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Abstract - Containerized applications are self-contained units of code executed within isolated environments called containers, 

encompassing all necessary dependencies like libraries and configuration files. Containerization gives portability, scalability, 

and efficiency. So, the rise in containerization will also increase the use of orchestration tools like Docker, Kubernetes, and 

others. Docker has simple deployment and is suitable for small numbers of containers. Docker Swarm is a management tool for 

Docker containers. Docker Swarm uses a spread strategy to place containers of services in a Docker cluster. Spread distributes 

containers evenly throughout the Docker swarm cluster, but load balancing in nodes with varying resources could be improved. 

So, a placement strategy is developed in this paper that considers the available resources of the node while placing a container 

on it. The results show improvements in load balancing and the completion time of service containers. 

Keywords - Cloud computing, Containerization, Container scheduling, Docker swarm, Orchestration, Recourses, Spread 

strategy.

1. Introduction 
Cloud computing continues to dominate the IT landscape, 

providing scalable and on-demand access to computing 

resources, enabling organizations to enhance agility and 

efficiency in deploying and managing applications. The cloud 

ecosystem has diverse independent components such as 

containers, virtual machines, orchestrations, load balancers, 

applications, and security that function concurrently to 

provide the services [1][2]. Containers are ubiquitous in cloud 

computing, offering lightweight, portable, and scalable 

solutions. They empower microservices architectures and 

enhance resource efficiency. Containers drive agility and 

efficiency, enabling seamless application deployment and 

scaling. Containers have an advantage over standard virtual 

machines. This comparison is discussed in Section 2. With 

support from orchestration platforms like Kubernetes, Docker 

Swarm, Mesos, etc, containers facilitate easy management, 

rapid development, and robust isolation, fostering a dynamic 

and scalable cloud environment. Some famous orchestration 

tools are discussed in Section 3. Among this orchestration 

platform Docker Swarm offers vital features such as high 

availability, scalability, service discovery, load balancing, and 

security. Its seamless integration with Docker, user-friendly 

interface, and straightforwardness make it a compelling option 

for developers and organizations aiming to effectively manage 

and deploy containerized applications. The container 

placement and scheduling in Docker Swarm are discussed in 

Section 4.1. Docker Swarm Mode currently employs only the 

spread scheduling approach. This method distributes tasks 

evenly among the nodes in the cluster. When a new container 

arrives, it is assigned to the node with the fewest active 

containers without considering the node's resource utilization. 

As long as a node has enough resources to run a container and 

has the fewest running containers, the new container is placed 

there, regardless of the node's current resource load. 

Additionally, in Docker Swarm Mode, the scheduler attempts 

to assign new tasks to nodes that are not already executing a 

task for the same service. Suppose every cluster node is 

running at least one task for the service. In that case, the 

scheduler then selects the node with the fewest tasks related to 

that service before evaluating the overall task distribution 

across all nodes. Various researches have been done to 

optimize the container placement which are discussed in 

section 4.2. A short comparison of it is given in the  table 1. 

The dynamic scheduling technique, in conjunction with the 

service performance framework for containerized clouds, is 

discussed in [16]. An ACO-based algorithm is used in [17], 

which improves resource utilization and performance. A 

hybrid form of the Lion Algorithm (LA) and the Whale 

Optimization Algorithm (WOA) was created as the Whale 
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Random update assisted Lion Algorithm (WR-LA), and it 

showed improvement in cost reduction [19]. The Makespan 

and completion time are improved, and results are compared 

to Kubernetes Scheduler by considering current and future 

resource utilization in Procon [20]. Availability-Aware 

container scheduling strategy is used in [21], and it improves 

application service availability in the cloud. To improve load 

balancing and response time algorithm is proposed that 

divides the containers into neighborhoods and improves the 

particle swarm algorithm [22]. To improve energy efficiency 

A genetic algorithm with mutation operations and control 

parameters changed is implemented in MATLAB [23]. Again, 

power consumption is improved in [24] by the Dynamic 

Container Placement (DCP) mechanism. The Resource-

Aware Least Busy (RALB) [25] method is used to do load 

balancing in a containerized cloud. In most of the above work 

[19] [21] [23] [24] [25], real-time implementation is required. 

This research tries to improve load balancing and performance 

of service by decreasing the completion time of containers. 

The proposed model, Algorithm and Architecture of the 

system is discussed in Sections 4.3,4.4 and 4.5, respectively. 

2. VM vs Container 
Massively popular technology virtualization is possible 

due to virtual machines. The VMs are Infrastructure as a 

service (IaaS) that share the physical device with the host OS 

[4]. It requires its own physical memory and space. The fact 

that VMs work with the help of virtualization technology is 

not new. They use VM-specific software applications to 

recreate the virtual hardware. Hence, this way a hypervisor 

manages the resources like storage and memory. Containers 

are defined to be lightweight; as a result, they deliver higher 

efficiency. Unlike VMs, containers are platform-as-a-service 

(PaaS) components that work on the host OS. Recently, there 

has been a staggering peak in the development of 

containerized software. As per [5], nearly 79% of applications 

had implemented internal containerization in 2020. Since 

containers are capable of delivering real-time and real-world 

benefits, they are preferred over VMs. Under the hood, 

containers use a Linux utility called cgroups for resource 

sharing and a namespace for isolation [6]. Table 1 shows the 

comparison of Virtual Machine and Container. 

