Unity

WebSocket Modbus MQTT OPC UAProtocol

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

131

Table 5. Comparison of bandwidth usage, throughput, packet size, and variability for WebSocket, MQTT, Modbus, and OPC UA protocols

Protocol

Relative

Bandwidth

Usage

Total

Size

[KB]

Throughput

[Bytes/s]

Average Packet

Size [Bytes]

Min to Max

Range [Bytes]

Variability [S.D.

% of Mean]

WebSocket Lowest (6%) 34 1159 975 300–1980 46%

Modbus Moderate (20%) 118 4023 3450 125–4720 28%

OPC UA High (33%) 215 7333 6780 560–12100 44%

MQTT Highest (41%) 228 7782 7100 310–9450 38%

Fig. 12 Packet size distribution across protocols

This results in Modbus being appropriate for applications

with small datasets and assured operation. OPC UA

demonstrated higher throughput, at 7333 bytes per second,

and bandwidth consumption (215 KB), with a wide range of

packet sizes and variability at 44%, meaning it is prone to

network fluctuations. All these capabilities visible in Figures

11 and 12 demonstrate the potential for demanding

applications but highlight the need for an a-priori bandwidth-

before optimization for bandwidth-constrained environments.

MQTT recorded the highest throughput, at 7782 bytes per

second, with a total bandwidth usage of 228 KB and moderate

variability (38%). While its high throughput is advantageous

for large data transfers, it necessitates careful traffic

management in high-concurrency conditions to maintain

steady-state performance. These findings highlight the cost of

compromise between the efficiency of the protocol and

scalability. The WebSocket is suitable for low-bandwidth

continuous applications, while Modbus has accommodated

efficiency and robustness with suitable data volume. MQTT

and OPC UA have a higher throughput but are demanding

good strategies for congestion management because of their

volatility. The results highlight the necessity of adopting

protocol selection according to individual application needs

(e.g., network conditions, data volume, latency tolerance).

3.6. Discussion

A key observation was that OPC UA and Modbus

performed exceptionally well in a direct local network setup

without Node-RED implementation, where the PLC acted as

both the server and Unity as the client. Both protocols

achieved low latency in this configuration, with RTT

averaging less than 5 milliseconds. This demonstrates their

effectiveness in local environments with minimal overhead

and direct communication, making them highly suitable for

time-sensitive industrial applications. However, when Node-

RED was introduced as a server to mediate communication

between the DTP and the PLC, the latency for both protocols

increased significantly. OPC UA server node in Node-RED,

in particular, showed initial round-trip times exceeding 500

ms on several occasions during the experiments. This

prompted further investigation, identifying the

minimumSamplingInterval parameter in the OPC UA server

node (104-opcuaserver.js) as the root cause. This parameter,

set at 500 ms, determines how frequently the server samples

variable values, directly affecting data transmission latency.

To address this, the library script was modified to adjust

the minimumSamplingInterval to 50 ms, allowing for more

frequent updates and significantly improving OPC UA

communication's responsiveness. After the modification, the

round-trip time was reduced considerably, bringing it within

acceptable limits for real-time industrial applications. This

finding underscores the importance of optimizing and tuning

protocol parameters to meet the system's specific

requirements. Flexibility in protocol implementations is

critical to ensure that latency is minimized without sacrificing

other performance characteristics, such as resource efficiency

or data integrity.

Modbus, while not affected by sampling intervals in the

same way as OPC UA, also experienced higher latencies when

using Node-RED compared to the local setup. This increase in

latency is likely due to the additional overhead introduced by

Node-RED as a mediator, which processes and routes the

communication. While Modbus remains reliable and robust,

further optimization of Node-RED nodes could reduce this

overhead and bring the performance closer to what was

observed in the direct PLC-client communication scenario.

MQTT, on the other hand, showed a different set of

challenges. When attempting to achieve communication

latencies below 100 ms, limitations in the native clock

memory of the Siemens PLC became evident.

