
International Journal of Engineering Trends and Technology Volume 72 Issue 9, 405-413, September 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I9P137 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Validation of Speed Limit Sign Recognition System in

Virtual Environments: A Simulation-Based Approach

Sangjoong Kim1,2, Dongha Shim2*

1SCS, SIEMENS, Korea.
2Department of MSDE, Seoul National University of Science and Technology, Korea.

*Corresponding Author: dongha@seoultech.ac.kr

 Received: 13 May 2024 Revised: 08 August 2024 Accepted: 26 August 2024 Published: 28 September 2024

Abstract - This paper presents a comprehensive approach to validate a speed limit sign recognition system, which is one of the

Advanced Driving Assistance Systems in the virtual environment. Its necessity and advantages are emphasized for enhancing

automotive safety and efficiency. The recognition of speed limit signs is highlighted as crucial to improving the functionality of

driver assistance systems and the development of autonomous vehicles. However, the testing of these recognition systems using

actual vehicles can be identified as entailing latent risks in addition to being time-consuming and financially demanding. To

address these challenges, a simulation-based validation method is proposed, eliminating the hazards and reducing both the time

and financial costs associated with real-world testing. Most of the research has used simulation techniques to test or enhance

the performance of the algorithm that comprises the system, but usually neglecting the reliability of the simulation-based

validation themselves. This paper focuses on validating the system in simulation and the reliability of the virtual environments

through experiments. Finally, the effectiveness of simulation-based validation is elicited. The recognition system used in this

paper is based on the You Only Look Once (YOLO) algorithm, renowned for object detection tasks. A diverse set of virtual data

to mimic a wide range of real-world scenarios has been used to test the system. This paper presents a detailed comparison

between the outcomes derived from tests conducted with real data and those obtained from virtual environment simulations. The

results suggest that simulation-based validation can be a possible method for assessing speed limit sign recognition systems,

with performance closely matching that in real-world conditions.

Keywords - Advanced Driving Assistance System (ADAS), Speed Limit Sign Recognition (SLSR), Object detection, You Only

Look Once (YOLO), Digital twin.

1. Introduction

1.1. Speed Limit Sign Recognition

The advent of autonomous driving technologies and

Advanced Driver Assistance Systems (ADAS) has

necessitated the accurate recognition of road signs,

particularly speed limits, to ensure the safety and legality of

vehicle operations. [1] Speed Limit Sign Recognition (SLSR)

is one of the crucial functions within ADAS and autonomous

vehicles, enabling vehicles to detect and respond to speed

limits accurately. By relying on the system, the vehicle can

prevent speeding violations and reduce the risk of traffic

accidents. However, SLSR performance can be challenged by

factors such as driving environment, visibilities, and weather

conditions.

For example, a road can have varying regulated speeds in

each certain section, and visibility can be affected by complex

sign placements. Because of the ability to accurately recognize

the speed limit signs in real driving conditions for autonomous

vehicles, the validation of the system is also necessary.

1.2. Challenges and Limitations of Simulation-Based

Validation

With the increasing complexity of ADAS and

autonomous driving systems, traditional validation methods

involving real-world vehicle testing face significant

challenges, including safety risks, high costs, and extensive

time requirements. [2] It means exploring alternative

validation approaches that can mitigate these issues while

ensuring comprehensive system evaluation. Simulation-based

validation emerges as a promising solution, offering the

potential to assess the performance of speed limit sign

recognition systems safely, efficiently, and cost-effectively.

[3] This approach allows for the creation of controlled virtual

environments that can simulate a vast array of driving

scenarios which are impractical, dangerous, or impossible to

replicate in the real world. [4] Despite the widespread use of

simulation techniques for algorithm performance testing and

enhancement within such systems, the reliability and validity

of these simulation-based approaches themselves often remain

unexamined. In other words, while simulations are frequently

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sangjoong Kim & Dongha Shim / IJETT, 72(9), 405-413, 2024

406

employed to assess how well an algorithm might perform

under various conditions, there is often insufficient study on

whether these simulations accurately reflect real-world

scenarios.

This lack of validation causes concerns about the extent

to which results obtained from simulations can be trusted or

generalized to real-world applications. Without thorough

examination and validation of the simulation environments

themselves, there remains a risk that the performance metrics

derived from these simulations might not fully capture the true

capabilities or limitations of the algorithms in practical

settings.