3. Orchestration Tools 
As more and more applications involve containers, it 

becomes essential to scale them rapidly. There was a demand 

for software that automatically regulates container scaling and 

management. Container orchestration is a tool designed to 

drive thousands of distributed containers. A few popular 

container orchestrators are Docker Swarm, Kubernetes, 

Apache Mesos, OpenShift, and Nomad. 

3.1. Kubernetes 

Kubernetes was introduced by Google in 2014. It is also 

known as K8s. It is an open-source orchestration tool for PaaS. 

It provides features like load balancing, deployment, and 

scalability, etc. It operates on a master and slave model to 

manage containerized applications [7]. It provides services 

like load balancing, storage management, rollouts, rollbacks, 

and self-healing. Pod is the smallest and fundamental unit of 

Kubernetes. A pod is a collection of one or more closely 

related containers that are placed next to one other and share 

resources. Alongside containers, pods encapsulate storage 

resources, a network IP, and a set of configurations dictating 

the operational aspects of the pod's container(s). The primary 

purpose of a pod is to execute a singular instance of an 

application; this facilitates horizontal scaling by utilizing 

multiple pods if needed. Information such as the CPU, 

memory, and storage for a container can be specified at the 

time of creating the pod. The scheduler uses this information 

to determine the optimal placement of pods. The allocation of 

compute resources can be expressed either as a requested 

amount or as a constraint on the maximum consumption 

allowed by the container [9]. The master consists of the API 

server, scheduler, controller manager, and Etcd for 

configuration storage. Worker nodes consist of Kubelet, 

Kube-proxy, and a container runtime and run containerized 

applications [10]. 

Table 1 . VM Vs. Container [3]  

Aspect 
Containers 

(CoaaS Model) 

Virtual Machines  

(VMs) 

Kernel  

Sharing 

All containers share a single OS kernel with varying 

abstraction levels. 

VMs require their own virtualized network, 

BIOS, CPU, and OS. 

Usage 
Preferred in PaaS and SaaS due to their lightweight nature 

and quick startup. 

Typically less favored in PaaS and SaaS due 

to heavier resource overhead. 

Size and  

Performance 

Smaller in size, leading to quick startup, improved 

performance, and better compatibility. 

Larger size, slower startup times, and 

potentially higher resource consumption. 

Migration 

Characteristics 
Supports lightweight and energy-efficient migration. 

Requires hardware emulation for migration, 

potentially less energy-efficient. 

Live System  

Updates 

Facilitates live system updates using the underlying host 

OS, eliminating the need for hardware emulation. 

Updates might involve  

more complex procedures due to the entire 

VM structure. 

Energy  

Consumption 

Container migration consumes less energy with minimal  

resource wastage. 

VM migration may result in higher energy c 

onsumption and resource utilization. 
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Fig. 1 Docker client-server architecture 

 

3.2. Docker Swarm 

Swarm serves as Docker's native platform for 

orchestrating containerized applications. It involves a 

collection of machines, whether physical or virtual, working 

collaboratively to run Docker applications. The Swarm 

Manager takes charge of swarm operations, overseeing 

container interactions across various host machines (nodes).  
 

Docker Swarm maximizes the advantages of containers, 

facilitating the creation of highly portable and flexible 

applications, all the while ensuring redundancy for high 

application availability.  Swarm managers are responsible for 

allocating workloads to the most suitable hosts based on the 

load of the node. The Swarm Manager manages scaling by 

adding or removing worker tasks to maintain the cluster's 

intended state [11]. 
 

3.3. MesOS 

Apache Mesos is an open-source cluster manager used for 

data center environments. It deals with the difficulties of 

sharing resources across a range of workloads. Mesos 

provides fine-grained resource allocation and scalability. Its 

architecture consists of a master and slaves. A master for 

resource allocation and multiple slaves for task execution. 

Developers can write custom schedulers for their applications 

using the framework API. Mesos supports various resource 

allocation policies and offers fault tolerance. Real-world 

evaluations show its efficiency. Mesos is a scalable and 

extensible platform for resource sharing, benefiting data 

center environments and diverse workloads [12]. 

3.4. HashiCorp Nomad 

Nomad is an open-source scheduler and orchestrator 

designed for deploying and managing applications at scale. It 

supports a range of workloads, including Docker containers, 

VMs, and standalone applications. It supports multiple 

workload types (containers, VMs, and more). It is a simple and 

flexible job specification. It has built-in high availability and 

fault tolerance[13]. 

4. Docker Container Placement and Scheduling 

in Docker Swarm 
4.1. Docker Containers 

Docker is open-source software for creating and running 

container applications. Docker mainly enforces client and 

server architecture. Hence, it has three central pieces - 

daemon, client, and REST API, which simultaneously are 

known as Docker Engine [13]. The client works as user-end 

software that allows users to connect to the daemon. The 

daemon is responsible for all the back-end handling of 

container creation, execution, and deployment. Moreover, the 

client and daemon communicate via the REST API interface. 
Figure 1 presents the architectural design of the Docker 

system [14]. The Docker daemon includes containers, images, 

configuration files, networking settings, and storage. While 

the daemon listens for Docker API, the docker client sends the 

request for the daemon. A Docker image is a layered read-only 

file that has the application software. Similarly, a container is 

an instance of the image. To meet the demands, Docker 

programmed Docker Swarm to govern a cluster of Docker 

nodes. Docker Swarm is the implementation of the Docker 

project called SwarmKit, which provides the core 

orchestration layer for Docker. Spread is the only scheduling 

approach that Swarm Mode presently uses [15]. In this 

approach, the tasks are distributed equally among the cluster's 

nodes. Therefore, when a new container arrives, it is 

assigned to the node with the fewest running containers. 