The native clock runs at a maximum frequency of 10 Hz,

making it challenging to achieve higher publishing and

subscribing frequencies using typical configurations. A TOD

(Time of Day) timer and Flip-Flop logic were used to drive

more frequent updates to overcome this limitation. However,

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

132

this approach introduced instability in the communication, as

Siemens PLCs do not natively support MQTT compared to

other protocol setups. This limitation highlights the inherent

challenges of integrating MQTT with Siemens hardware,

especially in real-time applications where stability and timing

precision are crucial. In summary, the performance of OPC

UA and Modbus in a direct local setup was exemplary, with

latencies under 5 ms, making them ideal for applications

where high-speed, low-latency communication is essential.

However, significant latency increases were observed when

Node-RED was used as an intermediary server, particularly

for OPC UA, which required parameter adjustments to meet

real-time performance requirements. The study shows the

importance of optimizing Node-RED server nodes, especially

for protocols like OPC UA and Modbus, to minimize round-

trip times and achieve better performance in remote

environments. Additionally, MQTT’s limitations in Siemens

PLCs due to the native clock constraints suggest that, while

MQTT is a robust protocol for IoT applications, its integration

with specific industrial hardware may require advanced

configurations or alternative approaches to achieve low-

latency, stable communication. Further research should

explore ways to improve the native support of MQTT on

Siemens PLCs or investigate more stable alternatives for high-

frequency communication.

3.7. Optimization Strategies for Cloud-Based Protocols

Performance optimization in cloud environments is

critical in communication protocols that can be applied

effectively in real-time industrial systems. This work

compared WebSocket, MQTT, Modbus, and OPC UA,

introducing their respective features while discussing

optimization strategies toward cloud-based scenarios with

improved efficiency. These strategies drive practitioners in the

field toward better implementations. With WebSocket, this is

achieved by reducing the size of JSON payloads. Combining

more variables into one transmission reduces overhead and

increases throughput. Additionally, binary encoding reduces

the transmission size and processing time compared to plain

text. Thus, WebSocket is more suitable for applications that

demand faster real-time updates.

MQTT provides a balance between reliability and

efficiency. QoS can optimize its performance by tuning.

Quality of Service 0 reduces latency and preserves resources

for non-critical data, while Quality of Service 1 or 2 helps

ensure the delivery of critical information. Retained messages

during network interruptions enable data continuity, while

lightweight topic hierarchies optimize bandwidth usage.

While Modbus is considered a straightforward and resource-

efficient industrial protocol, reducing duplicate searches

through efficient register mapping can be further optimized.

Modbus collects more data points into a single request by

decreasing polling frequency, which lowers network use and,

in turn, the server load. Although less scalable for extensive

systems, it works well in contexts with limited resources.

Dynamic adjustment of the sampling interval according

to current network conditions will improve performance in an

OPC UA deployment. Subscriptions instead of polling reduce

unnecessary data exchanges, thus optimizing resources.

Instead of transmitting data in XML, binary encoding

significantly increases speeds and reduces payload sizes,

making OPC UA suitable for handling structured data across

large-scale industrial installations. In cloud integration, with

Node-RED servers hosted on AWS, mainly using region-

specific EC2 instances, latency is reduced since the distance

between devices and the cloud is minimized.

Another optimization mechanism is the consideration of

elastic scaling for dynamic allocation of AWS resources based

on network demand, mainly when high traffic is generated by

the interaction of multiple users simultaneously with the

Node-Red server. Meanwhile, it reaches system sustainability

by automatically scaling up instances to sustain throughput in

case of service degradation. Scaling down in low demand

keeps resources conserved and reduces operational expenses.

AWS features such as Elastic Load Balancing (ELB) and

auto-recovery options enhance fault tolerance and ensure

continuous availability of services, even in the event of

hardware or software failures. Additionally, leveraging

AWS’s edge services like CloudFront or local zones can bring

processing closer to the point of data generation, reducing

latency further and enhancing real-time responsiveness.

