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Abstract - Integrating digital twins with industrial automation, particularly in remote environments, demands efficient real-time 

communication to synchronize virtual models with physical devices. Latency and resource usage are critical for ensuring 

seamless operation, especially when considering IEC 61588 standards, which mandate response times under 100 milliseconds 

for real-time systems. This paper presents a comparative analysis of WebSocket as an intermediary protocol with Siemens S7, 

benchmarked against widely used industrial communication protocols, including MQTT, Modbus, and OPC UA. The study 

focuses on real-time performance and resource efficiency in remote setups, using Amazon Web Services (AWS) cloud-based 

Node-RED as the protocols’ server. Although WebSocket is not an industrial automation standard, it demonstrated competitive 

latency and resource efficiency, particularly when integrated with Siemens S7 for remote operations. The results show that 

WebSocket with S7 outperforms other protocols like MQTT, while Modbus and OPC UA exhibit higher latency in cloud-based 

Node-RED environments. OPC UA’s performance significantly improved after optimizing the currently used Node-RED’s server 

sampling parameters. These findings underscore the need for further optimization of Node-RED nodes to enhance protocol 

handling in remote industrial settings, as performance still lags behind local configurations. 

Keywords - Digital Twin, Modbus, MQTT, OPC UA, WebSocket, Real-Time communication.

1. Introduction 
Since the introduction of Industry 4.0, the Fourth 

Industrial Revolution, industrial automation has been 

modified and extended by integrating physical devices with 

counterpart physical models, which are computationally 

referred to as Digital Twins [1]. Digital twins are 

representations of real physical objects that can be monitored, 

analyzed, and optimized in real time in industrial processes 

[2]. They bridge the physical and digital worlds, facilitating 

predictive maintenance, performance optimization, and 

enhanced decision-making [3, 4]. Depending on the level and 

scope of the system being modeled, there are various types of 

digital twins, including process, product, and system twins. 

This study focuses on a Unity-based Digital Twin Prototype 

(DTP), a specific kind of system twin used in the initial 

automation design phases to simulate industrial processes 

such as automated sorting systems and PLC-controlled 

operations without the presence of the physical machine 

counterpart [5]. For smooth and effective process 

visualization, communication between physical devices, like 

Siemens S7 PLCs, and the digital twin must take place in real-

time as industrial standards, ensuring the simulation mirrors 

real-world industrial conditions [6]. The reliance on the 

mature communication protocols is based on the integration 

between the digital twin and physical devices, e.g., 

Programmable Logic Controllers (PLCs), on which 

information transfer is based on real-time data transmission, 

particularly in remote applications where latency, reliability, 

and the management of resources play a crucial role [7-9]. 

Latency, which represents the phase delay between the input 

of a system and the output, plays a vital role in the 

performance of real-time communication. Additionally, 

consuming CPUs and memories is essential and significant 

concerning attaining the robustness that explains the steady-

state operation of digital twins that scales without being 

resource-constrained [10-12]. Yet when the development of 

Industry 4.0 began, currently available industrial 

communication protocols (MQTT, Modbus, OPC UA) were 

mainly known to have the problem of real-time 

synchronization, particularly in remote environments. This 

gap is significant as it limits the potential applicability of 

digital twin systems for industrial automation, with latency 

and resource constraints playing a dominant role.Prevalent, 

standardized industrial protocols for the exchange of real-time 

messages between program logic PLCs and machines are 

MQTT (Message Queuing Telemetry Transport) [13], OPC 
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Unified Architecture (OPC UA) [14], S7comm (S7 

Communication) [15], and Modbus [16]. Such protocols are 

mainly implemented in local network settings where the PLC 

and the associated machines are in one physical location. 

However, the digital twin approach expands the scope of 

communication beyond local environments, requiring 

solutions that overcome distance constraints while still 

maintaining real-time communication between the physical 

PLC and the virtual model of the digital twin [17, 18]. 

Although Industry 4.0 researchers have suggested several 

real-time communication approaches, most do not propose 

and experimentally validate the performance of their approach 

with practical latency measurements, typically using protocol 

specifications without taking into account the real-world 

nature of network environments or the conditions under which 

these protocols may be implemented. This deficiency 

highlights the critical function of the IEC 61588 standard (i.e., 

the Precision Time Protocol (PTP), which requires a response 

time of 100 ms (for real-time use) to a maximum of 200 ms 

for simulation use) [19]. Regarding the synchronization of 

time-critical systems, the IEC 61588 standard is of 

fundamental importance for the precision and effectiveness of 

industrial automation.  

Timely data exchange within those constraints is 

fundamental to exploiting the capabilities of Industry 4.0 

technologies and ensuring proper operational efficiency in 

distributed systems. This paper targets these problems by 

proposing the WebSocket with Siemens S7 as an 

implementable solution. Through empirical latency 

measurements in both on-site and cloud scenarios, this work 

confirms the protocol's performance according to the stringent 

bounds of IEC 61588, pointing to its ability to mitigate latency 

and minimize resource consumption even in distant 

installations. These results help to close the gap between 

abstract protocol descriptions and practical use in the real 

world of Industry 4.0 and provide a new solution for real-time 

communication in the industry of Industry 4.0. 

WebSocket has become a potential solution for 

integrating and using industrial communication along with 

MQTT, allowing real-time remote data exchange [20, 21]. 

This study introduces the WebSocket with the Siemens S7 

communication protocol (S7) approach. It assesses its 

suitability along with other well-known industrial protocols 

(e.g., MQTT, Modbus, and OPC UA), in this regard 

considering the efficiency that these protocols achieve for the 

real-time connectivity and resource management of the digital 

twin paradigm. Although WebSocket has promise as a 

lightweight transport protocol for remote control, its 

performance in handling high-quality, industrial standard 

precision real-time data exchange remains to be explored. 

Furthermore, the rapid rise in usage of Node-RED [22] as a 

scalable and flexible platform for the management of external 

communication protocols has been crucial in bypassing the 

immutable IP policy, VPN, port forwarding, or complex and 

risky network rework traditionally found in the use of real-

time protocol. This also points to the necessity of assessing the 

adequacy of Node-RED for remote applications. Although the 

platform Node-RED provides good extensibility and 

scalability, the capability of its nodes to work in real-time 

communication, mainly when latency is a critical factor of the 

flow, needs careful evaluation. This study also evaluates 

Node-RED's performance and the resource implications of 

using different protocols to manage digital twin operations 

hosted on Amazon Web Services (AWS) [23]. In addition, this 

paper systematically studies latency and the resource 

consumption of WebSocket with S7, MQTT, Modbus, and 

OPC UA protocol. It mainly focuses on WebSocket's real-time 

performance and resource consumption in a cloud-based 

digital twin system. The experiment comprises a Unity-based 

digital twin prototype, a Siemens S7-1500 PLC emulator, and 

an AWS-based Node-RED, with performance metrics on 

latency, CPU, and memory usage across these protocols. It 

offers insights into the most suitable communication protocols 

for low-latency and resource-efficient real-time data exchange 

in remote industrial environments by evaluating protocol 

efficiency and resource management. These findings inform 

the choice of protocols for digital twin insertion and highlight 

the potential use of Node-RED nodes and WebSocket as 

alternative intermediate communication channels. 