This paper will explain the workflow for evaluating the

SLSR system based on simulation, from the data collection

stage to the learning and evaluation stages. In addition, it aims

to bridge this gap by not only validating a speed limit sign

recognition system within a simulated environment but also

evaluating the fidelity and reliability of the simulation

framework itself. By leveraging the You Only Look Once

(YOLO) algorithm [5], known for its efficacy in object

detection tasks, this paper conducts a series of experiments

using diverse virtual data designed to reflect real-world

driving conditions.

A comparative analysis between results obtained from

real-world data and those generated within virtual simulations

is presented, underscoring the potential of simulation-based

validation as an effective method for system assessment. The

findings aim to demonstrate that simulation-based approaches

can closely mirror real-world performance, thereby validating

their utility in the development and testing of autonomous

vehicle technologies.

2. Simulation-Based Validation Methodology
For training on custom data, a process shown in Figure 1

is required. The first step of training YOLO with custom data

is to prepare a dataset with labeled images, including bounding

boxes and class information. [6] The dataset is exported to the

code editor, such as Google Colab, Jupyter Notebook, etc.

Creating Yet Another Markup Language (YAML)

configuration file detailing paths to the training and validation

datasets and class names to train the YOLO algorithm tailored

to the custom data. [7] Next, the environment required for

YOLO, including Python and the necessary libraries, is set up.

Then, the training process (Train model step) will be initiated

using the prepared data and YAML file. Finally, the trained

model's performance is evaluated and tested with a separate

dataset to assess its effectiveness (Prediction step). The

detailed steps and guidance are presented hereafter.

2.1. Data Preparation

The data preparation process for YOLO involves

collecting images of objects to be recognized by the model.

Each image must be annotated with bounding boxes around

the objects and labels indicating the class of each object. This

typically involves using an annotation tool to manually draw

boxes and assign labels. The dataset should be diverse,

covering various angles, lighting conditions, and backgrounds

to improve the model's accuracy and robustness. This prepared

dataset is then split into training, validation, and test sets for

the model to learn and validate its predictions.

Fig. 1 YOLO custom data training workflow

Data preparation

Custom Data

Image Data Labelling Data

- Bounding box

- Class information

Dataset importing

 Language (Code) Editor

YAML

- Image and Labelling data directory

- Object class information

Prediction

- Predict test data

Train Model

- Train the pre-trained YOLO for custom data

- Install YOLO v8

Sangjoong Kim & Dongha Shim / IJETT, 72(9), 405-413, 2024

407

Fig. 2 Speed limit sign dataset images

Table 1. Augmentations of dataset

Techniques Details

Crop Minimum Zoom, 20% Maximum Zoom

Rotation Between -15° and +15°

Shear ±15° Horizontal, ±15° Vertical

Saturation Between -25% and +25%

Brightness Between -25% and +25%

Blur Up to 5.5px

Noise Up to 5% of pixels

Cutout 1 box with 20% size each

In this paper, the training dataset came from RoboFlow.

[8] RoboFlow is a platform designed to help developers,

researchers, and companies streamline and enhance their

computer vision projects. It provides tools and infrastructure

to prepare, annotate, manage, and deploy datasets for machine

learning, especially focusing on image recognition tasks.

The training, validation, and test sets have 7419, 510, and

475 images, respectively. Each dataset has 10 classes (20, 30,

40, 50, 60, 70, 80, 90, 100, 120) which means velocity on the

speed limit signs. [9] Figure 2 shows some samples of the

dataset images.

Table 1 describes various data augmentation techniques

for image processing, which can enhance the diversity and

robustness of a dataset used for training machine learning

models, particularly in computer vision tasks. [10] Techniques

such as zooming, rotation, shear, adjustments to saturation and

brightness, adding blur and noise, and applying cutout

augmentations help models generalize better by simulating a

wide range of real-world conditions and variations in the input

data.

Fig. 3 A sample image of the dataset (60km/h)

Table 2. Bounding box information
Label x y Width Height

Value 60 80.06 72.81 108.32 120.50

All the image data are annotated to have information on

the bounding box, including label, x, y, width, and height.