3.8. Scalability, Challenges, and Limitations

3.8.1. Scalability of Protocols

In industrial systems with several digital twins,

communication protocols must be scalable. With an

increasing number of digital twins, the protocols face more

stringent demands from latency to resource usage.

While WebSocket is well suited for providing low-

latency communication, it may experience performance

bottlenecks as the number of connections increases. Solution

strategies like payload aggregation and message batching may

alleviate those issues; keeping many connections open will

require system resources.

MQTT shows good scalability because of the broker-

based architecture, which eases communication management

even in multi-digital twin setups. However, high publishing

rates and subscriptions demand more resources from the

broker, affecting latency and reliability. Modbus's

synchronous request-response model is less scalable and

probably better suited for smaller-scale implementations. OPC

UA is inherently scalable due to its structured way of handling

data; however, a lot of overhead is introduced in large-scale

setups. Satisfying performance in integrating many devices

with high-frequency updates can only be achieved through

dynamic optimization of the sampling intervals and server

resources.

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

133

3.8.2. Challenges in Cloud-Based Deployments

These latency and scalability issues become prominent in

a cloud environment while deploying these protocols. Latency

increases because of the physical distance between devices

and the cloud servers, network congestion, and routing

overhead. Workloads running as region-specific EC2

instances can reduce latency, as it would be closer to the client

populations; however, cross-region data transfers and cloud-

to-on-premises communication can exacerbate delay. Elastic

scaling ensures dynamic resource allocation to handle variable

loads but incurs additional costs, especially in traffic surges.

In industrial-scale cloud deployments, cost is a significant

concern. While this study has used the free-tier EC2 instances

of AWS for testing, scaling up industrial systems to handle

greater loads and multiple digital twins would incur heavy

expenses in terms of higher-performance cases, data transfers,

and storage. The costs can be contained by using reserved

instances for long deployments, planning for reduced data

transfer volumes, and using edge computing services like

AWS CloudFront. The use of AWS services, such as Elastic

Load Balancer (ELB) and auto-recovery mechanisms, could

improve reliability by working to ensure continuity during

failures or peak usage. However, relying on these services

requires critical planning to avoid extra costs while ensuring

system performance in real-time applications.

3.8.3. Study Limitations

Although this study has achieved optimal round-trip

times closely matching actual machine processes, several

fundamental limitations should be noted. All experiments

were conducted in a strictly controlled environment using only

Boolean variables; in this way, it was not extended to other

variable types and sizes. That limits the potential applicability

of the results to real industrial scenarios where the

communication involves more diverse and heterogeneous data

types. Another limitation not considered in this work is

multiuser scenarios or an integration of multiple digital twins

in parallel. The scalability of the protocols under such

conditions remains untested; therefore, further research is

necessary to judge their performance under high-concurrency

user environments with heavy data loads. Thirdly, the scope

of the study was constrained to specific protocols, signalling

that its findings might not hold for other configurations or

protocols of communication. More research in this direction,

with a broader range of protocols and different scenarios, is

thus justified. Finally, the hardware and network settings of

this study, while representative of a testbed environment, can

considerably diverge from those of industrial deployments,

and therefore, the results may not be entirely reproducible.

Moreover, the study has focused mainly on performance-

related aspects, such as latency and resource consumption, and

ignored other important factors, such as security or operation

costs. Future research efforts should broaden their scope to

include these aspects so that more generalized inferences

about the application of protocols in industrial systems can be

drawn.

4. Conclusion
This study adopted the Node-RED servers, which are

widely applied tools, to realize the communication between

the digital twin and PLCs. Node-RED has greatly simplified

communication because it dispels static IP addresses, VPN

applications, or port forwarding. Its nodes provide remote and

distributed environment integration with easy deployment

without complicated network configurations. The applications

in industry and research abound with this approach, hence

providing much-needed flexibility and scalability for handling

different communication protocols. Four protocols—

WebSocket/S7, MQTT, Modbus, and OPC UA—are

compared to each other in terms of their pros and cons in the

context of real-time integration of digital twins in industrial

automation. WebSocket achieved the best latency

performance by keeping low round-trip times (RTT) in local

and cloud environments. However, WebSocket does not

directly connect to the PLC but acts as a proxy, forwarding

messages to remote destinations where the S7 nodes

communicate with the Siemens S7 PLCs. As seen through the

functionality, this mediating role underscores the value of

WebSocket for real-time, time-dependent applications even

though it is not an industry-standard industrial protocol.