The following literature review provides in-depth insight 

into the characteristics and shortcomings of protocol-

dependent features and constraints that apply to processing 

real-time information flows in remote digital twin systems on 

which this work is founded. Rocha et al. [24] conducted a 

computational comparison of OPC UA and MQTT between 

industrial plants and cloud servers. The authors determined 

that MQTT resulted in lower latency and scalability than OPC 

UA, particularly for remote applications. This study 

emphasized the critical role of protocol selection in achieving 

efficient data exchange in industrial IoT applications, 

especially in scenarios where low latency and scalability are 

paramount for remote interactions. [24] 

Arda Kocamuftuoglu, Okan Akbay, and Serkan [25] 

reported a comparative study of some industrial 

communication protocols (Modbus and MQTT) in IoT 

environments. They also pointed to the need for protocol 

selection in relation to device hardware potential and 

communication principles, emphasizing the enduring aspect 

of IoT platforms. Nevertheless, their study did not focus on 

the particular problems of remote data transfer, which is the 

aim of the present work. In addition, Putpuek et al. [26] 

investigated the performance of OPC UA and MQTT in the 

ETAT Smart Lab Application, with the aim of data transfer 

from RS-485 Modbus sensors to the PLCnext platform. The 

findings showed that OPC UA outperformed MQTT regarding 

reduced latency when transmitting sensor data to the PLCnext 

platform. However, they also noted that MQTT's simpler 
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architecture made it more suitable for smaller-scale, resource-

constrained IoT devices, underscoring the trade-offs between 

performance and simplicity depending on the application. 

Ventuneac and Gaitan [27] implemented an IIOT gateway 

with the Sitara AM335X processor and measured the behavior 

of the Modbus and the OPC UA protocols performed in an 

industrial context. Their results showed Modbus's better 

performance in local-scale applications with fast serial 

communication. Nevertheless, when incorporated with OPC 

UA, the system introduced latency, a known issue due to 

operating system limitations, thereby highlighting the 

limitations in the scalability of these protocols for remote 

operation. Walczak and Hetmanczyk [28] also investigated 

the characteristics of different IIoT protocols, such as OPC 

UA, MQTT, and Modbus TCP.  

Their results demonstrated that although OPC UA offers 

a secure encryption capability and is well suited for 

sophisticated industrial applications, it increases network 

traffic more than MQTT, particularly for large data sets. On 

the other hand, MQTT was found to be more bandwidth-

efficient and especially useful for transmitting short payloads 

and limited bandwidths. Fette and Melnikov [29] introduced 

WebSocket as a protocol for low-latency and real-time 

solutions for web-based applications and highlighted its 

potential to replace inefficient polling mechanisms in web 

applications. Although their study did not focus on industrial 

automation, we believe the protocol’s design for bidirectional 

communication with minimal overhead makes it a strong 

candidate for adaptation in industrial environments as an 

intermediate transport mechanism, particularly for 

applications like remote digital twin integrations.  

However, further exploration is required to determine 

WebSocket’s performance in PLC-based and industrial 

settings. Despite the vast collection of industrial 

communication protocol research, there are still open 

questions about latency, particularly within the context of 

remote digital twin integration. Several works [24–28] have 

focused on the local network performance while disregarding 

the remote operation's scalability issues and the latency 

consideration. In addition, those kinds of research are often 

conducted by employing randomly generated data, which do 

not follow the inherent sequential property of the industrial 

real-time data flow, as the data procession is significant in 

PLCs' environments. On the contrary, this paper considers the 

simulation of a realistic DTP representing a real machine's 

functional behavior in the industrial process. It affords a more 

accurate simulation of industrial processes. Moreover, this 

work systematically compares the latency performance and 

resource consumption of MQTT, Modbus, and OPC UA in 

remote real-time applications against those shared by local 

network environments and those intermediate platforms 

offered by the Node-RED. The goal is to circumvent the need 

for a VPN, fixed IP address, port forwarding, complicated 

networking setup, etc. It also extends earlier research by 

examining the viability of using WebSocket as a middle 

protocol and an out-of-box replacement protocol to traditional 

industrial (e.g., Modbus, OPC UA, or MQTT) communication 

protocols, i.e., for real-time data transfer and system's 

effectiveness in remote digital twin applications. 

2. Materials and Methods 
2.1. Methodology 

The experiments presented in this work are devoted to the 

performance evaluation of different communication protocols 

in real-time, integrating digital twins with Siemens PLCs, and 

considering environmental conditions, namely local and 

remote. The following process and procedure are explained in 

detail in the subsequent subsections. The experimental testbed 

consists of a digital twin application developed on Unity3D, 

representing the simulated version of an automated sorting 

system that communicates with a Siemens S7-1500 PLCSIM 

Advanced emulator using Node-RED as the deployed 

communication hub, both locally and on AWS, emulating 

operations remotely to enable protocol-specific routing and 

conversion. The hardware specifications of all these devices 

used in the experiment, namely Samsung Tab Active 3, central 

computer, AWS EC2 instance, and Siemens PLC simulator, 

are highlighted in detail in Table 1.  

Automation commands from the digital twin are handled 

by WebSocket, MQTT, Modbus, and OPC UA protocols. 

Each of them had been implemented based on existing 

libraries and, where possible, tuned for the best performance 

under real-time conditions: WebSocket sends JSON-encoded 

Boolean values every constant interval of time (50 ms); 

MQTT adopts byte arrays with Quality of Service level 0; 

Modbus uses 16-bit registers to minimize useless overhead; 

whereas OPC UA leverages session-based read/write 

operations and optimized polling intervals. These protocols 

enabled the digital twin to have bidirectional communication 

with the PLC for simulating various operations: conveyor 

control, sensor on/off, and sorting of packages. The 

experiment procedure, starting from the delivery of the 

commands created in Unity Digital Twin, proceeds through 

Node-RED and is delivered to Siemens PLC, followed by the 

delivery back to the Digital Twin. Latency is estimated as a 

Round Trip Time (RTT) using high-precision timers available 

within Unity. Resource usage, such as CPU and memory, are 

measured on the system side using a Python script. Further, 

network performance shall be monitored using Wireshark. 

Additionally, performance metrics (latency, throughput, error 

rate) have been considered in the environment for load and 

network conditions). Amazon Web Services (AWS) with 

Node-RED Server established a direct interface between the 

nodes and the platform without static IP/VPN configuration. 

Furthermore, network throughput was analyzed using 

Wireshark to compare the effectiveness of each protocol. 

