
International Journal of Engineering Trends and Technology Volume 72 Issue 9, 33-48, September 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I9P103 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Preliminary Analysis of HDFS Read Operation, Threats

Impacts and Mitigation

Imane LEBDAOUI1, Ghizlane ORHANOU2

1,2Laboratory of Mathematics, Computing and Applications Information Security (LabMiA-SI), Faculty of Sciences,

Mohammed V University in Rabat, Rabat, Morocco.

1Corresponding Author : imane.lebdaoui@gmail.com

Received: 25 April 2024 Revised: 11 July 2024 Accepted: 12 August 2024 Published: 28 September 2024

Abstract - The Hadoop Distributed File System (HDFS) is widely used to store and enable access to, read, and write large

volumes of data and files. However, HDFS, like Hadoop, remains vulnerable to numerous security threats that make it a target

for malicious activities, leading to the loss and manipulation of data and files in an illegal manner. To this end, this research

aims to reconsider the preservation of security throughout the operation of reading files from HDFS, focusing on preserving the

security of the assets and flows involved. Using a systematic security analysis of the elements mentioned above, this article

addresses the existing security issues, discusses the security requirements to be met to enable better file reading from HDFS,

and analyzes the impact of various threats on the associated assets. Through the analysis of three main attack use cases, the

threats are identified and classified into six threat families. For each family of threats, mitigation measures are proposed to

reduce the impact of the threats and enable better reading operations from HDFS.

Keywords - HDFS Read operation, Hadoop security, Threat analysis, Mitigation, DataNodes.

1. Introduction
HDFS serves as the storage layer for Hadoop and plays a

crucial role in the Hadoop ecosystem, providing foundational

support for other Hadoop applications and external systems or

users. It is designed to store large files that are frequently

accessed by users or systems. In HDFS, reading operations are

more common than writing, as files are typically written once

but read many times by multiple systems or users.

Consequently, this paper focuses on the process of reading

files and data from HDFS. The primary goal of a big data

storage system like HDFS is to return accurate data in a timely

manner while ensuring its credibility, quality, and timeliness.

In HDFS, large files and data are divided into multiple blocks,

which are replicated across various nodes [6]. This

fragmentation ensures data availability even if one or more

servers fail. However, ensuring other aspects of security is

essential to maintain the quality and credibility of the files and

data. The Hadoop framework and HDFS lack sufficient

security measures to fully protect stored files against various

threats [1, 2, 5, 7]. These security gaps can affect the ability to

read and access files stored in HDFS effectively.

Therefore, a thorough security analysis is essential

for identifying and addressing vulnerabilities and

weaknesses associated with HDFS read operations. This

analysis provides a comprehensive foundation for

minimizing and mitigating potential security risks.

1.1. Motivations

This paper specifically analyzes the read operation

in HDFS, including its ecosystem and involved

components. By examining the interactions between

these components during the read operation, the paper

identifies the primary threats and discusses the key

security use cases. Following a logical sequence, the

analysis begins by defining the assets involved and

presenting the associated Data Flow Diagram (DFD). It

then provides an in-depth examination of the HDFS read

operation. The analysis continues with a discussion of

existing security issues, highlighting their implications

for the assets involved in the read operation. The

ultimate goal is to propose effective mitigation actions.

1.2. Contributions

Our contributions are as follows:

Detailed Analysis of HDFS Read Operations: We

provide a comprehensive description of the crucial

operation of reading files from HDFS, which stores large

volumes of data that are accessed continuously and

intensively. Given the limited coverage of this topic in

existing literature, we address this gap by detailing the

processes and actors involved, identifying various entry

points, and describing the data exchange flows and

communication channels. Security Requirements and

Issues: We examine the security requirements for all

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

34

components and assets involved in HDFS read

operations. This includes addressing security concerns

related to data and data storage, network exchanges, and

system processes. The paper also analyzes the threats

and security issues that could influence the operation of

reading files from HDFS and discusses relevant security

use cases.

1.3. Outline

The paper is structured as follows:

Section 2: Provides technical background on HDFS

components, including their roles, structures, and

interactions.

Section 3: Offers an overview of HDFS read

operation mechanisms, detailing the steps involved, data

flows, and communications between components.

Section 4: Presents an architectural design of the

HDFS read operation through a Data Flow Diagram

(DFD), tracing data, requests, and exchanges. It also

defines four asset families, maps security requirements

for each, and reviews related works on HDFS security.

Section 5: Analyzes three critical use cases selected

based on the previous sections. Each use case is detailed

through attack scenarios and affected assets, followed by

proposed measures to mitigate the associated threats.

Section 6: Concludes with a summary of results and

future perspectives.

2. Technical Background
2.1. HDFS Structure and Operation

HDFS (Hadoop Distributed File System) is a

distributed file system for storing very large files,

operating on clusters of standard hardware [5]. It is

designed for low-cost, scalable hardware, extremely

simple to expand, and highly tolerant of defects.

 HDFS follows Write Once Read Many modes,

where the data is written on the server once and read and

reused numerous times after that [8]. Read operation

corresponds to downloading files from the distributed

file system [6]. HDFS operates in data replication mode

in which multiple blocks of data are replicated and

distributed across nodes in a cluster. This replication

ensures the high availability of data in case of a node

failure. Several features make HDFS particularly useful

and robust, including:

2.1.1. Data Replication

In HDFS, DataBlocks are typically replicated across

many nodes. The number of replicas, known as the

replication factor, is reconfigurable. Replication ensures

that data is always available and prevents data loss.

Thus, the data is always accessible even in case of a

DataNode crash or a data block damage. Replication implies

fault tolerance and reliability of the data in HFDS and ensures

their high availability.

Fig. 1 Hadoop ecosystem layers [4]

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

35

2.1.2. Scalability

Since HDFS stores data on various nodes in the

cluster, “A cluster can expand to hundreds of nodes as

demand grows.

2.1.3. High Throughput

The storage of the data in a distributed manner

enables their processing in parallel on a cluster of nodes.

Throughput is consequently improved.

2.1.4. Data Locality

With HDFS, computation takes place directly on the

DataNodes where the data is stored, eliminating the

need to transfer data to the computational units. In fact,

HDFS offers interfaces that allow applications to

position themselves closer to the data. [9]. This approach

decreases network congestion and boosts a system’s

throughput.

2.1.5. Portability

HDFS is designed for easy portability across

different platforms [9], facilitating its adoption as the

preferred choice for a wide range of applications.

2.1.6. Cluster Rebalancing

The HDFS architecture supports data rebalancing

schemes that automatically move data between

DataNodes when the free space on a DataNode falls

below a certain threshold [9].

2.2. HDFS Components Role

HDFS operates using master-slave or master-worker

topology [10], where the master machine runs a daemon called

NameNode (NN), and the enslaved people or workers’

machines run DataNodes (DN). Three components constitute

HDFS: HDFS Client, NameNode and DataNodes.

2.2.1. HDFS Client

In Hadoop, Client refers to the interface used to

communicate with the Hadoop Filesystem. Many types

of Clients are available in Hadoop to perform different

tasks. These Clients can be invoked using their respective

CLI (Command Line Interface) commands from a node

where Hadoop is installed and has the necessary

configurations and libraries required to connect to a

Hadoop Filesystem. On the other hand, the HDFS Client (or

Hadoop Client) is an intermediate component between the

HDFS and the user, and it interacts, on the user’s behalf, with

NameNode and DataNodes to fulfill user requests. It is

responsible for chunking a file in blocks of 128 MB (in

Hadoop 2) that it saves in HDFS. In addition, It supports the

processes of reading, writing and deleting files [11].