The resource utilization of the node is not considered. So 

if there are enough resources available on a selected node to 

run a container and the node has having least number of 

running containers, then it places the new container to the 

node irrespective of its current resource utilization. Another 

placement situation in Docker swarm mode is that the 

scheduler aims to assign a new task to a node, prioritizing 

nodes that are not currently executing a task for the same 

service. If all cluster nodes have at least one task for the 

service, the scheduler chooses the node with fewer tasks 

related to the same service before considering the overall task 

User 
Docker Daemon  

(dockered) 

Manages 

Docker client  

(docker) 

Communication 

via 

REST API 

Containers Execution Images 
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distribution across all nodes. This scheduling approach is 

colloquially known as "HA scheduling" or High Availability 

scheduling [15]. These situations might lead to load imbalance 

within cluster nodes. 

4.2. Related Work 

H. Li [16] provides a thorough approach to tackling the 

problems associated with service performance by using 

dynamic scheduling techniques in conjunction with the 

service performance framework for container clouds in the big 

data era. Through the integration of real-time fundamental 

resource monitoring, service delays, and dynamic 

modifications grounded in particle swarm optimization, the 

framework seeks to optimize container-based service 

deployment under complex conditions. It is crucial to strike 

the ideal balance because the algorithm is sensitive to the 

weight assignment. In [17] uses a graph-based approach by 

mapping the scheduling problem to a graphical model and 

representing the service placement as a min-cost flow problem 

(MCFP), which allows encoding multi-resource requirements 

and affinities to other containers. ECSched presented 

concurrent container scheduling in heterogeneous clusters and 

showed that it enhanced the performance over queue-based 

container scheduling. The complexity of the algorithm is high 

and requires more study on resource dynamics and container 

dependencies. C. Kaewkasi et al. [18] describe an ACO and 

show how to utilize it in practice to create a new container 

scheduler for Docker. The ACO-based algorithm distributes 

application containers among Docker hosts in order to balance 

resource utilization overall, which improves application 

performance over the current greedy scheduler. The ACO-

based algorithm outperformed the greedy one, according to 

the experimental data. It resulted in an approximate 15% 

improvement in overall application performance. But, the 

fine-tuning of parameters is required. K. N. Vhatkar et al. [19] 

introduce the Whale Random update assisted Lion Algorithm 

(WR-LA), which is the hybrid form of the Lion Algorithm 

(LA) and Whale Optimization Algorithm (WOA). With the 

use of this algorithm, they can get advantages of both 

algorithms by incorporating the WOA in LA in place of the 

fertilization function. Performance evaluation shows that WR-

LA outperforms other models, demonstrating a cost reduction 

of 9.58% to 21.63% compared to SW-GA, SH-GA, GM-GA, 

LA, and WOA at various iterations. They simulated the 

algorithm. Actual environment container behaviour may be 

different and also, the computational time might increase. Y. 

Fu et al. [20] introduced the ProCon container placement 

scheme in the Kubernetes cluster. Procon considers both 

current and future resource utilization. The author introduces 

two algorithms: one for calculating the contention rate for 

workers based on resource utilization and remaining time, and 

the other places containers on available workers having lower 

contention rates. Procon demonstrates significant reductions 

in completion time (up to 53.3%) and improvement in 

Makespan (up to 37.4%) compared to the Kubernetes in-built 

scheduler. It requires monitoring the application and also 

increases response time. Y. Alahmad et al.[21] proposed an 

Availability-Aware container scheduling strategy. It improves 

application service availability in the cloud. Availability is 

measured by Mean Time To Fail (MTTF) and Mean Time To 

Repair (MTTR). The strategy finds availability for VMS and 

Hosts, selects them based on high availability, and places 

containers based on availability, functional resource 

constraints and dependency constraints. This strategy achieves 

the highest service availability and maintains acceptable host 

CPU utilization. Implementation is done on Cloudsim with 

simulated workloads. The simulated environment may have 

different behaviour than the actual environment, so the 

algorithm must be implemented in a real cloud environment. 

Y. Guo [22] proposed a method which focuses on Load 

balancing and Response time in order to improve the system 

performance. This algorithm divides the containers into 

neighbourhoods and improves the particle swarm algorithm in 

terms of results. It improves the efficiency at a rate of 20 to 25 

percent more than commonly used swarm algorithms. 

Chen et al. [23] use the Improved Genetic algorithm in 

which mutation operation and control parameter is changed. It 

has proved more efficient than the particle swarm algorithm, 

Conventional GA and first fit algorithm when Virtual machine 

resource utilization is high. It is also more efficient than 

binpack and spread in terms of energy efficiency. This 

algorithm has two mutation functions and also the control 

parameter to choose the Mutation operation to be performed 

on the data. It only tries to optimize only one objective energy 

efficiency. They implemented in a simulation environment of 

MATLAB, so implementation in a real cloud environment is 

required. Alwabel [24] presents a Dynamic Container 

Placement (DCP) mechanism. It is for energy-efficient 

management in Container-as-a-Service (CaaS) cloud systems. 