Wireshark logged network traffic during the experiment and 

provided insights into network load and throughput patterns. 
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Table 1. Hardware specifications 

Device Main Computer Samsung T. Active3 AWS EC2 Instance Siemens PLC 

Model Desktop SM-T575 t3.micro S7-1500 

CPU 
12th Gen Intel(R) i5,  

2.5 GHz 

Samsung Exynos 9810, 2.7 

GHz Octa-Core 

Intel(R) Platinum  

8259CL, 2.50 GHz 
CPU 1517TF-3 PN/DP 

RAM 48 GB DDR4 4 GB 1 GB 3 MB 

Storage 500 GB SSD 64 GB 8 GB 8 MB 

System Windows 11 Pro 64-bit Android 13 Linux AMI x86_64 Firmware V2.9 

WLAN/NIC 
Realtek PCIe GbE, Data rate: 

2.5 GB/sec 

Wi-Fi, 802.11 a/b/g/n/ac, 600 

Mbps 

Elastic Network Adapter 

(ENA) 

PROFINET interfaces: 

TCP/IP 

2.2. Experimental Setup 

The architecture and data flow of the local and remote 

setup are illustrated in Figures 1 and 2. The setup included the 

following components: 

2.2.1. Digital Twin Model  

Developed in Unity3D (version 2022.3.17f1) [30], the 

digital twin simulates an automated box-sorting plant, 

featuring processes such as piston activation, conveyor belt 

movement, and box detection. Unity3D was selected for its 

versatility in simulating complex industrial processes and its 

ability to support remote testing. The designed DTP 

communicates with the PLC using Boolean values (for binary 

states) as the primary data type for transmitting DTP 

component status. The interaction between the digital twin and 

the PLC, along with protocol-specific data transmission, is 

detailed in Figure 1. 

2.2.2. Siemens S7-1500 PLCSIM 

 The Siemens PLCSIM Advanced [31] (PLC Simulator) 

was employed to simulate the PLC's behavior for controlling 

the processes replicated by the digital twin. Programmed via 

the TIA Portal, PLCSIM was chosen for its ability to emulate 

real-time operations of the S7-1500 accurately, allowing 

comprehensive testing of multiple communication protocols. 

PLCSIM’s capability to simulate real-time industrial 

processes made it an effective tool for analyzing protocol 

performance in a controlled, repeatable environment without 

requiring physical hardware. 

2.2.3. AWS Cloud Infrastructure 

 AWS provided the necessary cloud-based infrastructure 

for the experiment. This setup enabled testing under 

conditions that mimic real-world industrial scenarios where 

the digital twin and the PLC are not co-located, introducing 

latency and network reliability challenges.  

2.2.4. Node-RED Server 

 Node-RED acted as the communication hub between the 

digital twin and Siemens PLC. Node-RED facilitated 

protocol-specific data flow, ensuring proper routing and 

conversion of data between the digital twin and the PLC. 

2.3. System Architecture 

The system architecture presented in Figure 1 aimed to 

replicate a typical remote industrial setup, where real-time 

data exchange between a digital twin and a physical PLC is 

required. The architecture was designed with scalability and 

real-world applicability, focusing on remote monitoring and 

control. The key architectural components included: 

2.3.1. DTP on Unity Player 

The digital twin prototype, running on Unity Player on a 

local PC, simulated an automated sorting plant. It 

communicated with the Siemens S7-1500 PLC through the 

Node-RED server hosted locally and on AWS. The digital 

twin visualized the process and issued commands to the PLC 

based on either user input or pre-programmed routines, as 

depicted in Figure 2.  

2.3.2. Siemens S7-1500 PLC 

The emulated PLC, located at a remote site, controlled 

physical processes based on data received from the digital 

twin. It communicated with the Node-RED server over the 

internet using the protocols under evaluation (WebSocket/S7, 

MQTT, Modbus, and OPC UA). The PLC processed incoming 

data in real-time and sent feedback to the digital twin for 

further actions and visualization. 

2.3.3. Node-RED Servers on Local PC and AWS Cloud 

Node-RED acted as the central communication hub for 

routing data between the DTP and the Siemens PLC, deployed 

on a local server (PC) and a cloud-based instance (AWS). The 

local Node-RED server managed low-latency communication 

between the digital twin and Siemens PLC, providing real-

time interactions and performance benchmarking for 

WebSocket, MQTT, Modbus, and OPC UA in a controlled 

environment. This setup is suitable for direct protocol 

comparisons under optimal conditions before extending the 

tests to remote operations. Meanwhile, the AWS Node-RED 

server facilitated remote operations, simulating industrial 
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applications with variable latency, ensuring the system's 

ability to handle complex, long-distance data routing while 

maintaining scalability and reliability across different network 

conditions. 

2.3.4. Data Flow 

The data flow followed a cyclic process, where the DTP 

sent commands to the PLC via the Node-RED server. The 

PLC processed these commands and responded, and the 

responses were relayed back to the DTP for visualization or 

further action. Each protocol was tasked with managing 

specific data types, and the latency of these transmissions was 

measured and analyzed. 

Fig. 1 Framework architecture 

Fig. 2 PLC Logic Dataflow Chart 

This experimental setup and architecture were designed 

to evaluate the performance of different communication 

protocols under realistic remote conditions, focusing on 

latency, resource efficiency, and protocol-specific challenges. 

By using scalable and flexible tools like Unity, Node-RED, 

and AWS, the experiment provides insights into the practical 

application of these protocols in industrial automation and 

digital twin integration. 

2.4. Implementation of Communication Protocols 

This study leveraged various libraries in C# and 

frameworks to implement and test communication protocols 

within a real-time, remote digital twin environment. Each I/O 

component communicated continuously via the respective 

protocol, facilitating seamless interaction between the virtual 

environment and the PLC controller, as detailed in Figure 2. 
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Using methods such as Session.Read and Session.Write, 

the Opc.Ua.Client library [32] was employed to manage the 

OPC UA connection for direct data handling. OPC UA 

handles each Boolean value as a separate operation, resulting 

in individual write actions for every data point. This approach, 

while precise, can increase the frequency of operations and, 

thus, the overall traffic, especially when dealing with multiple 

Boolean values. The data exchange involved Boolean values 

formatted according to OPC UA standards. A coroutine 

running at 50-millisecond intervals ensured timely updates.  

Testing revealed that reducing polling intervals could 

burden the network and system, potentially compromising 

stability, while OPC subscriptions introduced higher latency. 

Thus, polling was confirmed as the more effective method for 

maintaining low latency in real-time applications. For Modbus 

communication, the Modbus_Client class in Unity, utilizing 

the EasyModbus library [33], facilitated real-time interactions 

with a Modbus server. Modbus efficiently packs multiple 

Boolean values into a single 16-bit word, minimizing 

overhead and optimizing network traffic. The class is 

connected to the PLC via a specified IP and port, executing 

key operations like ReadHoldingRegisters for data retrieval 

and WriteSingleRegister for sending commands. Data updates 

occurred every 50 milliseconds, balancing system 

performance with network traffic management.  The 

MqttClient class of uPLibrary.Networking.M2Mqtt library 

[34], managed MQTT communication by initializing a 

MqttClient and setting up subscription and publication topics. 