2.2.2. NameNode

The NameNode (NN) is the core of HDFS and is

considered the HDFS central controller [11]. It tracks

where, across the cluster, the file data resides, and it

maintains the hierarchical file tree structure and the

metadata for all files and directories in the system [5]. It

also stores “File to Block(s) mapping” MetaData.

However, it does not store the data contained in these files

locally [11, 12] but stores them in the Hadoop

FileSystem. It does not store either block location

(“Block to Datanode(s) mapping” MetaData)

persistently, and it is possible to reconstruct this

information from the DataNodes once the system starts.

This type of MetaData is then stored in memory for the

read and write operations. Two types of files,

‘FileSystem Image’ and the ‘edit logs’, are used to store

MetaData information. More details about these two

types of files, their content and their use will be given

in subsection 3.1 [13]. The NameNode constitutes the

arbitrator and repository for all HDFS MetaData (stored in

disk or memory), which is used for file read and write

operations. It never calls DataNodes directly, but instead, it

delivers commands in response to DataNodes heartbeats.

These commands include [5]:

• Distribute blocks to other nodes

• Remove local block replicas

• Re-register the node or shut it down

• Immediately submit a block report.

The NameNode can handle thousands of heartbeats per

second without disrupting its other operations.

2.2.3. DataNode

DataNodes are the worker nodes in HDFS,

responsible for storing and retrieving blocks as directed

by Clients or the NameNode. They periodically report

to the NameNode with lists of the blocks they are storing

[5, 14]. Each data block in DataNode has two parts

stored in separate files: data itself and its MetaData

(checksums for the data block and its generation stamp).

Each DataNode submits a block report to the

NameNode that includes the block ID, generation

stamp, and length for each block replica it hosts. The

initial report is sent immediately upon DataNode

registration, and subsequent reports are sent every hour

to provide the NameNode with an updated view of block

replica locations within the cluster. DataNodes also handle

block creation, deletion, and replication based on instructions

from the NameNode.

2.2.4. HDFS Access and Components Interaction

There are generally three ways to access the HDFS

filesystem [6, 9]:

• FileSystem Shell (FSS) is used through the CLI of

the “built-in” client, which is provided together with the

Hadoop distribution. FSS is implemented in the HDFS

program, situated in the Hadoop/bin directory. To read a

file filexx.txt, a user types bin/Hadoop dfs-cat

/mydir/filexx.txt.

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

36

• The HTTP REST API interface provided by Web-

HDFS will be easier than the native interface. The web

API allows external applications to interact with the

HDFS and read/write files. However, the HTTP interface

is slower than the native Java client, especially for large

data transmission.

• By DFS Admin, which is used to perform

administration commands.

Furthermore, The NameNode and DataNode are software

components designed to operate on commodity hardware [5,

9, 15]. The DataNode talks to the NameNode using the

DataNode Protocol, as illustrated in Figure 2. It periodically

sends a Heartbeat message to the NameNode (the default

heartbeat interval is three (3) seconds). It marks DataNodes

that have not sent a heartbeat within 10 minutes as dead and

ceases to forward new I/O requests to them [9].

HDFS communication protocols are layered on top of the

TCP/IP protocol stack [9]:

A client connects to a configurable TCP port on the

NameNode and uses the Client Protocol, as defined in

ClientProtocol.java [15]. The DataNode communicates with

the NameNode using the DataNode Protocol. A Remote

Procedure Call (RPC) abstraction wraps both the Client

Protocol and the DataNode Protocol. A Client communicates

with a DataNode directly to transfer (send/receive) data using

the DataTransferProtocol, defined in

DataTransferProtocol.java.

 For performance purposes, this protocol is not RPC; it is

based on a streaming protocol. HDFS forms the storage layer

and basis of Hadoop. This article also zoomed in on the

components of HFDS and showed how they interact with each

other. These interactions enable data access, data reading, data

writing, data replication, and data storage.

In the following sections, this article focuses on the read

operations that continuously occur in HDFS and examines the

various information flows associated with these operations.

The objective is to identify threats that may impact the smooth

functioning of data reading from HDFS.

3. Read Mechanism in HDFS
Each operation on a file or in a directory passes the full

path name to the NameNode, and the permissions checks are

applied along the path for each operation [9]. In HDFS, files

are divided into blocks of configurable size, with each block

stored as an independent unit.

The default block size in HDFS 2 is 128 MB, This size

can also be reconfigured to become higher or lower according

to requirements. The NameNode knows which DataNode

contains which blocks thanks to “Block to DataNode(s)

mapping” MetaData stored in memory and also where the

DataNodes reside within the machine cluster [8, 13].The

following section is focused on the HDFS read operation, the

data and data stores used, and the interactions between

different components involved in the process.

Fig. 2 Communication protocoles involved in HDFS read operation

Data Node Protocol/RPC

Data Transfer Protocol/ Streaming Protocol

Data Node 1 Data Node 2 Data Node 3 Data Node n

HDFS Client

Name Node

 - File System API

 -Normal I/O operations

Client Protocol/RPC

User

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

37

Fig. 3 HDFS MetaData categories and role

3.1. Role of HDFS MetaData for Reading

HDFS MetaData contains (Figure 3):

• The structure of HDFS directories and files in a tree.

• The relation between file and block.

• the relationship between block and DataNode

It also encompasses various attributes of directories and

files, including ownership, permissions, quotas, and

replication factors [16]. The NameNode constructs and

maintains the latest metadata from block reports sent by

DataNodes, providing an up-to-date view of block locations

within the cluster [17]. In HDFS, everything is an object,

whether file, block, or directory and it is represented by

approximately 150 bytes per object in the NameNode

MetaData. The entire MetaData is loaded into the memory of

the NameNode for its operation. Thus, the memory of the

NameNode is a limiting factor in the size of the cluster [18].

Mainly, there are two kinds of NameNode MetaData

(Figure 3):

File System MetaData: It contains all the information

about files (permissions for each file, timestamp, size,

replication factor, and data blocks of that file). File system

MetaData is of two categories:

FsImage: The FsImage is stored as a file in the

NameNode’s local file system. It contains the entire file

system namespace, including the mapping of blocks to files

and file system properties. The FsImage represents a snapshot

of the file system that the NameNode uses upon startup,

including the very first start. This snapshot is updated

periodically to reflect changes in the file system. The FsImage

always persists to disk, ensuring that data is not lost even if the

NameNode shuts down.

Journal: or edit Logs continuously record every change

that occurs to the file system, such as writing, deleting,

updating, permission changing, or other types of transactions,

and store them in an edit log that keeps on growing (edits

inprogress file). When edits in the progress file reach a certain

amount of transactions, or after a certain period of time, it will

be renamed as an edit file. All the generated edit files will be

merged with the existing FsImage to create the new FsImage

either after NameNode rebooting or during checkpoints. A

checkpoint can be triggered at a given time interval or after a

given number of filesystem transactions have accumulated

[13, 19].

In-memory MetaData: At the NameNode start, it reads

the FsImage from the disk and loads it to memory. After that,

all the transactions performed by the NameNode are added

simultaneously to the FsImage in memory and to the

edits_inprogress file in the disk. After a checkpoint, the

content of In-memory FsImage will be equal to FsImage

updated by all the edits files and the current edits inprogress

file [13, 19], as illustrated in Figure 4.