MQTT provided a reasonably good performance,

particularly in the necessity of a trade-off between latency and

reliability. Its lightweight design makes it easy to adapt to

complicated network environments, positioning it as a strong

candidate for resource-limited remote applications. Being

robust and straightforward, Modbus showed the highest

latency, especially in cloud-based setups. Its low price and

robustness make it appropriate for narrow networks or

nonsensitive tasks, yet it hinders its real-time use. Despite

higher latency, OPC UA presents more advanced data

modeling capabilities, which, though not the primary concern

of this study, are very advantageous in highly complex

industrial applications. Real-world applications demonstrate

the practical relevance of these protocols.

For instance, WebSocket's short latency is well-suited for

real-time QC and monitoring of conveyor belts; scalability

and reliability of MQTT are well-suited for predictive

maintenance and remote control of devices. Modbus remains

the de facto standard for legacy systems in water and power

treatment areas. Still, for smart factories and across an array

of vendors for industrial plants, the layered data management

and interoperability of OPC UA is a significant advantage.

However, the research has certain limitations. The controlled

experimental setup ensured uniform network conditions,

which may not accurately reflect the variations in real

industrial scenarios. In addition, the paper did not include any

aspect of security, which, for industrial applications, is of

particular importance. While some protocols, like OPC UA,

include robust security features, the analysis focused solely on

latency and resource efficiency. Furthermore, the contribution

did not consider the multiuser scalability, which must be taken

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

134

into account to properly assess and compare the performance

weaknesses of a protocol in a multiuser environment.

Additionally, the performance of Node-RED server nodes in

protocol management in dynamic network conditions could be

enhanced. The increase in the processing efficiency of the

nodes and the decrease in latency can be considered. Long-

term studies could also provide insights into the protocol's

stability and reliability based on the progressive operation.

Additionally, understanding the role of emerging

technologies, 5G, and edge computing on the increased delay

in real-time communication between the digital twins may

yield some disruptive change. For example, the ultra-low

latencies and high bandwidths of 5G networks can support

high-throughput lossless data transmission in resource-

constrained applications, and edge computing can make local

processing possible by reducing the need to rely on cloud

systems and shortening the response time to a regional system.

Adding in artificial intelligence and machine learning to

optimize protocol parameters in a continuously adaptive

manner in response to real-time, dynamic network topology is

another promising direction along the lines of increasing

scalability and enhancing efficiency.

The communication protocol should be chosen based on

the application's needs and the aspects of latency, security (if

available), and the operative environment. Although

WebSocket is the most suitable means for real-time

applications in remote scenarios, its use as a relay for PLC

activation rather than direct PLC communication should not

be overlooked. MQTT and OPC UA offer reliability and

scalability, whereas Modbus continues to be part of the

solution for legacy systems with local network requirements.

It is essential to optimize Node-RED server nodes to better

support protocol integration and scalability in real-time

industrial systems.

Acknowledgements
The authors express their gratitude to the Faculty of

Computer Science and Information Technology (FSKTM) at

Universiti Tun Hussein Onn Malaysia (UTHM), the Fatima

College of Health Sciences (FCHS) at the Institute of Applied

Technology (IAT), and the Department of Computer Science

and Software Engineering (CSSE) at the United Arab

Emirates University (UAEU) for generously providing the

necessary facilities.

References
[1] Concetta Semeraro et al., “Digital Twin Paradigm: A Systematic Literature Review,” Computers in Industry, vol. 130, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[2] Ziqi Huang et al., “A Survey on Ai-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics,” Sensors, vol.