MQTT also handles data efficiently by packing multiple 

Boolean values into byte arrays, which reduces the frequency 

of transmissions and lowers overhead. This format allows for 

the transmission of simple Boolean flags and more complex 

data structures. Periodic data publishing was driven by system 

state changes, using QoS 0 to ensure reliable delivery. The 

script also included an event handler to decode incoming 

MQTT messages into their original data types, updating 

system variables accordingly. The WebSocketSharp library 

[35] within the Unity framework provided a robust solution 

for real-time data communication, which is critical for 

maintaining synchronous operations between virtual models 

and physical systems. Unlike Modbus and MQTT settings, we 

configured WebSocket to send individual Boolean values 

encapsulated in JSON objects, which results in more frequent, 

smaller data packets being transmitted. While offering 

flexibility in handling various data types, this approach can 

lead to more varied traffic patterns due to the framing and 

sending of each message separately. WebSocket's ability to 

handle individual requests dynamically is useful in 

applications requiring frequent updates, but it may increase 

network traffic depending on the application's demands. 

2.5. Latency and Resource Management Measurement 

2.5.1. Latency Measurement 

The latency measured was the RTT from when a Boolean 

write command is triggered from the DTP automation model 

and the receipt of the processed response from the Siemens 

PLC emulator, which includes the overall time for 

transmitting a command, processing by the PLC, and 

returning the processed response as response to the triggered 

input. In the interest of precision and consistency, this 

measurement process has been wholly automated with C# 

scripts integrated into the Unity3D environment. High-

resolution timing was captured using the 

system.Diagnostics.Stopwatch class, starting the timer upon 

issuance of a command by the DTP and stopping upon receipt 

of the response. C# scripts enabled RTT logging for each 

protocol, minimizing manual intervention and errors. 

WebSocket commands were sent as JSON-encoded Boolean 

values, MQTT used byte arrays, Modbus relied on its concept 

of register-based interaction, and OPC UA leveraged session-

based read/write operations. Results of RTT for each 

individual protocol for operating the DTP machine following 

the same procedure and PLC sequences were dynamically 

logged into CSV files for subsequent analysis, capturing 

latency under various network conditions, including local and 

AWS-hosted environments. 

2.5.2. Resource Usage Measurement 

To monitor resource utilization (CPU and memory) 

during protocol operations, a custom Python script was used 

to capture real-time performance data for critical processes: 

Unity (digital twin model), PLCSIM (Siemens PLC 

simulator), and Node-RED (communication hub). The script 

tracked resource usage through Process IDs (PIDs) and logged 

data into a CSV file for analysis. This approach enabled 

measurement of overall system performance and individual 

process load across local and cloud Node-RED instances. The 

data captured included: 

• System-wide CPU and memory usage. 

• Per-process resource usage for Unity, PLCSIM, and 

Node-RED. 

• Each attempt's Start and end markers allow for correlation 

with experimental phases. 

3. Results and Discussion 
The experiments were conducted under controlled 

conditions, with each protocol tested 100 times to ensure the 

reliability of the results. The latency data were recorded and 

analyzed using statistical methods to determine each 

protocol's average, median, minimum, maximum, and 

standard deviation of round-trip time.   

This analysis examines the performance of four industrial 

communication protocols—WebSocket/S7, Modbus, MQTT, 

and OPC UA—through their RTT efficiency and resource 

usage within a simulated environment using Unity, PLCSIM, 

and Node-RED applications. The results provide insights into 

the strengths and weaknesses of each protocol, particularly in 

scenarios where minimizing latency and optimizing resource 

consumption are essential. 
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3.1. Round Trip Time Analysis 

The average RTT and distribution for each protocol were 

evaluated, as illustrated in Figure 3. WebSocket with S7 

emerged as the top performer, with an average RTT of 43.8 

milliseconds (ms) in local environments, making it ideal for 

real-time applications that require fast data exchange. 

Modbus, with an average RTT of 70.8 ms, is moderately 

efficient and suitable for scenarios where WebSocket may not 

be applicable. 

When the setup was extended to cloud-based 

environments for simulating remote environments, as shown 

in Figure 4, the performance of these protocols shifted. 

WebSocket/S7 outperformed other protocols, with an average 

RTT of 87 milliseconds. This performance demonstrates 

WebSocket’s ability to handle real-time communication, even 

in remote cloud environments. The increase in RTT from 43.8 

ms in local environments to 87 ms in cloud setups is mainly 

attributable to the network latency time to the AWS servers, 

which averages around 21 milliseconds halfway. 

 
Fig. 3 Round Trip Time Distribution in Local Setup 

 
Fig. 4 Round Trip Time Distribution in Remote Setup 

Given that the ping time from the PLCSIM to AWS was 

also measured at around 21 milliseconds, the RTT increase in 

the cloud setup mirrors the additional network latency, 

suggesting that WebSocket and S7 server nodes efficiently 

handle message transmission without introducing significant 

internal delays. The results indicate that the bulk of the RTT 

increase is due to the natural network latency associated with 

cloud-based communication. WebSocket with S7 still 

transmits data nearly as efficiently as the base ping time. This 

highlights WebSocket’s ability to maintain its real-time 

communication properties even in remote setups, as it incurs 

minimal additional overhead beyond the inherent network 

latency.  

On the other hand, Modbus experiences a significant RTT 

increase, averaging 194 milliseconds in cloud environments, 

nearly three times its local performance. This suggests 

Modbus is more sensitive to network latency and distance 

when communicating with a cloud server using Node-RED. 

One possible explanation for this significant RTT increase is 

the Node-RED Modbus server node, which may introduce 

additional processing overhead and delays. Unlike protocols 

like WebSocket optimized for lightweight, continuous data 

flow, Modbus was initially designed for local networks and 

might not perform as efficiently in cloud-based environments, 

mainly when relying on intermediary systems like Node-RED. 

Its older protocol design and reliance on a polling mechanism 

may not be optimized for high-latency networks, making it 

less suitable for real-time, cloud-based applications. 

MQTT and OPC UA exhibited similar RTTs of 93-94 

milliseconds locally, with MQTT's RTT increasing to around 

133 milliseconds in cloud environments. This 40 ms increase 

is comparable to the increase observed with WebSocket, 

suggesting that the MQTT Node-RED server nodes manage 

network latency effectively. Despite the additional overhead 

introduced by cloud communication, MQTT's performance 

remains stable, indicating its suitability for remote real-time 

applications.  However, OPC UA experiences a more 

considerable RTT increase, rising to 162 milliseconds in cloud 

environments. This higher RTT can be attributed to OPC UA’s 

more complex data encapsulation processes, which likely 

increase its sensitivity to network latency.  