NameNode loads MetaData in “in-memory” in order to

serve the multiple Client requests as fast as possible. The

secondary NameNode periodically does a checkpoint to

update the FSImage so that the NameNode recovery is faster.

3.2. Description of a File Reading Process in HDFS

To read a file located in HDFS, the HDFS Client, on

behalf of the user, communicates with the NameNode and the

DataNodes. Users do not have direct access to the DataNodes

where the actual data is stored according to its privileges;

NameNode responds by returning a list of relevant DataNodes

where the data resides [12] Read operations as write

operations in HDFS occur at a block level. The DataNodes

Mapping metadata

HDFS METADATA

Directory tree structure

Blocks to data Nodes

mapping metadata

File to blocks

mapping metadata

Re-constructed/constructed in

memory at the time of name

node start- up/restart

Stored in fsimage files

for permanent storage

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

38

maintain continuous communication with the NameNode to

determine if they need to complete specific tasks. This ensures

that the NameNode is always aware of the status of the

DataNodes. When a DataNode appears not to accomplish its

tasks properly, the NameNode assigns them to another

DataNode containing the same data blocks. User establishes

communication with HDFS through File System API and

normal I/O operations. Therefore, processing of user request

and providing response over it is carried out by File System

API processes.

The scheme in Figure 5 presents the different steps

followed by a user to read a file located in HDFS.

The following subsections detail:

• The security issues related to HDFS read operation

• The HDFS Client interaction with the NameNode.

• HDFS Client interaction with the DataNodes.

3.2.1. HDFS Client Interaction with NameNode

Step 1: The user establishes communication with the

HDFS Client and asks to read a file.

Step 2: The HDFS client initiates the opening of the file

the user wishes to read by calling the open() method of the

FileSystem object, which is an instance of the

DistributedFileSystem (DFS). This triggers a read request to

access the desired file.

Step 3: By using Remote Procedure Calls (RPC), the

FileSystem object connects to the NameNode processes to

determine the locations of the first few blocks of the file.

Step 4: The NameNode checks first if the user has

sufficient privileges to get the file. If not, the user’s read

request is aborted.

Step 5: When the user has sufficient privileges,

NameNode processes get MetaData information such as the

locations where the replica is made, the number of DataNodes,

the number of data blocks and their location from the In-

memory FSimage.

Step 6: After gathering the necessary MetaData

information and in response to the received MetaData request,

the NameNode returns back the flow of MetaData that

includes the addresses of the DataNodes having a copy of the

file blocks. Moreover, the list of DataN odes is sorted based

on their proximity to the Client [12]. NameNode responds with

a read.

3.2.2. HDFS Client interaction with DataNodes

If the Client is itself a DataNode, the Client will read from

the local DataNode in case this later hosts a copy of the block

[14].

Step 7: In the HDFS Client machine, The

DistributedFileSystem returns an FSDataInputStream to the

client process for reading data. The client then uses the

FSDataInputStream object to identify the data blocks on the

DataNodes. FSDataInputStream, in turn, wraps a

DFSInputStream, which manages the interactions with

DataNodes and NameNode and stores the DataNodes

addresses for the first few blocks in the file.

Step 8: The client invokes the read() method, causing the

DFSInputStream to establish a connection with the first

DataNode containing the initial block of the file. The client

presents the block access token provided by the NameNode to

the DataNode. Upon receiving the request, the DataNode

verifies the authentication information of the requested block

[20]. Thus, a TokenAuthenticator is created using the received

block access token ID and the already shared secret key. The

created and received TokenAuthenticators are then compared.

If they are the same, authentication is completed [21], and then

the Client starts reading data from the DataNode.

Steps 9 and 10: Data is read in the form of streams

wherein the Client invokes the ‘read()’ method repeatedly.

This process of read() operation continues till it reaches the

end of blocks. The data flows directly to the Client, who reads

the data block from multiple slaves in a parallel manner. If the

DFSInputStream encounters an error while communicating

with a DataNode during reading, it will attempt to connect to

another available DataNode that stores the same block.

Additionally, the DFSInputStream keeps track of

DataNodes that have failed to avoid retrying them

unnecessarily for subsequent blocks. It also verifies

checksums for the data transferred from the DataNode. If any

corrupt blocks are detected, the DFSInputStream reports this

issue to the NameNode, which then takes appropriate action to

read a replica of the block from another DataNode [12, 14].

The DataNode may be lost down due to network errors,

hardware failure, or block corruption. Fortunately, HDFS

maintains the availability of data through further copies of the

blocks thanks to replication. DFSInputStream may also call

the NameNode to retrieve the DataNode location for the next

batch of blocks as needed.

Step 11: Once the end of a block is reached, the

DFSInputStream closes the connection with the current

DataNode and proceeds to locate the next DataNode to access

the subsequent block.

Step 12: Once a Client has finished reading, it calls a close

() method on FSDataInputStream. The Client reads the data in

a parallel way since the replica of the same data is available on

the cluster. Once all the data is read, all the blocks are

combined to form the original file.

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

39

Fig. 4 NameNode metadata structure and evolution

MetaData (HDFS)

FSImage n

Persistent

 In memory

representation of

FSImage n

In-memory

FSImage n

Persistent

Edits_In_progress 1

 In memory

representation of

FSImage n

In-memory

After a

transaction

FSImage n

Persistent

 In memory

representation of

FSImage n

In-memory

After many

transactions

Edits_In_progress 2

Edits

 Edits

FSImage n

Persistent

Edits_In_progress 2

Edits

Edits

Persistent
 In memory

representation of

FSImage n+1

In-memory

Check

point

Name Node

restart

FSImage n

Apply new metaData

Apply new

metaData

Apply new metaData

Apply new

metaData

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

40

Fig. 5 Description of Read operation in HDFS

Fig. 6 Data flow diagram of HDFS Read Operation

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

41

4. HDFS Read Process Security Analysis
Although the Hadoop community supports several

security features, such as Kerberos authentication, firewalls,

data encryption, basic HDFS permissions, and Access Control

Lists (ACLs), security is still not fully comprehensive. These

measures have limitations that may enable attacks on assets

stored in a data store in one of the components involved or

along the network connecting the communicating parties. This

section begins with an analysis of the architectural design of

the HDFS read operation through a Data Flow Diagram

(DFD). This step allows a clear definition of the boundaries

and attack vectors. A second step identified the principal

assets of the HDFS read operation and their associated

security requirements.

4.1. Determination of Security Scope

The present subsection proposes a Data Flow Diagram

(DFD) that will be the basis of the HDFS read process security

use cases study. A Data Flow Diagram (DFD) provides a

graphical representation of the data flow within an information

system. It helps in understanding processes and applications

by illustrating how data moves through the system. The DFD

includes both internal elements (such as processes and data

stores) and external elements (such as external entities), all

connected through communication channels that depict the

flow of data.

These elements include ‘Processes’, ‘Data Stores’, ‘Data

Flows’, and ‘External entities’, and work reasonably well as a

means of eliciting information that can be used to drive

analysis [22]. In this way, a DFD creates the opportunity to

identify where (important) data is coming from and how it is

processed and stored, enabling easier identification of security

risks, vulnerabilities, and threats. Problems tend to follow the

data flow [23]. Generally, such problems tend to cluster

around trust boundaries that delineate the attack surface [23].