Figure 3 indicates one of the dataset images, and the orange

box represents the bounding box. The information in Table 2

describes an object bounded by a box within the image in

Figure 3. They are typically used in machine learning for

object detection tasks. "Label" identifies the object, "x" and

"y" represent the coordinates of the object's center, while

"width" and "height" denote the dimensions of the bounding

box surrounding the object. This format helps models like

YOLO understand where objects are located in an image and

what they represent.

2.2. Custom Data Training by YOLO

YOLO algorithms are designed to divide the image into a

grid and predict bounding boxes and class probabilities for

each grid cell simultaneously. [5] This approach contrasts with

traditional methods that typically scan the image multiple

times to detect objects. Before the advent of YOLO, the Faster

R-CNN (Regions with Convolutional Neural Networks

features) architecture was widely used, but its maximum

performance of 7 FPS lacked real-time capabilities, making it

impractical. However, the emergence of YOLO in 2015, with

its average performance of 45 FPS, marked a revolutionary

development in the field of object detection. [5] The YOLO

framework has evolved through various iterations, each

improving upon the last in terms of detection accuracy, speed,

and model complexity. YOLO v8, which is the latest version,

is applied to detect the speed limit sign in this paper. Figures

4 and 5 compare different versions of the YOLO object

detection models. [11] Figure 4 shows the trade-off between

the number of parameters in millions (M) and performance

measured by COCO mAP50_95, which indicates the ‘mean

Average Precision’ from 50% to 95% IoU (Intersection over

Sangjoong Kim & Dongha Shim / IJETT, 72(9), 405-413, 2024

408

Union) thresholds on the validation set. Figure 5 is another

plot that depicts the relationship between latency on a

combination of hardware and software specifications used for

measuring the performance of machine learning models such

as A100 TensorRT FP16 and the same performance metric. In

both plots, YOLO v8 appears to achieve higher performance

with fewer parameters and lower latency compared to its

predecessors, indicating improvements in both efficiency and

speed of detection. YOLO v8 is a state-of-the-art that has been

trained on the COCO (Common Objects in Context) dataset,

among others. The COCO dataset provided by Microsoft is a

large-scale object detection, segmentation, and captioning

dataset that includes hundreds of object categories and

millions of images. [12] The training of YOLO on the COCO

dataset involves feeding the neural network a large number of

images with corresponding labels that identify and localize

various objects in the images. Each object in an image is

enclosed by bounding boxes with a class label assigned to it,

indicating what the object is. Finally, YOLO learns to predict

these bounding boxes and class labels directly from full

images in a single pass.

Fig. 4 YOLO v8 performance by the number of parameters [11]

Fig. 5 YOLO v8 performance by latency [11]

Fig. 6 Custom data training network with YAML

Creating a YAML configuration file for YOLO involves

specifying paths to training and validation datasets, listing

class names, and possibly adjusting other settings like model

architecture or hyperparameters. This file serves as a guide for

the YOLO training process, ensuring the model knows where

to find data and how to interpret it. The YAML format is

chosen for its readability and simplicity, making it easy to edit

and understand. [7] Eventually, the custom data training

network is shown in Figure 6 because the pre-trained

algorithms, which mean the Neural network and the custom

data corresponding to the speed limit sign from RoboFlow,

will be used for object detection. In other words, the YAML

file has a role in delivering the customer data to the learning

algorithm. Following the creation of the YAML configuration

file and the setup for custom data training with YOLO, the

model was implemented and trained using Google Colab. [13]

Google Colab offers a cloud-based environment that provides

free access to GPUs and TPUs, which significantly accelerates

the training process for deep learning models like YOLO. This

platform was chosen for its ease of use, accessibility, and

ability to handle large datasets effectively without the need for

local computational resources.

2.3. Trained Model Prediction Performance

Evaluating the performance of a YOLO algorithm for

detecting speed limit signs with a Precision-Recall (PR) curve

is important for several reasons:

• Balancing Precision and Recall: PR curves illustrate the

trade-off between precision (how many selected items are

relevant) and recall (how many relevant items are

selected). Because both are critical for speed limit sign

detection, high precision is required to avoid

misidentifying non-speed limit signs as speed limits and

high recall is required to ensure all speed limit signs are

detected. [14]

• Performance at Various Thresholds: The PR curve shows

how the model's performance varies at different threshold

settings for classifying an object as a speed limit sign.