Additionally, Node-RED’s OPC UA server nodes may 

introduce further latency due to their handling of sampling 

intervals and data transmission, particularly in cloud 

environments where network conditions are less stable. These 

factors make OPC UA less efficient for real-time 

communication in Node-Red cloud-based setups than 

protocols like MQTT and WebSocket. The variability in 

RTTs, depicted in Figure 3 and further detailed in the cloud 

comparison (Figure 4), emphasizes WebSocket’s consistency, 

as indicated by its narrower box plot. This suggests that 

WebSocket provides more predictable performance locally 

and over the cloud.  
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Fig. 5 Comparison of average RTT in local and remote setup 

Table 2. Comparative Summary of Communication Protocols in Local and Cloud Setups 

Protocol Average RTT (ms) Median RTT (ms) 
Min RTT 

(ms) 

Max RTT 

(ms) 

Standard  

deviation (ms) 

Significance 

(ANOVA) 
 Local Cloud Local Cloud Local Cloud Local Cloud Local Cloud  

WebSocket 43.8 87.0 47.0 88.0 10.0 30.0 111.0 136.0 16.2 16.0 *** 

MQTT 94.1 133.0 94.5 130.0 36.0 38.0 147.0 256.0 18.0 38.0 *** 

Modbus 70.8 194.0 71.0 194.0 27.0 19.0 106.0 336.0 15.4 42.0 *** 

OPC UA 93.1 162.0 98.0 159.0 7.0 28.0 147.0 290.0 28.6 35.0 *** 

In contrast, the more significant variability in RTTs 

observed with OPC UA, and to a lesser extent with MQTT, 

particularly in cloud environments, indicates that these 

protocols may experience more fluctuations in performance, 

likely due to their sensitivity to network conditions and data 

handling processes. While Figure 5 provides an overview of 

the communication performance of the various protocols in 

local and remote setups, Table 2 summarizes the vital 

statistical metrics, including the mean, median, standard 

deviation, minimum, and maximum round trip times for each 

protocol.  

The table highlights the differences in RTTs between 

local and cloud environments for each protocol. An ANOVA 

test was conducted to assess the statistical significance of the 

differences between the protocols, with the results showing a 

highly significant difference (p < 0.001) across all protocols, 

denoted by three asterisks (***). This significance indicates 

that the differences in RTTs across the protocols and between 

local and cloud environments are not due to random variation 

but reflect meaningful distinctions in protocol performance. 

3.2. CPU Usage Analysis  

The CPU usage captured data across different protocols 

was analyzed, with the results divided by the 12 available CPU 

cores. This accurately assesses the CPU demands per protocol, 

as shown in Figures 6, 7, and 8. The accompanying Table 3 

further details the statistical metrics, including mean, median, 

and standard deviation of CPU usage across protocols, 

providing a more granular understanding of the CPU demands 

associated with each protocol. The data highlights the 

significant differences in CPU requirements, with WebSocket 

being more efficient in some scenarios but still demanding in 

others. Modbus and OPC UA show similar trends, varying 

efficiency depending on the application, while MQTT 

consistently demands more processing power, particularly in 

Unity. 

Figure 6 highlights the average CPU usage and the 

variability across different protocols. MQTT emerges as the 

most CPU-intensive protocol in Unity, with an average usage 

of 4.65%, closely followed by WebSocket at 4.36%. In 

contrast, OPC UA demonstrates the most efficient 

performance in Unity, with the lowest average CPU usage of 

2.06%, making it a strong candidate for CPU-constrained 

environments, followed by Modbus with a moderate usage 

level. In the PLCSIM environment, although the difference in 

CPU consumption between protocols is slight, WebSocket/S7 

(S7 only communicates with PLCSIM) consumes the most 

CPU resources, with an average usage of 2.71%, indicating 

higher resource demands in this specific setting. Modbus and 

OPC UA follow closely, with averages of 2.20% and 2.32%, 
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respectively. Interestingly, MQTT shows lower CPU usage in 

PLCSIM, averaging 1.75%, compared to its higher demands 

in Unity. For Node-RED, WebSocket/S7 is the most efficient 

protocol, requiring the least CPU, with an average usage of 

just 0.09%, making it ideal for lightweight applications. 

Modbus and OPC UA also perform relatively higher in this 

environment, with averages of 0.35% and 0.27%, 

respectively. Although MQTT is also relatively efficient in 

Node-RED, it shows higher variability, suggesting less 

consistent performance. Figure 7 illustrates the trends in CPU 

usage across multiple trials. WebSocket and OPC UA exhibit 

consistent CPU usage patterns, particularly in Unity and 

Node-RED applications, indicating stable performance over 

time. In contrast, Modbus and MQTT display more significant 

variability, with noticeable fluctuations in CPU usage, 

particularly in Unity. This suggests potential inefficiencies or 

inconsistent processing demands for these protocols. Figure 8 

compares the average CPU usage across all protocols, 

reinforcing that WebSocket is highly efficient in Node-RED 

but demands slightly more processing power in Unity and 

PLCSIM. 
 

Fig. 6 CPU usage distribution 

Table 3. Statistical metrics of CPU and memory usage across unity, PLCSIM, and Node-RED 

Protocol Unity_CPU *** PLCSIM_CPU ** NodeRED_CPU *** 
 Mean Median SD Min Max Mean Median SD Min Max Mean Median SD Min Max 

MQTT 4.65 4.73 2.14 1.18 9.56 1.75 1.38 2.68 1.18 9.70 0.18 0.16 0.15 0.03 1.20 

Modbus 2.70 2.39 2.41 1.18 9.70 2.20 1.38 2.55 1.18 9.70 0.35 0.13 0.57 0.03 2.68 

OPC UA 2.06 1.38 1.67 1.18 8.40 2.32 1.38 2.68 1.18 9.70 0.27 0.08 0.44 0.04 1.99 

WebSocket 4.36 4.18 2.02 1.18 9.80 2.71 1.38 3.00 1.18 9.80 0.09 0.00 0.19 0.03 1.16 
 Unity_Memory *** PLCSIM_Memory *** NodeRED_Memory *** 

MQTT 9.37 9.39 0.06 9.21 9.45 1.48 1.52 0.12 1.08 1.52 1.09 1.09 0.01 1.07 1.12 

Modbus 8.51 8.22 0.49 7.91 9.95 0.60 0.11 0.67 0.10 1.51 1.13 1.11 0.05 1.04 1.30 

OPC UA 9.37 9.41 0.15 8.87 9.59 1.46 1.53 0.54 0.23 2.87 1.16 1.16 0.02 1.10 1.18 

WebSocket 8.48 8.51 0.16 8.10 8.86 0.12 0.09 0.19 0.09 1.51 1.05 1.05 0.01 1.04 1.06 

 

 
Fig. 7 Average CPU Usage Trend 

MQTT demonstrates the highest CPU usage in Unity, 

eflecting its processing demands, while OPC UA maintains 

the lowest consumption across environments. Modbus, on the 

other hand, offers balanced performance across all 

applications but exhibits some variability. In summary, 

protocol selection should consider not just average CPU usage 

but also the consistency of performance across different 

environments. WebSocket excels in lightweight scenarios 

such as Node-RED, while OPC UA proves to be more suitable 

for CPU-constrained environments like Unity. Depending on 

the application, MQTT and Modbus show higher variability in 

specific environments, potentially affecting overall system 

stability. 