Figure 6 illustrates the Data Flow Diagram of the current study

and shows the interaction between different processes and

stores:

Processes include File System API processes, NameNode

process, and DataNode processes; Stores include NameNode

store, MetaData sores, DataNode stores, Data blocks stores,

and In memory FSImage store;

External entities may be external users or an external

program that wants to read files from HDFS. We have

identified, as shown in Figure 6, nine flows:

Flow 1: Between the external user and the HDFS Client

is a request to read a file from HDFS.

Flow 2: Between the File System API Processes that

belong to the HDFS Client and the NameNode Process: This

flow is about asking the NameNode process for the file

opening;

Flow 3: This flow occurs inside the NameNode and

checks the user’s ability to read the requested file. It can be

one of two subflows:

Sub-Flow 3-1: The NameNode judges that the user

does not have sufficient privileges to read the file, then it

terminates the read request without any result;

Sub-Flow 3-2: The NameNode judges that the user

has the necessary privileges to read the file and contacts

the MetaData Store to return back the necessary

MetaData;

Flow 4: MetaData of the datablocks that constitute the

requested file is extracted from the FSImage and then sent to

HDFS Client. The MetaData includes the addresses and the

locations of the data blocks;

Flow 5: According to the received data blocks, the HDFS

Client processes contacts the nearest DataNode that contains

the first data block;

Flow 6: The DataNode Process gets the requested data

Block;

Flow 7: The DataNode Process sends the Data Block to

the File system API Processes that belong to the HDFS Client;

Flow 8: The HDFS Client closes the connection with the

DataNode and moves on to the next DataNodes that contain

the following data blocks.

Flow 9: When the HDFS Client receives all the data

blocks that constitute the requested file, it returns this later to

the user.

4.2. HDFS Read Process Security Requirements

Assets include data, data stores, permissions and

privileges, functions, applications, and network exchanges.

The assets involved in the information flow should be defined,

and their security requirements evaluated based on their

importance in the process.

The security requirements include confidentiality

(sensitive data should not be accessible to attackers or

unauthorized persons), integrity (attackers should not modify

process operations or data stores), availability (data should

remain accessible even under attack), and authorization (an

actor must have the necessary permissions and privileges to

access an asset, such as reading a file stored in a DataNode).

For this study this study classifies assets of the HDFS read

process into three categories; many security issues and

requirements may concern one category:

• Data, MetaData, key, token and stores

• Network exchanges and flows

• System processes.

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

42

4.2.1. Data, MetaData, Key, Token and Stores Security Issues

Data and data stores are the most valuable assets that

attract attackers’ attention. These latter could target the

confidentiality, integrity and availability of data either stored

permanently in data stores, like DataNodes or temporarily, in

the memory, such as In-memory MetaData, available in the

NameNode memory during its operation. Indeed, in-memory

MetaData contains the blocks mapping between the files

existing in HDFS and the file system properties.

In addition, MetaData is updated with new information

after every transaction done by the NameNode. Thus, the

availability of these MetaData for the HDFS Client process is

vital to accomplish a file reading. Data Blocks are small units

of data located in DataNodes and constitute the data storage in

HDFS together. They must be available and accessible only to

authorized users or processes. They also need to be protected

against alteration by unauthorized users or processes. Initially,

the Hadoop system permits access to a datablock located in a

DataNode with no control [20].

The idea of a block access token was introduced with

Hadoop 1.0.0 to confirm access authorization to the data

block. Since it is used as the authentication mechanism, it must

be protected against confidentiality and integrity attacks and

must be held by authorized entities. On the other hand, each

actor who wants to access HDFS for reading purposes must

authenticate. The system then applies authorization rules

according to the access control rules already defined. The

HDFS implements a permission model for files that shares

much of the POSIX model [22]. There are generally three

permissions for a file: READ, WRITE, and EXECUTE. To

read a file in HDFS, the” R” permission is required [22].

Keeping file permissions, ownership, and user privilege

preserved implies that confidentiality and integrity must be

totally assured and that unauthorized actors or processes

should not alter permissions.

4.2.2. Network Exchanges Security Issues

Network and flow security issues encompass threats that

impede the normal flow of communications and data through

the network. These threats mainly affect confidentiality and

integrity and are generally related to man-in-the-middle

attacks. As shown in Figure 6, through the network, a user

remotely requires reading a file from HDFS, and the request

lands into the HDFS Client. The HDFS Client remotely

communicates with the NameNode to get the MetaData of the

Data blocks that constitute the requested file to be read. There

are also remote communications between the NameNode and

the DataNodes through heartbeats, as well as between the

DataNodes and the HDFS Client. All these network exchanges

are mainly concerned with confidentiality and integrity issues.

• MetaData in Transit: The confidentiality and the integrity of

the MetaData that flow between the NameNode and the

HDFS Client must be secured against disclosure or

alteration by unauthorized actors.

• Data blocks in transit: When flowing one by one from

DataNodes to the HDFS Client, their contents will

constitute the final file that is requested. Thus, the

confidentiality and integrity of each data block in transit

must be preserved.

• Block access token in transit: The block access token serves

as the client’s authenticator to the DataNode. When flowing

from the NameNode to the HDFS Client or from this later

to a DataNode, the block access token must be secured

against divulgation or alteration. Taking control of a block

access token or altering the related token authenticators

might prevent the reception of the requested datablock and

thus prevent the file from being read or at least delay its

reading.

• File in transit: When the whole requested file is constituted

from the necessary data blocks, the HDFS Client sends it to

the end user. Thus, the resulting file from the whole read

operation has to be protected against divulgation or

alteration by unauthorized attackers and its confidentiality

and integrity must be preserved.

• Secret key in transit: The secret key is a very sensitive

credential in the HDFS read operation and must be secured

when transferred from the NameNode to the DataNode at

each update.

It is frequently updated between the NameNode and a

DataNode and permits the creation and encryption of the block

access token [20]. Intercepting the transferred secret key

implies that data blocks residing in the DataNode are exposed

to attacks.

4.2.3. System Processes Security Issues

Security issues related to the system processes rather

concern the availability of a process for the tasks it is attended

to and also its ability to perform the tasks that are essential to

read a file from HDFS.

The essential tasks that could be subject to attacks include

the ability of the NameNode processes to check the user

privileges and its eligibility to read the requested file, and also

their ability to correctly retrieve the necessary MetaData from

In-memory FSImage and to sort them according to proximity

between DataNode and the Client. Concerning the DataNode

processes, their availability is crucial to properly processing

the request for the dataBlock. Thus, an erroneous DataBlock

or no DataBlock returned to the HDFS Client caused by a

denial-of-service attack, which could delay the duration of the

read operation. The HDFS Client processes seem to be the

busiest processes in the operation of reading the file from

HDFS. The related security issues include hindering them

from submitting the opening file request to the NameNode or

preventing them from reconstituting the final file and

verifying its integrity through the checksum. The HFDS client

processes handle multi-read requests and could be subject to

attacks that reduce this ability by preventing them from

satisfying multiple read requests.