This helps in selecting an optimal threshold that balances

false positives and false negatives according to the

specific requirements of the application. [14]

Sangjoong Kim & Dongha Shim / IJETT, 72(9), 405-413, 2024

409

• Model's Ability in Different Conditions: In images, speed

limit signs may appear in various conditions and angles.

The PR curve can give insights into how well the model

generalizes across these different conditions. [15]

• Quantitative Analysis: The Area Under the Curve (AUC)

of the PR curve provides a single number to quantify the

model's performance, which can be a useful summary

statistic when comparing or reporting performance. [16]

In summary, PR curves provide a comprehensive picture

of a model's predictive performance and are an essential tool

in the evaluation and optimization process for models

intended. Figure 7 indicates a PR curve graph with 30 epochs.

In the graph, each colored line means the different classes, the

speed limits for which the system has been trained to

recognize. Each point on the PR curve represents a different

threshold of classification probability. A model with perfect

classification would have a curve that goes to the top-right

corner of the plot, meaning it achieves 100% precision and

100% recall. The legend on the right indicates the Average

Precision (AP) score for each speed limit class, with "all

classes" showing the mean Average Precision (mAP) across

all the speed classes at an IoU threshold of 0.5. (The IoU

threshold is a measure of overlap between the predicted

bounding box and the ground truth, with 0.5 typically

indicating a 50% overlap requirement for a positive

prediction.) AP implies the shape of the PR curve, and mAP

is the mean of APs across all classes or thresholds, providing

a single number to represent the overall performance of the

model on the detection task. In this case, most of the AP values

are very high (above or near 0.95), and the mAP of 0.969 at

an IoU threshold of 0.5 is quite high, indicating that the model

performs well across all speed limit classes being evaluated.

Fig. 7 Precision-Recall curve

Figure 8 shows two for training loss (train/box_loss and

train/cls_loss) and two for validation loss (val/box_loss and

val/cls_loss), respectively. These graphs plot the loss over the

number of epochs (each epoch representing one full cycle

through the training dataset). Box Loss (Figures 8 (a) and (b)):

These graphs represent the model's performance in predicting

the correct bounding boxes around the objects (localization

loss). The training box loss shows a smooth downward trend,

indicating that the model is progressively getting better at

locating objects during training. The validation box loss

fluctuates more, which can be typical if the validation data

presents more varied examples or more challenging cases than

the training data [17]. Classification Loss (Figures 8 (c) and

(d)): These graphs depict the loss associated with the

classification accuracy of the objects within the bounding

boxes. A steady decline in the training and validation

classification loss indicates that the model is improving its

ability to classify objects correctly. [18] The solid blue lines

represent actual loss values measured at each epoch, while the

dotted orange lines show a smoothed trend line, helping to

visualize the overall trend amidst the variability from epoch to

epoch. Overall, the trained model has highly accurate

performance because both training and validation loss

decrease over time, converging to a low value.

Fig. 8 Training and validation loss: box loss according to (a)Training set

and (b)Validation set, class loss according to (c)Training set and

(d)Validation set

Sangjoong Kim & Dongha Shim / IJETT, 72(9), 405-413, 2024

410

Fig. 9 Virtual data test procedure (a) Real-world & camera (b) Virtual

world & camera

3. Virtual Environments Test
Previously, the performance of the YOLO algorithm for

speed sign recognition through several indicators has been

assessed. The following section will delineate the validation

of image data generated within a virtual environment, utilizing

an algorithm that the real data have trained. The feasibility of

the virtual environment data replacing real-world data will be

treated according to the validation results. Figure 9 (a) shows

a speed limit sign in the real world, representing a frame from

the real dataset taken by a real camera. On the contrary, Figure

9 (b) describes a virtual environment rendering of a road with

speed signs to mimic the real one taken by a virtual camera.

3.1. Virtual Test Data Creation

Simcenter Prescan was used to create the virtual

environment for the object detection testing. Simcenter

Prescan is a platform known for facilitating the development

and validation of Advanced Driver Assistance Systems

(ADAS) and autonomous vehicles in a virtual environment.

[19] The software enables the replication of real-world traffic

scenarios, sensor modeling, and the orchestration of various

parameters to create complex and dynamic scenes for testing

purposes. The virtual camera's position, height, orientation,

and Field of View (FoV) can also be adjusted to replicate

different perspectives and distances from the objects of

interest, like speed limit signs.