It extends the Whale Optimization Algorithm (WOA) to 

minimize power consumption by optimizing the placement of 

containers on virtual machines (VMs) and Physical Machines 

(PMs). DCP is compared with IGA (improved genetic 

algorithm) and DWO(discrete whale optimization) 

mechanisms for homogeneous and heterogeneous cloud 

systems. The results show that in homogenous clouds, DCP 

reduces the search time by around 50% and consumes 

approximately 78% less power. Whereas, in heterogeneous 

clouds, DCP reduces search time by around 30% and 

conserves power by 85%. More parameters should be 

considered for optimization and implemented in the real 

environment. Bouflous[25] proposed the Resource-Aware 

Least Busy (RALB) method. The main focus of this work is 

load balancing in a containerized cloud environment. RALB 

optimizes workload distribution by taking container migration 

time and server resource capabilities into account. RALB 

shows improvement over conventional random algorithms in 

terms of performance, resource consumption, and improved 

quality of service. However, it must be implemented in a real 

scenario. Table 2 shows a short comparison of all the above 

work done. 
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Table 2. Comparison of container scheduling strategies 

Algorithm Key Features Benefits Limitations 

Dynamic scheduling 

technique 

[16] 

Service performance framework 

using dynamic scheduling and 

particle swarm optimization 

Resource monitoring and  

service delay management 

Sensitive to the weight  

assignment 

ECSched 

[17] 

Graph-based approach uses a  

Min-Cost Flow Problem (MCFP) 

Enhanced the performance  

over queue-based container 

scheduling in a  

heterogeneous cluster 

The complexity of the  

algorithm is high 

ACO 

[18] 

Ant Colony Optimization for 

workload scheduling 

Improvement in overall 

application performance 

Fine-tuning of a parameter is 

required. 

Whale Random  update 

assisted Lion Algorithm 

(WR-LA)[19] 

Uses a hybrid form of the Lion 

Algorithm (LA) and Whale 

Optimization Algorithm (WOA). 

Cost Reduction 
Implemented in a simulated 

environment. 

ProCon 

[20] 

Progress rate estimation.  

Considers both current and  

future resource utilization. 

Reductions in completion 

time and improvement in 

Makespan 

Requires monitoring the  

application and also increases 

response time. For Short-lived 

Containers 

Availability-Aware 

container scheduling 

[21] 

Enhances service availability  

using MTTF and MTTR 

Achieves the highest service 

availability and maintains 

host CPU utilization 

Needs real-world system 

implementation 

Neighbourhood  

division 

[22] 

Divides the containers into 

neighbourhoods and improves the 

particle swarm algorithm 

Focus on Load balancing  

and Response time,  

improves the efficiency 

Needs real-world system 

implementation 

Improved GA 

[23] 

It  Improved the genetic algorithm 

in which mutation operation and 

control parameter is changed. 

Improve energy efficiency 

Only one parameter is considered: 

Needs real-world system 

implementation 

DCP 

[24] 

It extends the Whale Optimization 

Algorithm (WOA) for dynamic 

container placement. 

Power savings and reduced 

search time. 

Needs real-world system 

implementation 

RALB 

[25] 

Resource-Aware Least Busy 

algorithm for load balancing 

Better resource utilization, 

improved performance, 

enhanced QoS 

Needs real-world system 

implementation 

4.3. Proposed Model 

The Spread algorithm does not consider current resource 

utilization and may create load imbalance. To overcome this, 

some modification in the spread is introduced in the proposed 

algorithm. Before placing the container on a node, it checks 

the utilization of resources in all the nodes in the cluster and 

finds the node with minimum resource utilization. Currently, 

the algorithm only considers the CPU utilization of a node. 

And find the best node for initial container placement.The 

cluster of three nodes is created by using an Oracle VM virtual 

box. This cluster contains 3 nodes, of which one is the 

manager and the other two are worker nodes. Currently only 

considers CPU utilization.The manager node has 4GB RAM 

and 2 CPU cores. At the same time, worker nodes have 3GB 

RAM and 2 CPU cores.   

 

The algorithm uses Docker Python API for container 

placement if a set of Nodes are denoted as  {n1,n2… ni}. 

The resource considered is the CPU  

Total CPU on node ni is: Ci  

Total no. of containers on node i is Ki 

Resource used by container j on node i are  𝑅𝐶𝑖
𝑗
. 

So total resource(CPU)  used by all containers running 

on node i is given by equation 1. 

                𝑈𝐶𝑖  =  
∑ 𝑅𝐶𝑖

𝑗𝑘𝑖
𝑗=1

𝐶𝑖
                 (1) 

 

Then, the algorithm is going to deploy a container on a 

node having minimum CPU utilization, as shown in Equation 

2. 

Min(UC)        (2) 

4.4. Proposed Algorithm 

Algorithm 

Step 1. Start the Docker Swarm Cluster 

Step 2. For each service in the list, do steps 3 to 8 

Step 3. For each node ni in the cluster 

Step 4. For each container running on the node 

Step 5. Find the CPU used by container j on node i  𝑅𝐶𝑖
𝑗
 

Step 6. Total CPU used by all containers on node ni is  

𝑈𝐶𝑖=  
∑ 𝑅𝐶𝑖

𝑗𝑘𝑖
𝑗=1

𝐶𝑖
 

Step 7. Select a node having minimum UC. 

Step 8. Create a service for the image and place its container 

on the selected node 



Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024 

 

63 

4.5. Proposed Architecture 

 
Fig. 2 Architecture of placement of container

Figure 2 describes the architecture of the proposed model. 