3.3. Memory Usage Analysis 

Regarding memory usage (Figure 9 and Table 3), 

WebSocket exhibits the lowest and most stable memory 

consumption, making it the most efficient protocol in this 

context. Modbus shows higher and more consistent memory 

usage around 9 MB, reflecting reliable yet greater 

consumption.  
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Fig. 8 Comparison of CPU usage average 

MQTT and OPC UA demonstrate more variable memory 

usage, with OPC UA showing a higher average than MQTT, 

indicating that both protocols have less predictable 

performance. 

In the PLCSIM environment, WebSocket continues to be 

the most memory-efficient protocol, with the lowest average 

memory usage. Modbus and MQTT show moderate and 

consistent memory consumption, making them reliable 

options for applications where predictable resource usage is 

critical. However, OPC UA exhibits higher variability while 

slightly lower in average memory consumption, which could 

lead to occasional memory spikes, making it potentially less 

stable in resource demands. 

 
Fig. 9 Memory usage distribution 

In Node-RED, WebSocket remains the most memory-

efficient protocol, with the lowest and most consistent usage. 

This reinforces its suitability for lightweight and resource-

constrained environments. Modbus and MQTT consume 

slightly more memory but maintain relative consistency, 

ensuring predictable resource usage. However, OPC UA 

exhibits the most variability in memory consumption again, 

suggesting it may introduce unpredictability in such 

applications, which could be problematic for environments 

requiring stable memory performance. 

Figure 10 summarizes the memory consumption patterns 

for all protocols across different environments. WebSocket 

consistently demonstrates the lowest memory usage across all 

applications, highlighting its efficiency in these contexts. 

Modbus exhibits slightly higher memory usage but remains 

relatively consistent, followed by MQTT.  

At the same time, OPC UA shows more significant 

variability, particularly in Node-RED, suggesting potential 

fluctuations in its memory demands. In Unity, all protocols 

consume significantly more memory, ranging from 8.5 to 9.4 

MB, with more minor differences in their performance. 

Overall, the image reinforces WebSocket’s efficiency, 

especially in resource-constrained environments, with 

Modbus and MQTT being reliable options for more 

predictable memory usage. At the same time, OPC UA may 

introduce some unpredictability in memory-heavy scenarios. 

3.4. Correlation between RTT and Resources Usage 

The correlation analysis in Table 4 reveals distinct 

relationships between RRT and resource usage across 

different protocols. PLCSIM shows a strong negative 

correlation (-0.8) with CPU usage, indicating that lower 

latency is related significantly to higher CPU utilization in this 

environment. In contrast, NodeRED exhibits a moderate 

positive correlation (0.5) with CPU usage, suggesting that 

higher CPU loads might increase latency due to overhead.  
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Fig. 10 Comparison of average memory consumption 

Table 4. Correlation between Round Trip Time and Resource Usage 
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CPU 

Unity 55.8 32.3 24.7 52.3 -0.3 

PLCSIM 21 26.4 27.9 32.5 -0.8 

NodeRED 2.2 4.2 3.2 1.1 0.5 

Memory 

Unity 9.4 8.5 9.4 8.5 0.9 

PLCSIM 1.48 0.6 1.46 0.12 1 

NodeRED 1.09 1.13 1.16 1.05 0.7 

RRT (ms)  94.1 70.8 93.1 43.8  

Memory usage consistently shows strong positive 

correlations with round-trip time, particularly in PLCSIM 

(1.0), implying that increased memory demands generally lead 

to longer round-trip times. Overall, protocols like WebSocket, 

which efficiently manage CPU and memory resources, appear 

better suited for low latency scenarios. 

3.5. Bandwidth Analysis 

Wireshark was used to capture and interpret network 

traffic to assess the bandwidth efficiency of WebSocket, 

MQTT, Modbus, and OPC UA protocols. The analysis 

focused on throughput, total data size, and packet distribution 

metrics. Results are shown in Table 5 and in Figures 11 and 

12. WebSocket exhibited the lowest average throughput of 

1159 bytes per second, with a total data transmission of 34 KB 

and a consistent packet size variability of 46%. As   shown in 

Figure 11, this performance is contributed by the following 

advantages of WebSocket's lightweight JSON-based format 

and its friendliness to resource-constrained environments. The 

actual distribution of transmitted bytes (shown in Figure 12) 

also highlights the robustness of WebSocket in fluctuating 

environments. Modbus achieved moderate throughput of 4023 

bytes per second, balancing a total size of 118 KB with 

minimal variability (28%) in packet sizes. Its small 16-bit 

word size resulted in a mean packet size of 3450 bytes and less 

variability than other protocols (see Table 5). 

 
Fig. 11 Bandwidth usage trends across protocols over time 
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Table 5. Comparison of bandwidth usage, throughput, packet size, and variability for WebSocket, MQTT, Modbus, and OPC UA protocols 

Protocol 

Relative 

Bandwidth 

Usage 

Total 

Size 

[KB] 

Throughput 

[Bytes/s] 

Average Packet 

Size [Bytes] 

Min to Max 

Range [Bytes] 

Variability [S.D. 

% of Mean] 

WebSocket Lowest (6%) 34 1159 975 300–1980 46% 

Modbus Moderate (20%) 118 4023 3450 125–4720 28% 

OPC UA High (33%) 215 7333 6780 560–12100 44% 

MQTT Highest (41%) 228 7782 7100 310–9450 38% 

Fig. 12 Packet size distribution across protocols 

This results in Modbus being appropriate for applications 

with small datasets and assured operation. OPC UA 

demonstrated higher throughput, at 7333 bytes per second, 

and bandwidth consumption (215 KB), with a wide range of 

packet sizes and variability at 44%, meaning it is prone to 

network fluctuations. All these capabilities visible in Figures 

11 and 12 demonstrate the potential for demanding 

applications but highlight the need for an a-priori bandwidth-

before optimization for bandwidth-constrained environments. 

MQTT recorded the highest throughput, at 7782 bytes per 

second, with a total bandwidth usage of 228 KB and moderate 

variability (38%). While its high throughput is advantageous 

for large data transfers, it necessitates careful traffic 

management in high-concurrency conditions to maintain 

steady-state performance. These findings highlight the cost of 

compromise between the efficiency of the protocol and 

scalability. The WebSocket is suitable for low-bandwidth 

continuous applications, while Modbus has accommodated 

efficiency and robustness with suitable data volume. MQTT 

and OPC UA have a higher throughput but are demanding 

good strategies for congestion management because of their 

volatility. The results highlight the necessity of adopting 

protocol selection according to individual application needs 

(e.g., network conditions, data volume, latency tolerance). 