21, no. 19. pp. 1-35, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[3] Morteza Ghobakhloo, “Industry 4.0, Digitization, and Opportunities for Sustainability,” Journal of Cleaner Production, vol. 252, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Thiago Lopes da Silva, and Urbano Chagas, “How Digital Twins Is Being Used in Industry 4.0,” Intechopen, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[5] Michael W. Grieves, Digital Twins: Past, Present, and Future, The Digital Twin, pp. 97-121, Springer, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[6] “ISO 23247-1, ISO 23247-4:2021: Automation Systems and Integration - Digital Twin Framework for Manufacturing, Part 1: Overview

and General Principle,” Report, International Organization for Standardization, 2021. [Google Scholar] [Publisher Link]

[7] Khalifa Alremeithi, Hassan Almaeeni, and Winston Sealy, “Virtualized Digital Twin (DT) of a Reconfigurable Programmable Logic

Controller (PLC),” 2024 6th International Conference on Reconfigurable Mechanisms and Robots (ReMAR), Chicago, IL, USA, pp. 349-

354, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[8] Luis Freitas et al., “OPC-UA in Digital Twins - A Performance Comparative Analysis,” International Conference Innovations in

Mechatronics Engineering III, pp. 113-123, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[9] Eduardo Zancul, “A Digital Twin Design and Implementation Approach for Industrial Application Leveraging Programmable Logic

Controllers,” International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1-9, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[10] Carlos Cremonini et al., “Design and Implementation of a Digital Twin for a Stone-Cutting Machine: A Case Study,” Procedia Computer

Science, vol. 232, pp. 990-1000, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] Haoran Wang et al., “A Digital Twin Platform Integrating Process Parameter Simulation Solution for Intelligent Manufacturing,”

Electronics, vol. 13, no. 4, pp. 1-21, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[12] Hanna Molin et al., “Automated Data Transfer for Digital Twin Applications: Two Case Studies,” Water Environment Research, vol. 96,

no. 7, pp. 1-10, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[13] MQTT - The Standard for IoT Messaging, MQTT, 2024. [Online]. Available: https://mqtt.org/

[14] The OPC Unified Architecture (UA), OPC Foundation, 2024. [Online]. Available: https://opcfoundation.org/

https://doi.org/10.1016/j.compind.2021.103469
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Digital+twin+paradigm%3A+A+systematic+literature+review&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0166361521000762
https://doi.org/10.3390/s21196340
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%2C+A+survey+on+AI-driven+digital+twins+in+industry+4.0%3A+Smart+manufacturing+and+advanced+robotics&btnG=
https://www.mdpi.com/1424-8220/21/19/6340
https://doi.org/10.1016/j.jclepro.2019.119869
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Industry+4.0%2C+digitization%2C+and+opportunities+for+sustainability%2C+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0959652619347390
https://doi.org/10.5772/intechopen.113060
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%22How+Digital+Twins+Is+Being+Used+in+Industry+4.0%22&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%22How+Digital+Twins+Is+Being+Used+in+Industry+4.0%22&btnG=
https://www.intechopen.com/chapters/88323
https://doi.org/10.1007/978-3-031-21343-4_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Digital+Twins%3A+Past%2C+Present%2C+and+Future&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-21343-4_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Automation+Systems+and+Integration+-+Digital+Twin+Framework+for+Manufacturing%2C+Part+1%3A+Overview+and+General+Principle%2C+International+Organization+for+Standardization&btnG=
https://www.iso.org/obp/ui/en/#iso:std:iso:23247:-1:ed-1:v1:en
https://doi.org/10.1109/ReMAR61031.2024.10618131
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Virtualized+Digital+Twin+%28DT%29+of+a+Reconfigurable+Programmable+Logic+Controller+%28PLC%29&btnG=
https://ieeexplore.ieee.org/abstract/document/10618131/
https://doi.org/10.1007/978-3-031-61575-7_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=OPC-UA+in+Digital+Twins%E2%80%94A+Performance+Comparative+Analysis&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-61575-7_11
https://doi.org/10.1007/s12008-024-01969-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+digital+twin+design+and+implementation+approach+for+industrial+application+leveraging+programmable+logic+controllers&btnG=
https://link.springer.com/article/10.1007/s12008-024-01969-x
https://doi.org/10.1016/j.procs.2024.01.098
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+implementation+of+a+digital+twin+for+a+stone-cutting+machine&btnG=
https://www.sciencedirect.com/science/article/pii/S187705092400098X
https://doi.org/10.3390/electronics13040802
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Digital+Twin+Platform+Integrating+Process+Parameter+Simulation+Solution+for+Intelligent+Manufacturing&btnG=
https://www.mdpi.com/2079-9292/13/4/802
https://doi.org/10.1002/wer.11074
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+data+transfer+for+digital+twin+applications&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1002/wer.11074