Here Docker Swarm cluster with 3 nodes is created. As 

factorials utilize more CPU in calculations, A Python script is 

created to find factorials of 5lac and 10lac. Then, it is 

converted to a Docker image and pushed to the Docker Hub. 

Now, the services from the same image are created and run on 

Docker cluster nodes selected by the proposed algorithm. To 

get the load of cluster nodes and other matrices, Prometheus 

and Graphana are used and deployed by using the 

Swarmprom[26] stack. Swarmprom has various monitoring 

service containers that are running on all three nodes to 

monitor the cluster. To see the workings of the inbuilt spread 

strategy in the Docker swarm cluster, some experiments are 

done. 

4.6. Experiments and Results 

Initially, nodes of the cluster have had the following 

containers (Swarmprom) running on them (Figure 3). 

Now the service of factorial of 10lac is created from its 

image. The container of it is placed on the Worker1 node by 

default strategy (Figure 4). 

Fig. 3  Initial Docker swarm node status 

Then, to understand the working of the default strategy of 

Docker Swarm, 12 services of nginx image are created, and 

Docker Swarm does container placement is observed in 

experiment 1 (Figure 5). 

Fig. 4 Placement of factorial 10lac service container on worker1 

Fig. 5  Placement of Nginx services 

(using default strategy to demonstrate the behaviour of spread) 
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As shown in Figure 5 initially, Worker2 has 3 containers 

of Swarmprom stack, which are the least among all nodes, so 

nginx1 and nginx2 services containers are placed on Worker2. 

Now, irrespective of the container of factorial 10lac CPU 

Usage on the Worker2 node, other Nginx containers are 

distributed between the Worker2 and Worker1 nodes. So 

spread will not consider the current CPU usage on the node 

while placing a new container.To compare the proposed 

minimum CPU usage strategy with spread, the CPU load is 

generated by creating 3 services of factorial 5lac and 1 service 

of factorial 10lac in experiment 2. 

By using the Spread Strategy of the Docker swarm, the 

following distribution of containers is obtained among Docker 

cluster nodes (Figure 6).As shown in Figure 6, all 4 containers 

are distributed among Worker1 and Worker2 Node. As the 

manager contains 8 number of Docker Swarm monitoring 

Containers, no new container is placed on it.  

Now, by using Graphana, the CPU usage of all nodes 

while using the Spread strategy is obtained (Table 3) and 

plotted in the graph (Figure 7). CPU usage by the proposed 

strategy is shown in Table 4 and plotted in Figure 9. 

Fig. 6 Placement of 1 factorial 10lac service and 3 factorial 5lac service container(Using Default strategy) 

Table 3. Container Utilization having 1 10lac factorial and 3 5lac factorial services containers (Default Strategy) 

Time (seconds) 0 90 180 270 360 450 540 630 720 810 900 

Manager(%) 20.233 18.322 20.333 10.567 32.667 12.5 12.3 12.318 24.377 15.445 13.539 

Worker1(%) 100 97.2 93.4 50.027 99.7 51.533 97.6 55.303 96.299 85.874 95 

Worker2(%) 56.17 99.5 99.067 98.967 67.349 88.299 58.003 99.8 85.916 98.633 96.667 
 

Table 4. Container Utilization having 1 10lac factorial and 3 5lac factorial services containers (Proposed Strategy) 

Time (Seconds) 0 90 180 270 360 450 540 630 720 810 900 

Manager(%) 53.95 56.397 54.036 54.282 39.499 53.172 54.661 58.164 58.317 53.907 58.512 

Worker1(%) 99.339 79.583 91.026 85.77 93.45 96.071 79.496 95.014 97.031 92.483 88.933 

Worker2(%) 60.371 59.386 61.595 58.705 61.708 59.153 59.872 60.204 59.49 61 59.202 
 

Fig. 7  CPU Usage of all Nodes having 1 10lac factorial and 3  5lac 

factorial services containers (Using Default strategy) 

As seen in Figure 7, the Load is unbalanced among the 

three nodes Manager node has having least CPU Load where, 

whereas Worker1 and Worker2 are overloaded. Now some 

services placement is done by the proposed strategy in Figure 

8.  

Fig. 8 Placement of 1 factorial 10lac service and 3 factorial 5lac service 

container(Using Proposed strategy) 
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As shown in Figure 8, the new containers are distributed 

among all nodes according to the current CPU load of nodes. 

Factorial 5lac services 1 and 3 are running on Worker1, and 

Factorial 5lac Service 2 is running on Manager. Again, the 

Factorial 10lac service is running on the Worker2 node. Figure 

9 shows the CPU load is almost balanced among all three 

nodes by the proposed strategy. Completion time of containers 

of each service is calculated in both cases i.e. by using the 

Spread strategy and the proposed approach. Table 5 shows the 

Completion time of four containers of factorial 5lac services 

1,2, 3 and 2 containers for factorial 10lac service and the 

average completion time using both the default and proposed 

placement approaches.   

Figure 10 shows the graphical representation of the above 

values of Completion Time. As shown in Figure 10, four 

containers of fact_5l_1, fact_5l_2, and fact_5l_3 services and 

two containers of fact_10l services. As shown in the result, 

minor improvement in completion time is found as only 

factorial services are running. Another experiment, 3, is done 

in order to see the effect of resource-based placement. Now, 

mixed services are taken, and the results are obtained. Two 

nginx services named Nginx and Nginx1 are created. Created 

5 tasks (containers) for each of these services and placed them 

on the manager and Worker1 Node by using placement 

constraint of node id in Docker swarm as shown in following 

Figure 11. 