Fig. 10 Virtual data test creation

Table 3. Virtual environment features

Feature Value

Weather condition Normal

Camera

Specification

FoV
46deg Azimuth

35deg Elevation

Far clipping

distance
300m

Resolution 1280 × 960 pixel

A virtual camera was installed in a vehicle to take images,

as shown in Figure 10. The weather conditions and the

specifications of the virtual camera are included in Table 3.

The vehicle drives along the straight road with constant speed

(36km/h) for 20 seconds. Because the frame rate of the camera

is 20Hz, a total of 400 images can be collected. Each speed

limit sign is spaced at consistent intervals (as noted by the

"10m" marker), allowing the detection system to be assessed

on its ability to identify and differentiate between multiple

targets at known distances. Since the vehicle is installed, the

camera is driving the diverse images of different sizes of signs

in a frame, as shown in Figure 11. In addition, reproducing

effects such as dust, scratch, and snow are needed to acquire a

diverse set of virtual test data. The following effects have

means respectively: Dust Effect: Replicating dust involves

creating semi-transparent overlays that mimic the appearance

of dust on the camera lens or the signs themselves. This can

be achieved by adjusting texture properties or by applying

particle systems in the virtual environment. Scratch Effect:

Scratches can be simulated by adding linear distortions or

irregularities to the sign surfaces, which could represent

physical wear or damage to the signs or lens imperfections.

These can be rendered directly onto the textures of the objects

or lens effects on the camera. Snow Effect: To simulate snow,

white, semi-opaque particles or layers can be added to the

scene. These would not only cover parts of the signs but also

float in the air, reducing visibility to replicate the effect of

falling or accumulated snow.

Fig. 11 Samples of the virtual data

Sangjoong Kim & Dongha Shim / IJETT, 72(9), 405-413, 2024

411

3.2. Virtual Test Data Prediction

The trained model, based on the real data, predicts the

speed limit signs in the virtual data. Consequently, verifying

the algorithm's performance necessitates a manual inspection

of the output images. Table 4 summarizes the results of the

prediction using virtual test data. There are approximately 70

objects per class in a dataset of 400 images, and the trained

YOLO algorithm only correctly identifies ('Detection'

includes classification) about 10 of those in each class. A

significant number of signs are missing ('No detection'), and

some objects are incorrectly identified ('Wrong detection'). As

a result, deformation effects such as dust, scratches, and snow

did not appear to have any influence. As a consequence, it is

easy to overlook that it may be a problem with the detection

algorithm itself or with the training method that caused this

result. On the other hand, APs of detection cases are around

0.8, and mAP is 0.837, even if the number of well-detected

cases is very small. It is necessary to focus on having a high

mAP value. According to the image data yielding high AP

scores, a notable commonality was discerned. The objects

within these images occupied a relatively larger proportion of

the image area. This trend aligns with the characteristics

observed in the real data used for the training set, where

objects of a larger scale were also prevalent.

3.3. Virtual Test Data Modification

While smaller objects are present in the virtual test data,

their reduced size might be contributing to the lower detection

rate, yet without significantly impacting the precision metric

when detections do occur. The initial test data can be

described as ‘unformatted data’, which pertains to virtual

images that have not been subjected to any specific formatting

or consideration of the training data's image specifications.

When the proportion of object size in an image is defined as

(a×b)/(x×y)×100%, like in Figure 12, the average of the

proportion of training(real) data is 21%, and the smallest one

is 3%. On the contrary, the average test(virtual) data is 1.3%,

and the smallest one is 0.6%. Namely, the objects in virtual

data are ridiculously small compared to real data.

Fig. 12 Proportion of object size to total image frame size

Table 4. Prediction results of virtual test data

Class

Number

of

objects

Detection
No

detection

Wrong

detection

Avg.

Precision of

detection case

0 68 8 46 14 0.83

1 66 8 48 10 0.85

2 66 7 43 16 0.79

3 72 9 47 16 0.82

4 74 8 54 12 0.89

5 66 10 46 10 0.92

6 74 9 53 12 0.72

7 73 12 47 14 0.82

8 70 9 50 11 0.89

9 68 10 49 9 0.84

Total 697 90 483 124 mAP: 0.837

Figures 13 and 14 show the detection results according to

the proportion of object size to total image frame size. In

practice, once the proportion is smaller than 1%, the objects

are missing. When the proportion is equal to 1%, an object is

incorrectly identified, even if localization is successful. In

contrast, if the proportion reaches 2%, the localization and

classification are successful, but the precision is very low, 0.54.