3.6. Discussion 

A key observation was that OPC UA and Modbus 

performed exceptionally well in a direct local network setup 

without Node-RED implementation, where the PLC acted as 

both the server and Unity as the client. Both protocols 

achieved low latency in this configuration, with RTT 

averaging less than 5 milliseconds. This demonstrates their 

effectiveness in local environments with minimal overhead 

and direct communication, making them highly suitable for 

time-sensitive industrial applications. However, when Node-

RED was introduced as a server to mediate communication 

between the DTP and the PLC, the latency for both protocols 

increased significantly. OPC UA server node in Node-RED, 

in particular, showed initial round-trip times exceeding 500 

ms on several occasions during the experiments. This 

prompted further investigation, identifying the 

minimumSamplingInterval parameter in the OPC UA server 

node (104-opcuaserver.js) as the root cause. This parameter, 

set at 500 ms, determines how frequently the server samples 

variable values, directly affecting data transmission latency. 

To address this, the library script was modified to adjust 

the minimumSamplingInterval to 50 ms, allowing for more 

frequent updates and significantly improving OPC UA 

communication's responsiveness. After the modification, the 

round-trip time was reduced considerably, bringing it within 

acceptable limits for real-time industrial applications. This 

finding underscores the importance of optimizing and tuning 

protocol parameters to meet the system's specific 

requirements. Flexibility in protocol implementations is 

critical to ensure that latency is minimized without sacrificing 

other performance characteristics, such as resource efficiency 

or data integrity. 

Modbus, while not affected by sampling intervals in the 

same way as OPC UA, also experienced higher latencies when 

using Node-RED compared to the local setup. This increase in 

latency is likely due to the additional overhead introduced by 

Node-RED as a mediator, which processes and routes the 

communication. While Modbus remains reliable and robust, 

further optimization of Node-RED nodes could reduce this 

overhead and bring the performance closer to what was 

observed in the direct PLC-client communication scenario. 

MQTT, on the other hand, showed a different set of 

challenges. When attempting to achieve communication 

latencies below 100 ms, limitations in the native clock 

memory of the Siemens PLC became evident.  

The native clock runs at a maximum frequency of 10 Hz, 

making it challenging to achieve higher publishing and 

subscribing frequencies using typical configurations. A TOD 

(Time of Day) timer and Flip-Flop logic were used to drive 

more frequent updates to overcome this limitation. However, 
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this approach introduced instability in the communication, as 

Siemens PLCs do not natively support MQTT compared to 

other protocol setups. This limitation highlights the inherent 

challenges of integrating MQTT with Siemens hardware, 

especially in real-time applications where stability and timing 

precision are crucial. In summary, the performance of OPC 

UA and Modbus in a direct local setup was exemplary, with 

latencies under 5 ms, making them ideal for applications 

where high-speed, low-latency communication is essential. 

However, significant latency increases were observed when 

Node-RED was used as an intermediary server, particularly 

for OPC UA, which required parameter adjustments to meet 

real-time performance requirements. The study shows the 

importance of optimizing Node-RED server nodes, especially 

for protocols like OPC UA and Modbus, to minimize round-

trip times and achieve better performance in remote 

environments. Additionally, MQTT’s limitations in Siemens 

PLCs due to the native clock constraints suggest that, while 

MQTT is a robust protocol for IoT applications, its integration 

with specific industrial hardware may require advanced 

configurations or alternative approaches to achieve low-

latency, stable communication. Further research should 

explore ways to improve the native support of MQTT on 

Siemens PLCs or investigate more stable alternatives for high-

frequency communication. 

3.7. Optimization Strategies for Cloud-Based Protocols 

Performance optimization in cloud environments is 

critical in communication protocols that can be applied 

effectively in real-time industrial systems. This work 

compared WebSocket, MQTT, Modbus, and OPC UA, 

introducing their respective features while discussing 

optimization strategies toward cloud-based scenarios with 

improved efficiency. These strategies drive practitioners in the 

field toward better implementations. With WebSocket, this is 

achieved by reducing the size of JSON payloads. Combining 

more variables into one transmission reduces overhead and 

increases throughput. Additionally, binary encoding reduces 

the transmission size and processing time compared to plain 

text. Thus, WebSocket is more suitable for applications that 

demand faster real-time updates. 

MQTT provides a balance between reliability and 

efficiency. QoS can optimize its performance by tuning. 

Quality of Service 0 reduces latency and preserves resources 

for non-critical data, while Quality of Service 1 or 2 helps 

ensure the delivery of critical information. Retained messages 

during network interruptions enable data continuity, while 

lightweight topic hierarchies optimize bandwidth usage. 

While Modbus is considered a straightforward and resource-

efficient industrial protocol, reducing duplicate searches 

through efficient register mapping can be further optimized. 

Modbus collects more data points into a single request by 

decreasing polling frequency, which lowers network use and, 

in turn, the server load. Although less scalable for extensive 

systems, it works well in contexts with limited resources. 

Dynamic adjustment of the sampling interval according 

to current network conditions will improve performance in an 

OPC UA deployment. Subscriptions instead of polling reduce 

unnecessary data exchanges, thus optimizing resources. 

Instead of transmitting data in XML, binary encoding 

significantly increases speeds and reduces payload sizes, 

making OPC UA suitable for handling structured data across 

large-scale industrial installations. In cloud integration, with 

Node-RED servers hosted on AWS, mainly using region-

specific EC2 instances, latency is reduced since the distance 

between devices and the cloud is minimized.  

Another optimization mechanism is the consideration of 

elastic scaling for dynamic allocation of AWS resources based 

on network demand, mainly when high traffic is generated by 

the interaction of multiple users simultaneously with the 

Node-Red server. Meanwhile, it reaches system sustainability 

by automatically scaling up instances to sustain throughput in 

case of service degradation. Scaling down in low demand 

keeps resources conserved and reduces operational expenses.  

AWS features such as Elastic Load Balancing (ELB) and 

auto-recovery options enhance fault tolerance and ensure 

continuous availability of services, even in the event of 

hardware or software failures. Additionally, leveraging 

AWS’s edge services like CloudFront or local zones can bring 

processing closer to the point of data generation, reducing 

latency further and enhancing real-time responsiveness. 

3.8. Scalability, Challenges, and Limitations 

3.8.1. Scalability of Protocols 

In industrial systems with several digital twins, 

communication protocols must be scalable. With an 

increasing number of digital twins, the protocols face more 

stringent demands from latency to resource usage.  

While WebSocket is well suited for providing low-

latency communication, it may experience performance 

bottlenecks as the number of connections increases. Solution 

strategies like payload aggregation and message batching may 

alleviate those issues; keeping many connections open will 

require system resources. 