Fig. 9 CPU Usage of all Nodes having 1 10lac factorial service and 3 5lac 

factorial service container(Using Proposed strategy) 

Table 5. Completion time of containers of factorial services  

(Experiment 2) 

 Services 
Containers 

AVG 
1 2 3 4 

P
ro

p
o

se
 

S
tr

a
te

g
y
 

Fact_5l_1 145 142 136 139 140.5 

Fact_5l_2 125 137 133 129 131 

Fact_5l_3 148 142 147 142 144.75 

Fact_10l 485 582 - - 533.5 

D
ef

a
u

lt
 

S
tr

a
te

g
y
 

Fact_5l_1 132 144 150 151 144.25 

Fact_5l_2 147 142 147 152 147 

Fact_5l_3 153 140 140 147 145 

Fact_10l 710 660 - - 685 

 
Fig. 10 Comparison of completion time for factorial 5lac and 10lac  

services containers (Using default strategy and proposed strategy ) 

Now, three services for factorial of 5lac are created and 

placed by default spread strategy of the Docker Swarm. All of 

the three services are placed on the worker2 node (Figure 12) 

because the manager node has having total of 13 containers of 

Swarmprom and Ngnix services, and the Worker 1 node has 

having total of 8 containers of Swarmprom and Ngnix1 

services. Worker 2 has only 3 containers of Swarmprom, so it 

has having least number of running containers, and all new 

Factorial 5lac services are placed on the Worker 2 node. 

Fig. 11 Placement of Nginx services containers (Using placement 

criteria on manager and worker1) 

Fig. 12 Placement of Nginx, Nginx1 services and 3 factorial 5lac services 

containers (Nginx and Ngnix1 services are placed using placement 

criteria on node manager and worker1 and Factorial services are placed 

using Default strategy) 
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Table 6. CPU Utilization of nodes having 5 Nginx, 5Nginx1 and 3 Factorial 5lac services (Using Default Strategy) 

Time(Seconds) 0 90 180 270 360 450 540 630 720 810 900 

Manager(%) 12.922 6.933 61.867 12.954 13.806 25.228 16.3 9.152 11.327 9.006 9.748 

Worker1(%) 19.8 23.033 20.611 16.672 14.933 14.933 16.356 12.933 14.194 12.798 13.6 

Worker2(%) 85 99.667 99.767 98.6 99.767 96.833 98.267 99.8 100 99.933 98.767 

Table 7. CPU Utilization of nodes having 5 Nginx, 5Nginx1 and 3 Factorial 5lac services (Using Proposed Strategy)  

Time(Seconds) 0 90 180 270 360 450 540 630 720 810 900 

Manager(%) 95.672 67.508 68.916 69.771 62.099 66.672 85.09 93.667 74.375 59.091 84.852 

Worker1(%) 55.138 53.064 52.912 47.745 52.662 55.063 52.046 51.716 50.129 52.825 51.48 

Worker2(%) 73.103 51.404 52.63 38.648 57.164 52.956 53.221 53.34 51.631 51.486 51.33 
 

The CPU load Utilization taken from Prometheus and 

Graphana for the Default strategy of Experiment 3 is shown in 

Table 6. and its graphical representation is in Figure 13. As 

displayed in Figure 13, the Worker2 node is overloaded, as all 

CPU-oriented tasks are running on it. Now, proposed 

placement criteria are used as shown in equation 1 to find out 

minimum CPU utilization and then place tasks accordingly. 

So, the factorial 5lac services are distributed among all three 

nodes, as shown in Figure 14. The CPU Utilization is shown 

in Table 7 and plotted in Figure 15. As shown in Figure 15, 

CPU load is more evenly distributed among all nodes. The 

manager has the highest CPU utilization due to its monitoring 

tasks container. But load balancing is found among all cluster 

nodes. 

Fig. 13 CPU usage of all nodes having 5 Nginx, 5 Nginx1 and 3 factorial 

5lac services containers(Using default strategy) 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14 Placement of Nginx, Nginnx1 services and 3 factorial 5lac 

services containers (Nginx and Ngnix1 services are placed using 

placement criteria on node manager and worker1 and Factorial services 

are placed using Proposed Strategy) 

Fig. 15 CPU usage of all nodes having 5 Nginx, 5 Nginx1 and 3 factorial 

5lac services containers (Nginx and Ngnix1 services are placed using 

placement criteria on node manager and worker1 and Factorial services 

are placed using proposed strategy) 

Table 8. Completion time of containers of factorial services    

(Experiment 3) 

Services 
Containers 

AVG 
1 2 3 4 

P
ro

p
o

se
d

 

S
tr

a
te

g
y
 Fact_5l_1 108 123 115 126 118 

Fact_5l_2 119 121 122 124 121.5 

Fact_5l_3 111 119 117 120 116.75 

Average Completion Time of 4 Containers 

(Proposed Strategy) 
118.75 

D
ef

a
u

lt
  

S
tr

a
te

g
y
 Fact_5l_1 160 187 177 152 169 

Fact_5l_2 164 184 157 162 166.75 

Fact_5l_3 161 181 160 161 166.75 

Average Completion Time of 4 containers 

(Default Strategy) 
167.17 

Now, the completion time of the container of service is 

calculated. Table 8 shows the completion time of 4 containers 

for each factorial 5lac 1, 2 and 3 services. The major 

difference is seen in Completion time. The proposed strategy 

(minimum CPU utilization) shows improvement in 

completion time as compared to Docker's default Spread 

strategy. 