When the proportion is larger than 2.8% (Green star in Figure

11), not only does the localization and classification of objects

become remarkably accurate, but the precision metric also

escalates to exceed a value of 0.9. In short, the data suggest

that there is a proportional size threshold below which the

detection reliability deteriorates rapidly. Therefore, the

unformatted data needs to be modified to ‘formatted data’ with

consideration of the training data's image format, including the

size and aspect ratios of objects.

Fig. 13 Precision results according to the proportion

Proportion (%)

P
recisio

n

0.6 0.8 1 2 2.8 3.6

0.54

0.90

0.96

0.69

No

detectio
n

Wrong

detection
detection

★

Image frame size= x×y

x

y

Object size= a×b

a

b

Proportion = (a×b) / (x×y) ×100%

Sangjoong Kim & Dongha Shim / IJETT, 72(9), 405-413, 2024

412

Fig. 14 Virtual images with the object size proportion of (a)0.6%,

(b)0.8%, (c)1%, (d)2%, (e)2.8%, (f)3.6%

3.4. Formatted Virtual Test Data Prediction

After collecting 400 images (unformatted images were

also 400) with an average proportion of 25% and the smallest

one of 2%, the prediction was executed once again. Table 5

presents the results of the predictions.

Table 5. Prediction results of formatted virtual test data

Class

Number

of

objects

Detection
No

detection

Wrong

detection

Avg.

Precision

of

detection

case

1 25 25 0 0 0.94

2 22 22 0 0 0.81

3 23 23 0 0 0.82

4 24 24 0 0 0.82

5 26 26 0 0 0.91

6 22 22 0 0 0.93

7 27 27 0 0 0.82

8 23 23 0 0 0.85

9 22 22 0 0 0.92

10 24 24 0 0 0.91

Total 238 238 0 0 mAP: 0.873

With the formatted data, the detection rate improved from

previous tests due to increased object sizes, which should have

made it easier for the YOLO algorithm to detect and classify

the objects correctly. The precision and accuracy of the

prediction are also increased compared to the unformatted test

data. The results provide a clear contrast in how object size

proportion affects the algorithm’s ability to accurately detect

and classify objects. The average proportion is 25%, higher in

the previously used unformatted dataset. The results are likely

to show a notable improvement in detection metrics.

4. Conclusion
This paper explored the validation of a speed limit sign

recognition system using virtual environments, highlighting

the effectiveness of the YOLO algorithm in detecting and

classifying speed limit signs under simulated conditions. To

bridge the real data and virtual data, the iterative process of

testing and refining the dataset for the system model was

executed. Moreover, a method of comparing results according

to the size and condition of the objects was carried out to

analyze statically the model’s performance. The study

revealed a crucial correlation between the size of objects

within image frames and the algorithm's detection

performance. In datasets where object proportions were larger,

the YOLO algorithm not only achieved higher detection rates

but also demonstrated impressive precision. It means that a

formatted dataset was constructed by adjusting the proportion

of the object's size relative to the original image. However,

this research underscores the necessity of conducting a

thorough analysis of the training datasets used in each study

before generating a virtual test set. The virtual test set closely

needs to mimic the characteristics of the training dataset,

including aspects such as the position of objects within the

images, variations in lighting, and the presence of

deformations. This approach ensures that the virtual

environment accurately replicates the conditions under which

the algorithm was trained, thereby providing a more reliable

and relevant evaluation of its performance.