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

43

4.3. Existing Security Solutions

Initially, the Hadoop framework was developed without

integrating security aspects [1, 24]. Then, there were many

attempts to add security to this environment. Indeed, the

proposed existing security solutions were generally built upon

encryption methods [1, 24, 25, 26] to preserve the integrity

and confidentiality [24, 25] of HDFS files. However, most

encryption techniques result in increasing the size of the files

and compromising the system's performance at different levels

[1, 25]. In a Hadoop environment, all users and services

initially had the same level of access privileges to all data in

the cluster, which posed security risks [26]. This lack of

granular access control made it easy for any user to

impersonate others, potentially leading to unauthorized access

or misuse of data [24]. In this context, no authentication of

users or services was required, and data privacy was not

protected. Later, the authorization and authentication aspects

were added without being effective enough, given the

numerous weaknesses of the security system of the Hadoop

ecosystem [24]. Over the past ten years, twenty-nine Hadoop

vulnerabilities and security weaknesses have been reported

and fixed, of which 20 vulnerabilities have a Common

Vulnerability Scoring System (CVSS) score greater than 5 [9,

22], which means severe vulnerabilities. On the other hand,

the work [20] sheds light on the block access token to address

the related permission control issues. It proposes a secret

sharing-based block access token management scheme to

overcome the security vulnerabilities targeting the block

access token.

In Fact, when a user accesses HDFS to read a file, the

HDFS Client contacts the NameNode to get data block

locations, and then the HDFS Client accesses blocks directly

on the DataNodes. Permissions checks by users upon a file are

done at the level of the NameNode. To access the data blocks

access in the DataNodes, authorization is required and assured

by block access tokens, which are sent by the NameNode to

the Client and then passed by this later to the concerned

DataNodes. The concept of a block access token was

introduced to confirm the access authorization to the data

block. It is composed of a token ID and a TokenAuthenticator.

A single block is sent with a single block access token to

represent the authentication information of the block [20].

For Hadoop security purposes, the NameNode and the

DataNode share a secret key used to calculate the

TokenAuthenticator of a block access token. It is randomly

chosen by the NameNode and sent to a DataNode when it is

first registered with the NameNode. It is updated by the

NameNode periodically and shared with the DataNode via

heartbeats. The block access tokens are sent after being

encrypted using the secret key upon a user’s request [20]. It is

noteworthy that when the secret key is transferred between the

NameNode and the DataNode, it is exposed to attackers and

the blocks stored in the DataNode are consequently exposed

to attacks. Various security threats could also happen to the

block access tokens [20]. Thus, securing access to the secret

key and blocking access tokens are crucial for the security of

the HDFS read operation. Concerning HDFS as a component

of the Hadoop system, it shows a remarkable lack of security

preservation, and the Hadoop framework is considered not

mature enough to deal with cyber-attacks on data [1]. Its

security is threatened since it holds one of the most valuable

assets of an organization, which is the Data, and without

appropriate and permanent security measures, unauthorized

data access, data theft, and unwanted disclosure of information

could happen, which would affect consumer trust in the

system provider [27]. Thus, troubles might arise, and the

consequences could be devastating and unrecoverable.

Studying and analyzing security threats is the first step

towards taking precautions and establishing protection

boundaries. Some of the threats are mature and hard to tackle,

while some are of a lower level and easy to handle [28]. This

would be the main objective of the following section.

5. Security use Cases Threat Analysis and

Mitigation Study
The following subsections focus on some crucial

security use cases related to different types of HDFS Read

operations assets. Their threats will be analyzed, and some

mitigation solutions will be discussed.

5.1. Use Cases

After reviewing various security issues related to the

operation of reading files from HDFS in the previous section

and showing their impact on the smooth running of a file

reading process, this paper meticulously selects the main 3 use

cases of attacks. The objective is to show their critical impact

that may abuse the HDFS read operation.

5.1.1. Use Case 1: MetaData Targeted by Tampering,

Information Disclosure or Denial of Service Attacks

The first use cases category is about MetaData security in

the NameNode machine. The latter stores file system metadata

in two different files: the FSimage and the editlog. The

FSimage stores a complete snapshot of file system metadata

at a given point in time. All subsequent changes are stored in

editlog and transferred to FSimage under certain conditions in

order to restore the file system to its most recent state [29]. An

attacker could gain access to the NameNode machine, and

then two security issues could happen: The attacker could

access the read or write memory inappropriately through a

successful stack or heap buffer overflow. An example of this

type of vulnerability is CVE-2021-37404 [30], affecting some

Apache Hadoop versions. It consists of a heap buffer overflow

in the libhdfs native library, which could cause a denial of

service or arbitrary code execution. This kind of vulnerability

could lead to alteration (Tampering attack) or suppression of

some entries (Denial of service attack) of editlog located in the

memory and then loss of important information about files

data stored in the HDFS [30]. On the other hand, the attacker,

instead of accessing the MetaData in memory, could target the

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

44

FSimage stored in the disk. He could exchange FSimage with

an older one or a different one (Tampering attack). A

vulnerability like CVE-2018-11768 [30] could lead to

FSimage corruption and even more to information disclosure

since it causes the user/group information to be corrupted

across storing in FSimage and reading back from it.

5.1.2. Use Case 2: Privilege Escalation and User

Impersonation.

Privilege escalation is a common vulnerability detected in

many Apache Hadoop versions at different levels (WebHDFS,

Web endpoint, YARN framework). The following already

detected and documented vulnerabilities testify to this: CVE-

2021-33036, CVE2020-9492, CVE-2018-11764, CVE-2018-

8029, etc [30]. In many versions, these vulnerabilities could

lead to serious damage. A broken authentication check, for

example, could enable some simple users to impersonate a

privileged user and even the root that has many more

administrative privileges. This would allow the attacker to

perform many malicious tasks on the system:

• Modifying stored data;

• Deleting important files;

• Disabling or removing active processes and then

replacing them with malicious ones;

• The attacker could even install some trojan or

backdoors to be able to perform remote control of the

HDFS components.

5.1.3. Use case 3: Session Hijacking and MiTM Attacks

The network is full of various exchanges between

remotely interconnected processes and stores. Thus, attackers

could use many attack vectors to break these communications.

These attacks include Attacks that disturb the normal transfer

of MetaData between the NameNode and the HDFS Client

process by intercepting, altering or/and redirecting the flow of

MetaData to the attackers’ machine instead of the HDFS

Client process. Here are some examples of cases that fall into

this category:

– An attacker may perform session hijacking by

modifying the MetaData of the file that flows over the

network, especially by modifying data block addresses

or locations;

– The file path in transit (DFD-Flow 2): Modifying the

requested file path in the HDFS Client open request

sent from the Client to the NameNode (Man-in-the-

middle attack) in order to read the file needed by the

attacker instead of the one requested by the user;

– MetaData in transit (DFD-Flow 4): Redirecting the

flow of MetaData to the attacker’s machine;

– Preventing the sending of the locations of the

following blocks, which cause the file not to be read;

– Other important security problems could happen

through the network during the exchanges between

the HDFS Client and the DataNodes to retrieve the

Data blocks and could lead to information disclosure,

denial of service, or even tampering attacks:

– The attacker could intercept the block access token in

order to illicitly read the data blocks or create a fake

access token able to intercept the secret key

exchanged between NameNode and DataNode in

order to be able to read the data block from the

DataNode.

– The attacker could redirect the flow of data to his

machine in order to prevent the HDFS Client from

accessing its content and retrieving data blocks or by

modifying data blocks flowing over the network.

– Modifying the checksum flowing through the

network by the attacker may make the HDFS Client

process unable

– to validate the received data blocks. In this way, the

file could not be read by the end user.

5.2. Discussion Threat Analysis and Mitigation Proposition

Having examined the impact of the main use cases on the

read operation in HDFS in the previous section, the current

section examines the various threats relating to these use

cases, categorizes them, and then proposes some possible

solutions for mitigation.