The average in Table 8 shows containers in the proposed 

strategy are taking almost 49 seconds less time than the default 

Spread strategy. The Graphical representation of Table 8 is 

shown in Figure 16. 
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Fig. 16 Comparison of completion time for  3 factorial 5lac  services 

containers (Using default strategy and proposed strategy ) 

5. Conclusion  
In this paper container placement scheme base on 

resource usage is proposed. The proposed approach considers 

resource usage by current task and availability of resources on 

the node.  

It is compared with the existing spread scheme of the 

docker swarm cluster.The improvements in Completion time 

and overall performance of service are found. It also has a 

more balanced CPU load across all nodes compared to spread.  

Right now, the algorithm is only considering the CPU 

resource of Docker Swarm cluster nodes.  In the future 

algorithm can be improved by including memory and other 

parameters for container placement in the Docker swarm 

cluster.

References  
[1] Cloud Ecosystem, 2021. [Online]. Available: https://www.includehelp.com/cloud-computing/cloud-ecosystem.aspx 

[2] Wei-Tek Tsai, Xin Sun, and Janaka Balasooriya, “Service-Oriented Cloud Computing Architecture,” 2010 Seventh International 

Conference on Information Technology: New Generations, Las Vegas, NV, USA, pp. 684–689, 2010. [CrossRef] [Google Scholar] 

[Publisher Link] 

[3] Neeraj Kumar et al., “Renewable Energy-Based Multi-Indexed Job Classification and Container Management Scheme for Sustainability 

of Cloud Data Centers,” IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp. 2947-2957, 2019. [CrossRef] [Google Scholar] 

[Publisher Link] 

[4] Rabindra K. Barik et al., “Performance Analysis of Virtual Machines and Containers in Cloud Computing,” 2016 International Conference 

on Computing, Communication and Automation, Greater Noida, India, pp. 1204–1210, 2016. [CrossRef] [Google Scholar] [Publisher 

Link] 

[5] IBM Market Development & Insights, Containers in the Enterprise Rapid Enterprise Adoption Continues, 2020. [Online]. Available: 

https://www.ibm.com/downloads/cas/VG8KRPRM 

[6] Understanding the Docker Internals, Nitin AGARWAL 2017. [Online]. Available:  

https://medium.com/@BeNitinAgarwal/understanding-the-docker-internals-7ccb052ce9fe 

[7] Kubernetes Documentation, Overview | Kubernetes, 2023. [Online]. Available : https://kubernetes.io/docs/concepts/overview/ 

[8] Kubernetes Doc, Concepts | Kubernetes, 2020. [Online]. https://kubernetes.io/docs/concepts/ 

[9] Maria Rodriguez, and Rajkumar Buyya, “Container Orchestration with Cost-Efficient Autoscaling in Cloud Computing Environments,” 

Handbook of Research on Multimedia Cyber Security, IGI global, pp. 190-213, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Kubernetes Components, 2023. [Online]. Available: https://kubernetes.io/docs/concepts/overview/components/ 

[11] Swarm Mode Overview, Docker. Docs. [Online]. Available: https://docs.docker.com/engine/swarm/ 

[12] Benjamin Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center,” 8th USENIX Symposium on 

Networked Systems Design and Implementation, 2011. [Google Scholar] [Publisher Link] 

[13] Docker Overview, Docker Docs. [Online]. Available: https://docs.docker.com/get-started/overview/ 

[14] Docker Architecture, Docker Docs. [Online]. Available: https://docs.docker.com/get-started/overview/#docker-architecture 

[15] Scheduling Services on a Docker Swarm Mode Cluster, 2017. [Online]. Available:  

https://semaphoreci.com/community/tutorials/scheduling-services-on-a-docker-swarm-mode-cluster 

[16] Han Li et al., “A Service Performance Aware Scheduling Approach in Containerized Cloud,” 2020 IEEE 3rd International Conference on 

Computer and Communication Engineering Technology, Beijing, China, pp. 194-198, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Yang Hu et al., “ECSched: Efficient Container Scheduling on Heterogeneous Clusters,” Euro-Par 2018: Parallel Processing: 24th 

International Conference on Parallel and Distributed Computing, Turin, Italy, pp. 365-377, 2018. [CrossRef] [Google Scholar] [Publisher 

Link] 

[18] Chanwit Kaewkasi, and Kornrathak Chuenmuneewong, “Improvement of Container Scheduling for Docker Using Ant Colony 

Optimization,” 2017 9th International Conference on Knowledge and Smart Technology, Chonburi, Thailand, pp. 254-259, 2017. 