4.1. Discussion and Future Work

Despite its insights, the study encounters several

limitations: Limited Diversity in Object Sizes: The initial

virtual test data predominantly featured smaller object sizes,

which adversely affected the detection performance. Although

adjustments were made, the initial results may have skewed

perceptions of the algorithm's overall efficiency. Dependence

on Virtual Data: The reliance on simulated data, while

beneficial for controlling experimental variables, may not

fully encapsulate the complexities encountered in real-world

scenarios. Real-time YOLO Evaluation: The results from

these predictions were not obtained from real-time object

detection using a camera in a virtual environment. Therefore,

they do not facilitate real-time validation. These limitations

suggest that while the findings are indicative of the algorithm's

potential performance under controlled conditions, they may

not fully capture its efficacy in a live operational setting where

Sangjoong Kim & Dongha Shim / IJETT, 72(9), 405-413, 2024

413

dynamic changes and real-time processing are crucial. To

overcome these limitations, additional studies will be

conducted. More advanced and diverse techniques could be

developed for generating virtual data that more closely mimics

real-world variations in object sizes and environmental

conditions. Integrating more extensive real-world testing

could validate the findings from virtual data and help refine

the simulation models. Finally, future studies should aim to

incorporate real-time testing to more accurately assess the

practical applicability of the detection system in real-world

scenarios.

By addressing these points, subsequent research can

enhance the robustness of detection systems and further

solidify the role of virtual testing environments in the

development and validation of autonomous driving

technologies.

Acknowledgment
This study was supported by the Research Program

funded by Seoultech (Seoul National University of Science

and Technology).

References
[1] Jakkree Srinonchat, "Efficient Detection of Speed Limit Signs within Obscure Environment," IET 3rd International Conference on Wireless,

Mobile and Multimedia Networks (ICWMNN 2010), Beijing, pp. 311-314, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[2] Yogesh Valeja et al., "Traffic Sign Detection Using Clara and Yolo in Python," 2021 7th International Conference on Advanced Computing

and Communication Systems, Coimbatore, India, pp. 367-371, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[3] Christian Birchler et al., "Cost-Effective Simulation-Based Test Selection in Self-Driving Cars Software with SDC-Scissor," 2022 IEEE

International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, pp. 164-168, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[4] Yue Kang, Hang Yin, and Christian Berger, "Test Your Self-Driving Algorithm: An Overview of Publicly Available Driving Datasets and

Virtual Testing Environments," IEEE Transactions on Intelligent Vehicles, vol. 4, no. 2, pp. 171-185, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[5] Joseph Redmon, and Ali Farhadi, “YOLO9000: Better, Faster, Stronger,” 2017 IEEE Conference on Computer Vision and Pattern

Recognition, Honolulu, HI, USA, pp. 6517-6525, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[6] Tafreed Ahmed et al., "The YOLOv8 Edge: Harnessing Custom Datasets for Superior Real-Time Detection," 2023 18th International

Conference on Emerging Technologies, Peshawar, Pakistan, pp. 38-43, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Saurabh Pujar et al., "Invited: Automated Code Generation for Information Technology Tasks in YAML through Large Language Models,"

2023 60th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, pp. 1-4, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[8] Everything you need to build and deploy computer vision models, Roboflow. [Online]. Available: https://roboflow.com
[9] Yang, Speed Limit Detection Computer Vision Project, Roboflow. [Online]. Available: https://universe.roboflow.com/yang-ygcec/speed-

limit-detection

[10] Kanjar De, and Marius Pedersen, “Impact of Colour on Robustness of Deep Neural Networks,” 2021 IEEE/CVF International Conference

on Computer Vision Workshops, Montreal, BC, Canada, pp. 21-30, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[11] Performance Metrics Deep Dive, Ultralytics. [Online]. Available: https://docs.ultralytics.com/guides/yolo-performance-metrics/

[12] Tsung-Yi Lin et al., “Microsoft Coco: Common Objects in Context,” Computer Vision–ECCV 2014: 13th European Conference, Zurich,

Switzerland, pp. 740-755, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[13] Ekaba Bisong, Google Colaboratory, Building Machine Learning and Deep Learning Models on Google Cloud Platform, Apress, Berkeley,

CA, pp. 59-64, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[14] Jesse Jon Davis, and Mark Harlan Goadrich, “The Relationship between Precision-Recall and ROC Curves,” Proceedings of the 23rd

International Conference on Machine Learning, Pittsburgh Pennsylvania USA, pp. 233-240, 2006. [CrossRef] [Google Scholar] [Publisher

Link]

[15] Stéphan Clémençon, and Nicolas Vayatis, “Nonparametric Estimation of the Precision-Recall Curve,” Proceedings of the 26th Annual

International Conference on Machine Learning, Montreal Quebec Canada, pp. 185-192, 2009. [CrossRef] [Google Scholar] [Publisher

Link]