5.2.1. Threats Analysis

The technical impact of different threats is considered

by mapping them in STRIDE Threats categorization.

STRIDE, which is a Threat Modeling method, stands for”

Spoofing, Tampering, Repudiation, Information

disclosure, Denial of service and Elevation” which are the

opposites of the principal security requirements:

Authentication, Integrity, Non-Repudiation,

Confidentiality, Availability and Authorization. In fact, one

efficient solution to enhance a system's security is threat

modeling, a widespread approach in system security

evaluation [7] that helps give a view of the possible threats

that may affect a system’s security or its proper

functioning. By performing this threat analysis, this paper

is making a preliminary threat modeling of the HDFS read

process to have a clear idea of the security impact of the

detected threats and then study the possible solutions to

mitigate them. Table 1 addresses the main threats related

to the use cases previously developed.

Table 1 provides a mapping between technical impacts

and their associated threats, including Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service, and

Elevation of Privileges. It illustrates how one technical impact

can result from multiple threats. For example, an

unavailability of MetaData (Editlog or Fsimage) may be

triggered by tampering and denial of service threats. The use

cases examined above show that HDFS file reading operations

are mainly affected by security threats linked to tampering,

information disclosure and denial of service. So, it seems that

these types of threats need to be anticipated as much as

possible in order to control and mitigate them and reduce their

impact.

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

45

Table 1. Impact of the studied uses cases

Use

Case

Technical

Impacts

Threat categories

S
p

o
o

fi
n

g

T
a

m
p

e
r
in

g

R
e
p

u
d

ia
ti

o
n

In
fo

.

D
is

c
lo

su
r
e

D
e
n

ia
l

o
f

S
e
r
v

ic
e

E
le

v
.

o
f

P
r
iv

il
e
g

e
s

Use
Case

1

Loss or downtime of the MetaData that hinders the HDFS Client from
getting the data block addresses

and locations
 X

Unavailability of some entries of editlog located in the NameNode
memory (after Alteration or deletion), which may result in denial of
service to the NameNode information

 X X

Unavailability of the current FSimage (after deletion or exchange by
an older one or a different one)

 X X

Use
Case

2

Impersonation attack to accomplish actions on data, data stores, file
permissions and MetaData

X X X

Unavailability of necessary active processes (after removing or
replacement by malicious ones)

 X X

Illegal remote control of HDFS components (by installing trojans or
backdoors) or execution of malicious tasks in NameNode, DataNodes
or HDFS

Client

 X X X

Use
Case

3

Reading a different file, rather than the requested one, by carrying
out a man-in-the-middle attack on the request to open the file required
by the user

 X X

Unavailability of the requested MetaData for HDFS Client processes
(MetaData flow is redirected to the attacker’s machine

 X X X

Unavailability of the following data block locations, which will
prevent the user from reading the file

 X

Illicit access to data block either in DataNode (by stealing or forging
a fake block access token) or through the network (by conducting a
successful MiTM attack) to prevent the HDFS Client from receiving it

X X X X

5.2.2. Discussion on Possible Mitigation Techniques Related

to the Use Cases

Table 1 shows the main threats encountered when reading

a file stored in HDFS. The following paragraphs discuss the

mitigation of detected threats:

– Mitigating threats related to Spoofing: Spoofing-

related threats target authentication and consist of the

Impersonation of a user to accomplish actions on data,

data stores, file permissions and on MetaData or to

install.

Trojans and backdoors to remotely control HDFS or even

perform MiTM attacks to read other files. All these threats can

be accomplished during a session spoofing or Session

Hijacking. In order to avoid these latter attacks and to ensure

the authentication of the communicating parties, the use of a

secured communication protocol is very crucial. Kerberos, the

system for authenticating access to distributed services, is

already used as an authentication mechanism in Hadoop. It

ensures authentication using limited-time tickets/tokens that

could limit unauthorized access in case they are stolen.

However, Kerberos doesn’t address data encryption. So, since

the communication channels between services are not secure,

then the credentials could be intercepted or a new

communication forged. Another important issue is that time

needs to be consistent across all involved machines to ensure

that the time-limited tokens are working.

For these reasons, it would be interesting to use a secured

protocol like HTTPS (Hyper Text Transfer Protocol Secure)

based on TLS (Transport Layer Security) or Secure Shell

(SSH) as a communication protocol between different

components. It ensures, in addition to authentication, data

integrity and confidentiality. In this context, Virtual Private

Network (VPN) seems to be an option but it would be heavy

to use inside the Hadoop Architecture. In the opposite to VPN,

it would be promising to explore the possibility of using Zero

Trust Nework Access (ZTNA), the new evolving approach in

the network security field. It has the advantage of offering

control over access and movement over the network without

granting relatively open access to resources and equipment

using a single authentication. Indeed, Zero Trust allows

authentication and receiving a set of permissions and

authorization for explicit access [31].

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

46

– Mitigating threats related to Tampering: Tampering

threats compromise data integrity through the

modification or deletion of either data in rest stored

in editlogs, FSimages, datablocks or in motion by

altering data transferred across the network. In

addition, the alteration could also impact the processes

by replacing a legitimate process with a malicious one,

users or group information or the modification of the

file path in the read open request.

These threats could be mitigated through the

reinforcement of the Access Control Lists (ACL)

mechanisms. In this way, ACLs could be applied at the sides

of HDFS Processes, the NameNode, and each DataNodes. The

tampering threats may also be mitigated through the

implementation of digital signatures. A digital signature

guarantees that authenticated users or processes send the

exchanged messages, files, and data requested and are not

altered in transit. This could constitute an efficient security

measure for credentials, such as block access tokens that

circulate through the network. Furthermore, as mentioned

before, the use of a secured communication protocol between

nodes, like HTTPS, assures data integrity and correct

protection against MiTM attacks.

– Mitigating Repudiation Threats: Processes are the main

victims of repudiation attacks. These attacks involve

pretending not to have performed an action or to have

been the victim of fraud or attacking logs by deleting,

modifying or accessing their contents. For the use cases,

one repudiation threat is identified, and it concerns an

illegal remote control of HDFS components (by installing

trojans or backdoors) or execution of malicious tasks in

NameNode, DataNodes, or HDFS Client processes.

Repudiation attacks could be mitigated through fraud

prevention, log analysis and the use of digital signatures. It is

worth noting, in this context, that traceability is very important

to face these types of threats. So, protecting log files and audit

events from alteration by malicious malwares, like Rootkits,

is crucial to being able to consult each task user or process

activity history in one specific node.

– Mitigating threats related to information disclosure:

These threats mostly aim to access confidential data either

stored in NameNode or DataNodes or transmitted through

the network between the node exchanges. Using

Encryption is the principal good solution to ensure

confidentiality.

The actual versions of Hadoop already implement this

mechanism in different levels: (i) Volume encryption level

that protects data after physical theft or accidental loss of the

disk. However, this mode of encryption does not provide a

fine-grained encryption of some critical files or data stores and

does not protect against malwares or other types of attacks

when the system is running. (ii) Application-level encryption

allows for better data protection. (iii) HDFS ”Data at Rest”

encryption [32] that allows end-to-end encryption of data

stored in the HDFS performed by the HDFS Client, which

seems to be a good measure to protect data confidentiality at

rest. Another important measure to mitigate confidentiality

threats is to implement ACL mechanisms to protect

directories, filenames, and file contents. In addition, for the

protection of data and communication confidentiality through

the network, the use of a secured protocol is a must, as

explained above.