Mohammed Hlayel et al. / IJETT, 73(1), 120-135, 2025

135

[15] How do You Configure and Program an S7 Connection and the “PUT” and “GET” Instructions for Data Transfer between Two S7 CPUs?,

Siemens, 2020. [Online]. Available: https://support.industry.siemens.com/cs/document/82212115/how-do-you-configure-and-program-

an-s7-connection-and-the-%E2%80%9Cput%E2%80%9D-and-%E2%80%9Cget%E2%80%9D-instructions-for-data-transfer-between-

two-s7-cpus-?dti=0&lc=en-US

[16] Modbus Organization, Modbus, 2024. [Online]. Available: https://www.modbus.org/

[17] Claire Palmer et al., Virtual Reality Based Digital Twin System for Remote Laboratories and Online Practical Learning,

Advances in Transdisciplinary Engineering, pp. 277-283, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[18] M. Melo de Carvalho et al., “Industrial Real-Time Digital Twin System for Remote Teaching Using Node-Red,” 14th Annual International

Conference of Education, Research and Innovation, pp. 6623-6632, Online Conference, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[19] IEC 61158-1: Fieldbus for Use in Industrial Control Systems - Data-Link Layer Service Definition, Industrial Communication Networks,
International Electrotechnical Commission, 2007. [Online]. Available: https://webstore.iec.ch/en/publication/19154

[20] Diego R. C. Silva et al., “Latency Evaluation for MQTT and WebSocket Protocols: An Industry 4.0 Perspective,” 2018 IEEE Symposium

on Computers and Communications (ISCC), Natal, Brazil, pp. 1233-1238, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[21] B.A. Enache, C.K. Banica, and Ana Geroge Bogdan, “Performance Analysis of MQTT Over Websocket for IoT Applications,” The

Scientific Bulletin of Electrical Engineering Faculty, vol. 23, no. 1, pp. 46-49, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[22] Nick O'Leary, and Dave Conway-Jones, Node-RED, IBM Emerging Technology, Wikipedia, 2024. [Online]. Available:

https://en.wikipedia.org/wiki/Node-RED

[23] Overview of Amazon Web Services - AWS Whitepaper, Amazon Web Services, 2023. [Online]. Available:

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html

[24] Murilo Silveira Rocha et al., “On the Performance of OPC UA and MQTT for Data Exchange between Industrial Plants and Cloud

Servers,” Acta IMEKO, vol. 8, no. 2, pp. 1-8, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[25] Arda Kocamuftuoglu, Okan Akbay, and Serkan Kaba, “A Comparative Study on Industrial Communication Protocols Using IoT

Platforms,” The Eurasia Proceedings of Science Technology Engineering and Mathematics, vol. 14, pp. 57-65, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[26] Narongsak Putpuek, Apiradee Putpuek, and Sansern Phawandee, “Performance Evaluation of OPC UA and MQTT for ETAT Smart Lab

(ESL),” 2023 7th International Conference on Information Technology, (InCIT), Chiang Rai, Thailand, pp. 17-21, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[27] Cornel Ventuneac, and Vasile Gheorghita Gaitan, “Industrial Internet of Things Gateway with OPC UA Based on Sitara AM335X with