[16] Kendrick Boyd, Kevin H. Eng, and C. David Page, “Area under the Precision-Recall Curve: Point Estimates and Confidence Intervals,”

Machine Learning and Knowledge Discovery in Databases: European Conference, Prague, pp. 451-466, 2013. [CrossRef] [Google Scholar]

[Publisher Link]

[17] Jiahui Yu et al., “UnitBox: An Advanced Object Detection Network,” Proceedings of the 24th ACM International Conference on Multimedia,

Amsterdam The Netherlands, pp. 516-520, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[18] Yue Wu et al., “Rethinking Classification and Localization for Object Detection,” 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, Seattle, WA, USA, pp. 10186-10195, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[19] Siemens Digital Industries Software, Siemens. [Online]. Available: https://www.sw.siemens.com/en-US/

https://doi.org/10.1049/cp.2010.0678
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+detection+of+speed+limit+signs+within+obscure+environment&btnG=
https://ieeexplore.ieee.org/abstract/document/5703016
https://doi.org/10.1109/ICACCS51430.2021.9442065
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Traffic+Sign+Detection+using+Clara+and+Yolo+in+Python&btnG=
https://ieeexplore.ieee.org/abstract/document/9442065
https://doi.org/10.1109/SANER53432.2022.00030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cost-effective+Simulation-based+Test+Selection+in+Self-driving+Cars+Software+with+SDC-Scissor&btnG=
https://ieeexplore.ieee.org/abstract/document/9825849
https://doi.org/10.1109/TIV.2018.2886678
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Test+Your+Self-Driving+Algorithm%3A+An+Overview+of+Publicly+Available+Driving+Datasets+and+Virtual+Testing+Environments&btnG=
https://ieeexplore.ieee.org/abstract/document/8667012
https://doi.org/10.1109/CVPR.2017.690
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Redmon%2C+J.%2C+%26+Farhadi%2C+A.+YOLO9000%3A+Better%2C+faster%2C+stronger.&btnG=
https://ieeexplore.ieee.org/document/8100173
https://doi.org/10.1109/ICET59753.2023.10374650
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+YOLOv8+Edge%3A+Harnessing+Custom+Datasets+for+Superior+Real-Time+Detection&btnG=
https://ieeexplore.ieee.org/abstract/document/10374650
https://doi.org/10.1109/DAC56929.2023.10247987
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Invited%3A+Automated+Code+generation+for+Information+Technology+Tasks+in+YAML+through+Large+Language+Models&btnG=
https://ieeexplore.ieee.org/abstract/document/10247987
https://ieeexplore.ieee.org/abstract/document/10247987
https://universe.roboflow.com/yang-ygcec/speed-limit-detection
https://universe.roboflow.com/yang-ygcec/speed-limit-detection
https://doi.org/10.1109/ICCVW54120.2021.00009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Impact+of+colour+on+robustness+of+deep+neural+networks&btnG=
https://ieeexplore.ieee.org/document/9607588
https://docs.ultralytics.com/guides/yolo-performance-metrics/
https://doi.org/10.1007/978-3-319-10602-1_48
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Microsoft+coco%3A+Common+objects+in+context&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-1-4842-4470-8_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ekaba+Bisong%2C+Google+Colaboratory&btnG=
https://link.springer.com/chapter/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1145/1143844.1143874
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+relationship+between+Precision-Recall+and+ROC+curves&btnG=
https://dl.acm.org/doi/abs/10.1145/1143844.1143874
https://dl.acm.org/doi/abs/10.1145/1143844.1143874
https://doi.org/10.1145/1553374.1553398
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nonparametric+estimation+of+the+precision-recall+curve&btnG=
https://dl.acm.org/doi/abs/10.1145/1553374.1553398
https://dl.acm.org/doi/abs/10.1145/1553374.1553398
https://doi.org/10.1007/978-3-642-40994-3_29
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Area+under+the+precision-recall+curve%3A+point+estimates+and+confidence+intervals&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-40994-3_29
https://doi.org/10.1145/2964284.2967274
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unitbox%3A+An+advanced+object+detection+network&btnG=
https://dl.acm.org/doi/abs/10.1145/2964284.2967274
https://doi.org/10.1109/CVPR42600.2020.01020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rethinking+classification+and+localization+for+object+detection&btnG=
https://ieeexplore.ieee.org/document/9157777