– Mitigating Denial of Service (DOS) threats: These threats

compromise the availability of processes, data stores and

data flows and can manifest themselves in the loss,

deletion or alteration of MetaData in the NameNode or by

the replacement of original processes by malicious ones

in one of the principal nodes involved in the HDFS read

operation (NameNode, HDFS Client or DataNodes).

The denial of service could also be performed by

redirecting MetaData flow to processes other than the HDFS

client process that is supposed to receive them. Furthermore,

these types of threats can also concern the flow of data blocks

to the HDFS client process. DoS attacks could threaten the

nodes themselves and make them unable to perform their

respective tasks. DoS mitigation is a process that aims to

minimize the impact of these threats on the overall HDFS read

process. On the one hand, in each involved node, a rate

limitation either at the network level could be implemented to

limit the number of accepted requests in a certain amount of

time (in the NameNode, for example). On the other hand, it

could be achieved by limiting the number of API calls since a

repeated and large number of API calls could lead to the

unavailability of the called process. This last issue could be

very useful either in the NameNode/DataNode or in the HDFS

Client. At the node level, the intrusion tolerance approach

could be introduced in order to enhance the architecture

tolerance for intrusions, especially DoS or DDoS (Distributed

DoS) attacks and shorten or even avoid downtime in case of

received attacks. Monitoring traffic through the use of

Intrusion Detection Systems (IDS) and traffic filtering by

using either network firewalls or host-based firewalls are other

important protection measures against these types of threats.

– Mitigating Elevation of Privileges threats: This category

of threats could be addressed when an attacker reads the

file requested by the user or reads a different file by

injecting another filename or file path into the user’s

request. This threat could be mitigated by reinforcing

input validation and reworking the granting of roles and

access rights for group users in addition to file

permissions.

Indeed, one of the most efficient measures, especially

against lateral movement threats, is a good authentication

policy. Choosing good and complex passwords for the

existing user could render this type of threat more difficult. On

the other hand, it is worth noting that the vertical escalation of

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

47

privilege, where the attacker manages to gain access to a

privileged user or even to the super-user, is usually performed

by exploiting system misconfigurations, vulnerabilities (in

system or application level) or porous access controls rules.

This could be mitigated by a regular update of the software

used in each node and good maintenance of the Java codes. In

addition, implementing a fine-grained and appropriate access

control would be an efficient mitigation measure against this

type of threat.

6. Conclusion
This article is devoted to addressing the security threats

associated with reading files stored on HDFS for two reasons:

the first being that HDFS plays a very important role in both

storing and managing large volumes of data and files while

ensuring data availability. The second reason is that, while

HDFS is in great demand for reading its files and data, it is not

totally immune to security threats that can impede accessing

and reading its files, as existing solutions remain insufficient

to offer acceptable security of HDFS, particularly for the read

operation. This lack of security, which would lead to

difficulties in accessing the necessary files, would cause

delays in making decisions and taking action in the shortest

possible time and thus result in lost opportunities. To this end,

through rich and varied illustrations and documentation, this

paper has shed light and given a holistic description of how a

file stored in HDFS is read, including the exchange of the

relevant data blocks and MetaData. The different interactions

between HDFS components, including DataNodes, the HDFS

Client, the NameNode and associated stores and processes, are

deeply examined. Through a detailed analysis of existing

security solutions as well as the security issues and

requirements of the HDFS file reading operation, this paper

has shown the inadequacy of existing solutions to meet the

related safety requirements. Three (3) main attack use cases

that can adversely affect the HDFS file reading operation were

thoroughly selected and discussed. Then, the impact of each

use case on the involved assets is discussed by describing the

threats related to each use case and mapping them into 6

categories of threats, including Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service,

Elevation of Privileges. Finally, mitigation measures capable

of reducing their impact are suggested for each category of

threats; they help guarantee better security for reading the files

stored in HDFS. Future work could include similar studies to

identify security threats related to other operations performed

on HDFS, with the aim of mastering all security threats to

HDFS and related operations.

References
[1] Gurjit Singh Bhathal, and Amardeep Singh Dhiman, “Big Data Security Challenges and Solution of Distributed Computing in Hadoop

Environment: A Security Framework,” Recent Advances in Computer Science and Communications, vol. 13, no. 4, pp. 790-797, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[2] Boris Lublinsky, Kevin T. Smith, and Alexey Yakubovich, Professional Hadoop Solutions, John Wiley and Sons, pp. 1-477, 2013.

[Google Scholar] [Publisher Link]

[3] Mark Grover, Hadoop Application Architectures: Designing Real-World Big Data Applications, O’Reilly Media, pp. 1-400, 2015. [Google

Scholar] [Publisher Link]

[4] Vladimir Kaplarevic, Apache Hadoop Architecture Explained (with Diagrams), Phoenixnap Global IT Services, 2020. [Online]. Available:

https://phoenixnap.com/kb/apache-hadoop-architecture-explained

[5] Karwan Jameel Merceedi, and Nareen Abdulla Sabry, “A Comprehensive Survey for Hadoop Distributed File System,” Asian Journal of

Computer Science and Information Technology, vol. 11, no. 2, pp. 46-57, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Yordan Kalmukov et al., “Analysis and Experimental Study of HDFS Performance,” TEM Journal, vol. 10, no. 2, pp. 806-814, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Xiong Wenjun, and Robert Lagerström, “Threat Modeling – A Systematic Literature Review,” Computers & Security, vol. 84, pp. 53-69,

2019. [CrossRef] [Google Scholar] [Publisher Link]

[8] Kinza Yasar, Hadoop-Distributed-File-System (HDFS), [Online]. Available:

https://www.techtarget.com/searchdatamanagement/definition/Hadoop-Distributed-File-System-HDFS

[9] Apache Hadoop, Apache Website, 2023. [Online]. Available: https://hadoop.apache.org/

[10] Anatomy of File Read and Writes in HDFS, Geeksforgeeks, 2022. [Online]. Available: https://www.geeksforgeeks.org/anatomy-of-file-

read-and-write-in-hdfs/

[11] Subhi R.M. Zeebaree et al., “Characteristics and Analysis of Hadoop Distributed Systems,” Technology Reports of Kansai University,

vol. 62, no. 4, pp. 1555-1564, 2020. [Google Scholar]

[12] How Hadoop Works Internally – Inside Hadoop, Data Flair, 2023. [Online]. Available: https://data-flair.training/blogs/how-hadoop-

works-internally/

[13] What do you Mean by Metadata in Hadoop HDFS?, Data Flair. [Online]. Available: https://data-flair.training/forums/topic/what-do-you-

mean-by-metadata-in-hadoop-hdfs/

[14] Tom White, Hadoop: The Definitive Guide, O'Reilly Media, pp. 1-688, 2012. [Google Scholar] [Publisher Link]