MQTT shows good scalability because of the broker-

based architecture, which eases communication management 

even in multi-digital twin setups. However, high publishing 

rates and subscriptions demand more resources from the 

broker, affecting latency and reliability. Modbus's 

synchronous request-response model is less scalable and 

probably better suited for smaller-scale implementations. OPC 

UA is inherently scalable due to its structured way of handling 

data; however, a lot of overhead is introduced in large-scale 

setups. Satisfying performance in integrating many devices 

with high-frequency updates can only be achieved through 

dynamic optimization of the sampling intervals and server 

resources. 
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3.8.2. Challenges in Cloud-Based Deployments 

These latency and scalability issues become prominent in 

a cloud environment while deploying these protocols.  Latency 

increases because of the physical distance between devices 

and the cloud servers, network congestion, and routing 

overhead. Workloads running as region-specific EC2 

instances can reduce latency, as it would be closer to the client 

populations; however, cross-region data transfers and cloud-

to-on-premises communication can exacerbate delay. Elastic 

scaling ensures dynamic resource allocation to handle variable 

loads but incurs additional costs, especially in traffic surges. 

In industrial-scale cloud deployments, cost is a significant 

concern. While this study has used the free-tier EC2 instances 

of AWS for testing, scaling up industrial systems to handle 

greater loads and multiple digital twins would incur heavy 

expenses in terms of higher-performance cases, data transfers, 

and storage. The costs can be contained by using reserved 

instances for long deployments, planning for reduced data 

transfer volumes, and using edge computing services like 

AWS CloudFront. The use of AWS services, such as Elastic 

Load Balancer (ELB) and auto-recovery mechanisms, could 

improve reliability by working to ensure continuity during 

failures or peak usage. However, relying on these services 

requires critical planning to avoid extra costs while ensuring 

system performance in real-time applications. 

3.8.3. Study Limitations 

Although this study has achieved optimal round-trip 

times closely matching actual machine processes, several 

fundamental limitations should be noted. All experiments 

were conducted in a strictly controlled environment using only 

Boolean variables; in this way, it was not extended to other 

variable types and sizes. That limits the potential applicability 

of the results to real industrial scenarios where the 

communication involves more diverse and heterogeneous data 

types. Another limitation not considered in this work is 

multiuser scenarios or an integration of multiple digital twins 

in parallel. The scalability of the protocols under such 

conditions remains untested; therefore, further research is 

necessary to judge their performance under high-concurrency 

user environments with heavy data loads. Thirdly, the scope 

of the study was constrained to specific protocols, signalling 

that its findings might not hold for other configurations or 

protocols of communication. More research in this direction, 

with a broader range of protocols and different scenarios, is 

thus justified. Finally, the hardware and network settings of 

this study, while representative of a testbed environment, can 

considerably diverge from those of industrial deployments, 

and therefore, the results may not be entirely reproducible. 

Moreover, the study has focused mainly on performance-

related aspects, such as latency and resource consumption, and 

ignored other important factors, such as security or operation 

costs. Future research efforts should broaden their scope to 

include these aspects so that more generalized inferences 

about the application of protocols in industrial systems can be 

drawn. 

4. Conclusion 
This study adopted the Node-RED servers, which are 

widely applied tools, to realize the communication between 

the digital twin and PLCs. Node-RED has greatly simplified 

communication because it dispels static IP addresses, VPN 

applications, or port forwarding. Its nodes provide remote and 

distributed environment integration with easy deployment 

without complicated network configurations. The applications 

in industry and research abound with this approach, hence 

providing much-needed flexibility and scalability for handling 

different communication protocols. Four protocols—

WebSocket/S7, MQTT, Modbus, and OPC UA—are 

compared to each other in terms of their pros and cons in the 

context of real-time integration of digital twins in industrial 

automation. WebSocket achieved the best latency 

performance by keeping low round-trip times (RTT) in local 

and cloud environments. However, WebSocket does not 

directly connect to the PLC but acts as a proxy, forwarding 

messages to remote destinations where the S7 nodes 

communicate with the Siemens S7 PLCs. As seen through the 

functionality, this mediating role underscores the value of 

WebSocket for real-time, time-dependent applications even 

though it is not an industry-standard industrial protocol. 

MQTT provided a reasonably good performance, 

particularly in the necessity of a trade-off between latency and 

reliability. Its lightweight design makes it easy to adapt to 

complicated network environments, positioning it as a strong 

candidate for resource-limited remote applications. Being 

robust and straightforward, Modbus showed the highest 

latency, especially in cloud-based setups. Its low price and 

robustness make it appropriate for narrow networks or 

nonsensitive tasks, yet it hinders its real-time use. Despite 

higher latency, OPC UA presents more advanced data 

modeling capabilities, which, though not the primary concern 

of this study, are very advantageous in highly complex 

industrial applications. Real-world applications demonstrate 

the practical relevance of these protocols.  

For instance, WebSocket's short latency is well-suited for 

real-time QC and monitoring of conveyor belts; scalability 

and reliability of MQTT are well-suited for predictive 

maintenance and remote control of devices. Modbus remains 

the de facto standard for legacy systems in water and power 

treatment areas. Still, for smart factories and across an array 

of vendors for industrial plants, the layered data management 

and interoperability of OPC UA is a significant advantage. 

However, the research has certain limitations. The controlled 

experimental setup ensured uniform network conditions, 

which may not accurately reflect the variations in real 

industrial scenarios. In addition, the paper did not include any 

aspect of security, which, for industrial applications, is of 

particular importance. While some protocols, like OPC UA, 

include robust security features, the analysis focused solely on 

latency and resource efficiency. Furthermore, the contribution 

did not consider the multiuser scalability, which must be taken 
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into account to properly assess and compare the performance 

weaknesses of a protocol in a multiuser environment. 

Additionally, the performance of Node-RED server nodes in 

protocol management in dynamic network conditions could be 

enhanced. The increase in the processing efficiency of the 

nodes and the decrease in latency can be considered. Long-

term studies could also provide insights into the protocol's 

stability and reliability based on the progressive operation. 

Additionally, understanding the role of emerging 

technologies, 5G, and edge computing on the increased delay 

in real-time communication between the digital twins may 

yield some disruptive change. For example, the ultra-low 

latencies and high bandwidths of 5G networks can support 

high-throughput lossless data transmission in resource-

constrained applications, and edge computing can make local 

processing possible by reducing the need to rely on cloud 

systems and shortening the response time to a regional system. 

Adding in artificial intelligence and machine learning to 

optimize protocol parameters in a continuously adaptive 

manner in response to real-time, dynamic network topology is 

another promising direction along the lines of increasing 

scalability and enhancing efficiency.  

The communication protocol should be chosen based on 

the application's needs and the aspects of latency, security (if 

available), and the operative environment. Although 

WebSocket is the most suitable means for real-time 

applications in remote scenarios, its use as a relay for PLC 

activation rather than direct PLC communication should not 

be overlooked. MQTT and OPC UA offer reliability and 

scalability, whereas Modbus continues to be part of the 

solution for legacy systems with local network requirements. 

It is essential to optimize Node-RED server nodes to better 

support protocol integration and scalability in real-time 

industrial systems. 
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