[CrossRef] [Google Scholar] [Publisher Link] 

 

 

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

5l_1

5l_2

5l_3

5l_1

5l_2

5l_3

Time (in Seconds)

D
ef

a
u

lt
 S

tr
a

te
g

y

Completion Time

Container4 Container3 Container2 Container1

O
u

r
S

tr
a

te
g

y

https://www.includehelp.com/cloud-computing/cloud-ecosystem.aspx
https://doi.org/10.1109/ITNG.2010.214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Service-Oriented+Cloud+Computing+Architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/5501650
https://doi.org/10.1109/TII.2018.2800693
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Renewable+Energy-based+Multi-Indexed+Job+Classification+and+Container+Management+Scheme+for+Sustainability+of+Cloud+Data+Centers&btnG=
https://ieeexplore.ieee.org/abstract/document/8278252
https://doi.org/10.1109/CCAA.2016.7813925
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Analysis+of+Virtual+Machines+and++Containers+in+Cloud+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/7813925
https://ieeexplore.ieee.org/abstract/document/7813925
https://doi.org/10.4018/978-1-7998-2701-6.ch010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Containers+Orchestration+with+Cost-Efficient+Autoscaling+in+Cloud++Computing+Environments+&btnG=
https://www.igi-global.com/chapter/container-orchestration-with-cost-efficient-autoscaling-in-cloud-computing-environments/253033
https://kubernetes.io/docs/concepts/overview/components/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mesos%3A+A+Platform+for+Fine-Grained+Resource+Sharing+in+the+Data+Center&btnG=
https://www.usenix.org/legacy/event/nsdi11/tech/full_papers/Hindman.pdf
https://doi.org/10.1109/CCET50901.2020.9213084
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Service+Performance+Aware+Scheduling+Approach+in+Containerized+Cloud&btnG=
https://ieeexplore.ieee.org/document/9213084
https://doi.org/10.1007/978-3-319-96983-1_26
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ECSched%3A+Efficient+Container+Scheduling+on+Heterogeneous+Clusters&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-96983-1_26
https://link.springer.com/chapter/10.1007/978-3-319-96983-1_26
https://doi.org/10.1109/KST.2017.7886112
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improvement+of+Container+Scheduling+for+Docker+using+Ant+Colony+Optimization&btnG=
https://ieeexplore.ieee.org/abstract/document/7886112


Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024 

 

68 

[19] Kapil N. Vhatkar, and Girish P. Bhole, “Optimal Container Resource Allocation in Cloud Architecture: A New Hybrid Model,” Journal 

of King Saud University - Computer and Information Sciences, vol. 34, no. 5, pp. 1906–1918, 2022. [CrossRef] [Google Scholar] 

[Publisher Link] 

[20] Yuqi Fu et al., “Progress-Based Container Scheduling for Short-Lived Applications in a Kubernetes Cluster,” 2019 IEEE International 

Conference on Big Data, Los Angeles, CA, USA, pp. 278–287, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Yanal Alahmad, Tariq Daradkeh, and Anjali Agarwal, “Availability-Aware Container Scheduler for Application Services in Cloud,” 2018 

IEEE 37th International Performance Computing and Communications Conference, Orlando, FL, USA, pp. 1–6, 2018. [CrossRef] [Google 

Scholar] [Publisher Link] 

[22] Yanghu Guo, and Wenbin Yao, “A Container Scheduling Strategy Based on Neighborhood Division in Micro Service,” NOMS 2018 - 

2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, pp. 1–6, 2018. [CrossRef] [Google Scholar] 

[Publisher Link] 

[23] Rong Zhang et al., “A Genetic Algorithm-Based Energy-Efficient Container Placement Strategy in CaaS,” IEEE Access, vol. 7, pp. 

121360–121373, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Abdulelah Alwabel, “A Novel Container Placement Mechanism Based on Whale Optimization Algorithm for CaaS 

Clouds,” Electronics, vol. 12, no. 15, pp. 1-19, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Zakariyae Bouflous, Mohammed Ouzzif, and Khalid Bouragba, “Resource-Aware Least Busy (RALB) Strategy for Load Balancing in 

Containerized Cloud Systems,” International Journal of Cloud Applications and Computing, vol. 13, no. 1, pp. 1-14, 2023. [CrossRef] 

[Google Scholar] [Publisher Link] 

[26] Swarmprom, 2021. [Online]. Available: https://github.com/stefanprodan/swarmprom 

 

 

 

 

 

 

 

 
 

https://doi.org/10.1016/j.jksuci.2019.10.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+container+resource+allocation+in+cloud+architecture%3A+A+new+hybrid+model&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157819307190
https://doi.org/10.1109/BigData47090.2019.9006427
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Progress-based+Container+Scheduling+for+Short-lived+Applications+in+a+Kubernetes+Cluster&btnG=
https://ieeexplore.ieee.org/abstract/document/9006427/
https://doi.org/10.1109/PCCC.2018.8711295
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Availability-Aware+Container+Scheduler+for+Application+Services+in+Cloud&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Availability-Aware+Container+Scheduler+for+Application+Services+in+Cloud&btnG=
https://ieeexplore.ieee.org/abstract/document/8711295
https://doi.org/10.1109/NOMS.2018.8406285
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Container+Scheduling+Strategy+Based+on++Neighborhood+Division+in+Micro+Service&btnG=
https://ieeexplore.ieee.org/abstract/document/8406285
https://doi.org/10.1109/ACCESS.2019.2937553
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Genetic+Algorithm-Based+Energy-Efficient+Container+Placement+Strategy+in+CaaS&btnG=
https://ieeexplore.ieee.org/abstract/document/8813096
https://doi.org/10.3390/electronics12153369
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Container+Placement+Mechanism+Based+on+Whale+Optimization+Algorithm+for+CaaS+Clouds&btnG=
https://www.mdpi.com/2079-9292/12/15/3369
https://doi.org/10.4018/IJCAC.328094
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource-Aware+Least+Busy+%28RALB%29+Strategy+for+Load+Balancing+in+Containerized+Cloud+Systems&btnG=
https://www.igi-global.com/article/resource-aware-least-busy-ralb-strategy-for-load-balancing-in-containerized-cloud-systems/328094