ModbusE Acquisition Cycle Performance Analysis,” Sensors, vol. 24, no. 7, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[28] Walczak Maciej, and Hetmanczyk Mariusz, “The Performance of IIOT Communication Standards,” Diagnostics, vol. 24, no. 3, pp. 1-8,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[29] Alexey Melnikov, and Ian Fette, RFC6455 - The WebSocket Protocol, IETF Datatracker, 2011. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc6455

[30] Unity, Unity Platform, (2021). [Google Scholar] [Publisher Link]

[31] S7-PLCSIM Advanced - Simulation for Virtual Commissioning and Testing, Siemens, 2024. [Online]. Available:

https://www.siemens.com/global/en/products/automation/systems/industrial/plc/s7-plcsim-advanced.html

[32] GitHub - OPCFoundation/UA-.NETStandard: OPC Unified Architecture, OPC Foundation, 2024. [Online]. Available:

https://github.com/OPCFoundation/UA-.NETStandard

[33] GitHub - Rossmann-Engineering/EasyModbusTCP.NET: Modbus TCP, Rossmann-Engineering, 2021. [Online]. Available:

https://github.com/rossmann-engineering/EasyModbusTCP.NET

[34] GitHub - Eclipse-Paho/Paho.mqtt.m2mqtt, MqttClient, Paolo Patierno, 2017. [Online]. Available:

https://github.com/eclipse/paho.mqtt.m2mqtt

[35] Websocket-Sharp, STA, 2024. [Online]. Available: https://sta.github.io/websocket-sharp/

http://doi.org/10.3233/ATDE210049
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Virtual+Reality+based+Digital+Twin+System+for+remote+laboratories+and+online+practical+learning&btnG=
https://ebooks.iospress.nl/doi/10.3233/ATDE210049
https://doi.org/10.21125/iceri.2021.1497
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=INDUSTRIAL+REAL-TIME+DIGITAL+TWIN+SYSTEM+FOR+REMOTE+TEACHING+USING+NODE-RED&btnG=
https://library.iated.org/view/MELODECARVALHO2021IND
https://library.iated.org/view/MELODECARVALHO2021IND
https://doi.org/10.1109/ISCC.2018.8538692
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Latency+evaluation+for+MQTT+and+WebSocket+Protocols%3A+An+Industry+4.0+perspective&btnG=
https://ieeexplore.ieee.org/document/8538692
https://doi.org/10.2478/sbeef-2023-0008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Analysis+of+MQTT+Over+Websocket+for+IoT+Applications&btnG=
https://sciendo.com/article/10.2478/sbeef-2023-0008
https://doi.org/10.21014/acta_imeko.v8i2.648
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+performance+of+OPC+UA+and+MQTT+for+data+exchange+between+industrial+plants+and+cloud+servers&btnG=
https://acta.imeko.org/index.php/acta-imeko/article/view/IMEKO-ACTA-08%20%282019%29-02-11
https://doi.org/10.55549/epstem.1050178
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparative+Study+on+Industrial+Communication+Protocols+Using+IoT+Platforms&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparative+Study+on+Industrial+Communication+Protocols+Using+IoT+Platforms&btnG=
https://www.epstem.net/en/download/article-file/2163862
https://doi.org/10.1109/InCIT60207.2023.10413160
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Evaluation+of+OPC+UA+and+MQTT+for+ETAT+Smart+Lab+&btnG=
https://ieeexplore.ieee.org/document/10413160
https://doi.org/10.3390/s24072072
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Industrial+Internet+of+Things+Gateway+with+OPC+UA+Based+on+Sitara+AM335X+&btnG=
https://www.mdpi.com/1424-8220/24/7/2072
https://doi.org/10.29354/diag/169033
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=THE+PERFORMANCE+OF+IIOT+COMMUNICATION+STANDARDS&btnG=
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8c290fb5-d8f6-41ef-82a4-767c88920d65
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+WebSocket+Protocol&btnG=
https://www.rfc-editor.org/rfc/rfc6455.html