[15] Hadoop Distributed File System (HDFS) Architectural Documentation, Hawaii, [Online]. Available: http://itm-

vm.shidler.hawaii.edu/HDFS/ArchDocCommunication.html

https://doi.org/10.2174/2213275912666190822095422
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data+Security+Challenges+and+Solution+of+Distributed+Computing+in+Hadoop+Environment%3A+A+Security+Framework&btnG=
https://www.ingentaconnect.com/content/ben/rascs/2020/00000013/00000004/art00028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Professional+Hadoop+solutions&btnG=
https://www.google.co.in/books/edition/Professional_Hadoop_Solutions/2brVAAAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hadoop+application+architectures%3A+Designing+real-world+big+data+applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hadoop+application+architectures%3A+Designing+real-world+big+data+applications&btnG=
https://www.google.co.in/books/edition/Hadoop_Application_Architectures/eYkNCgAAQBAJ?hl=en&gbpv=0
https://doi.org/10.9734/ajrcos/2021/v11i230260
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Survey+for+Hadoop+Distributed+File+System&btnG=
https://journalajrcos.com/index.php/AJRCOS/article/view/212
https://doi.org/10.18421/TEM102-38
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+and+Experimental+Study+of+HDFS+Performance&btnG=
https://www.temjournal.com/content/102/TEMJournalMay2021_806_814.html
https://doi.org/10.1016/j.cose.2019.03.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Threat+Modeling+%E2%80%93+A+Systematic+Literature+Review&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404818307478
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Characteristics+and+analysis+of+hadoop+distributed+systems&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=White%2C+T%2C+Hadoop%3A+the+definitive+guide%2C+%282012%29.&btnG=
https://www.google.co.in/books/edition/Hadoop_The_Definitive_Guide/Wu_xeGdU4G8C?hl=en&gbpv=0

Imane LEBDAOUI & Ghizlane ORHANOU / IJETT, 72(9), 33-48, 2024

48

[16] HDFS Administration, Backing up HDFS MetaData, Cloudera Documentation, 2023. [Online]. Available:

https://docs.cloudera.com/?tab=cdp-public-cloud

[17] Yoon-Su Jeong, and Yong-Tae Kim, “A Token-Based Authentication Security Scheme for Hadoop Distributed File System using Elliptic

Curve Cryptography,” Journal of Computer Virology and Hacking Techniques, vol. 11, pp. 137-142, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

[18] Gurmukh Singh, Hadoop 2. x Administration Cookbook, Packt Publishing, pp. 1-348, 2017. [Google Scholar] [Publisher Link]

[19] Ben Spivey, and Joey Echeverria, Hadoop Security: Protecting your Big Data Platform, O’Reilly Media, pp. 1-340, 2015. [Google

Scholar] [Publisher Link]

[20] Su-Hyun Kim, and Im-Yeong Lee, “Block Access Token Renewal Scheme Based on Secret Sharing in Apache Hadoop,” Entropy, vol.

16, no. 8, pp. 4185-4198, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[21] “Securing Big Data: Security Recommendations for Hadoop and NoSQL Environments,” Securosis, L.L.C, pp. 1-18, 2012. [Google

Scholar] [Publisher Link]

[22] Security-Vulnerabilities, cvedetails, 2023. [Online]. Available: https://www.cvedetails.com/vulnerability-list/

[23] Adam Shostack, Threat Modeling: Designing for Security, Wiley, pp. 1-624, 2014. [Google Scholar] [Publisher Link]

[24] Priya P. Sharma, and Chandrakant P. Navdeti, “Securing Big Data Hadoop: A Review of Security Issues, Threats and Solution,”

International Journal of Computer Science and Information Technologies, vol. 5, no. 2, pp. 2126-2131, 2014. [Google Scholar] [Publisher

Link]

[25] Hadeer Mahmoud, Abdelfatah Hegazy, and Mohamed H. Khafagy, “An Approach for Big Data Security Based on Hadoop Distributed

File System,” 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, pp. 109-114, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[26] Mike Ferguson, “Enterprise Information Protection - the Impact of Big Data,” Intelligent Business Strategies, 2014. [Google Scholar]

[Publisher Link]

[27] Nataliya Shevchenko et al., “Threat Modeling: A Summary of Available Methods,” Software Engineering Institute, pp. 1-26, 2018.

[Google Scholar] [Publisher Link]

[28] Maahir Ur Rahman Mohamed Shibly, and Borja Garcia de Soto, “Threat Modeling in Construction: An Example of a 3D Concrete Printing

System,” 37th International Symposium on Automation and Robotics in Construction, Kitakyushu, Japan, pp. 625-632, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[29] Hadoop-Architecture-Overview, Datadog, 2020. [Online]. Available: https://www.datadoghq.com/blog/hadoop-architecture-overview/

[30] Hadoop CVE List, Hadoop apache. [Online]. Available: https://hadoop.apache.org/cve_list.html

[31] Tim Keary, A Guide to Spoofing Attacks and How to prevent them in 2024, Comparitech, 2023. [Online]. Available:

https://www.comparitech.com/net-admin/spoofing-attacks-guide/

[32] Encrypting Data at Rest, Cloudera documents, [Online]. Available: https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/security-

encrypting-data-at-rest/topics/cm-security-encryption-planning.html

https://doi.org/10.1007/s11416-014-0236-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+token-based+authentication+security+scheme+for+Hadoop+distributed+file+system+using+elliptic+curve+cryptography&btnG=
https://link.springer.com/article/10.1007/s11416-014-0236-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hadoop+2.+x+Administration+Cookbook&btnG=
https://www.google.co.in/books/edition/Hadoop_2_x_Administration_Cookbook/hnc5DwAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hadoop+Security%3A+Protecting+your+big+data+platform&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hadoop+Security%3A+Protecting+your+big+data+platform&btnG=
https://www.google.co.in/books/edition/Hadoop_Security/enEJCgAAQBAJ?hl=en&gbpv=0
https://doi.org/10.3390/e16084185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Block+access+token+renewal+scheme+based+on+secret+sharing+in+Apache+Hadoop&btnG=
https://www.mdpi.com/1099-4300/16/8/4185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Securing+Big+Data%3A+Security+Recommendations+for+Hadoop+and+NoSQL+Environments&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Securing+Big+Data%3A+Security+Recommendations+for+Hadoop+and+NoSQL+Environments&btnG=
https://cdn.securosis.com/assets/library/reports/SecuringBigData_FINAL.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Threat+Modeling%3A+Designing+for+Security&btnG=
https://www.google.co.in/books/edition/Threat_Modeling/YiHcAgAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Securing+big+data+hadoop%3A+a+review+of+security+issues%2C+threats+and+solution&btnG=
https://www.ijcsit.com/docs/Volume%205/vol5issue02/ijcsit20140502263.pdf
https://www.ijcsit.com/docs/Volume%205/vol5issue02/ijcsit20140502263.pdf
https://doi.org/10.1109/ITCE.2018.8316608
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+approach+for+big+data+security+based+on+Hadoop+distributed+file+system&btnG=
https://ieeexplore.ieee.org/abstract/document/8316608
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mike+Ferguson%2C+%E2%80%9CEnterprise+Information+Protection+-+the+Impact+of+Big+Data%2C%E2%80%9D+Intelligent+Business+Strategies&btnG=
https://www.intelligentbusiness.biz/product/enterprise-information-protection-impact-big-data/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Threat+modeling%3A+a+summary+of+available+methods&btnG=
https://insights.sei.cmu.edu/library/threat-modeling-a-summary-of-available-methods/
https://doi.org/10.22260/ISARC2020/0087
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Threat+modeling+in+construction%3A+An+example+of+a+3D+concrete+printing+system&btnG=
https://www.iaarc.org/publications/2020_proceedings_of_the_37th_isarc/threat_modeling_in_construction-an_example_of_a_3d_concrete_printing_system.html

