
International Journal of Engineering Trends and Technology Volume 72 Issue 7, 58-68, July 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I7P106 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Harmonizing Heterogeneous Hosts: A Strategic

Framework for Docker Container Placement

Optimization

Jalpa M. Ramavat1, Kajal S. Patel2

1Gujarat Technological University, Gujarat, India.
2Vishawakarma Government Engineering College, Gujarat, India.

1Corresponding Author : jalpa.ramavat.2012@vgecg.ac.in

Received: 23 February 2024 Revised: 15 May 2024 Accepted: 10 June 2024 Published: 26 July 2024

Abstract - Containerized applications are self-contained units of code executed within isolated environments called containers,

encompassing all necessary dependencies like libraries and configuration files. Containerization gives portability, scalability,

and efficiency. So, the rise in containerization will also increase the use of orchestration tools like Docker, Kubernetes, and

others. Docker has simple deployment and is suitable for small numbers of containers. Docker Swarm is a management tool for

Docker containers. Docker Swarm uses a spread strategy to place containers of services in a Docker cluster. Spread distributes

containers evenly throughout the Docker swarm cluster, but load balancing in nodes with varying resources could be improved.

So, a placement strategy is developed in this paper that considers the available resources of the node while placing a container

on it. The results show improvements in load balancing and the completion time of service containers.

Keywords - Cloud computing, Containerization, Container scheduling, Docker swarm, Orchestration, Recourses, Spread

strategy.

1. Introduction
Cloud computing continues to dominate the IT landscape,

providing scalable and on-demand access to computing

resources, enabling organizations to enhance agility and

efficiency in deploying and managing applications. The cloud

ecosystem has diverse independent components such as

containers, virtual machines, orchestrations, load balancers,

applications, and security that function concurrently to

provide the services [1][2]. Containers are ubiquitous in cloud

computing, offering lightweight, portable, and scalable

solutions. They empower microservices architectures and

enhance resource efficiency. Containers drive agility and

efficiency, enabling seamless application deployment and

scaling. Containers have an advantage over standard virtual

machines. This comparison is discussed in Section 2. With

support from orchestration platforms like Kubernetes, Docker

Swarm, Mesos, etc, containers facilitate easy management,

rapid development, and robust isolation, fostering a dynamic

and scalable cloud environment. Some famous orchestration

tools are discussed in Section 3. Among this orchestration

platform Docker Swarm offers vital features such as high

availability, scalability, service discovery, load balancing, and

security. Its seamless integration with Docker, user-friendly

interface, and straightforwardness make it a compelling option

for developers and organizations aiming to effectively manage

and deploy containerized applications. The container

placement and scheduling in Docker Swarm are discussed in

Section 4.1. Docker Swarm Mode currently employs only the

spread scheduling approach. This method distributes tasks

evenly among the nodes in the cluster. When a new container

arrives, it is assigned to the node with the fewest active

containers without considering the node's resource utilization.

As long as a node has enough resources to run a container and

has the fewest running containers, the new container is placed

there, regardless of the node's current resource load.

Additionally, in Docker Swarm Mode, the scheduler attempts

to assign new tasks to nodes that are not already executing a

task for the same service. Suppose every cluster node is

running at least one task for the service. In that case, the

scheduler then selects the node with the fewest tasks related to

that service before evaluating the overall task distribution

across all nodes. Various researches have been done to

optimize the container placement which are discussed in

section 4.2. A short comparison of it is given in the table 1.

The dynamic scheduling technique, in conjunction with the

service performance framework for containerized clouds, is

discussed in [16]. An ACO-based algorithm is used in [17],

which improves resource utilization and performance. A

hybrid form of the Lion Algorithm (LA) and the Whale

Optimization Algorithm (WOA) was created as the Whale

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

59

Random update assisted Lion Algorithm (WR-LA), and it

showed improvement in cost reduction [19]. The Makespan

and completion time are improved, and results are compared

to Kubernetes Scheduler by considering current and future

resource utilization in Procon [20]. Availability-Aware

container scheduling strategy is used in [21], and it improves

application service availability in the cloud. To improve load

balancing and response time algorithm is proposed that

divides the containers into neighborhoods and improves the

particle swarm algorithm [22]. To improve energy efficiency

A genetic algorithm with mutation operations and control

parameters changed is implemented in MATLAB [23]. Again,

power consumption is improved in [24] by the Dynamic

Container Placement (DCP) mechanism. The Resource-

Aware Least Busy (RALB) [25] method is used to do load

balancing in a containerized cloud. In most of the above work

[19] [21] [23] [24] [25], real-time implementation is required.

This research tries to improve load balancing and performance

of service by decreasing the completion time of containers.

The proposed model, Algorithm and Architecture of the

system is discussed in Sections 4.3,4.4 and 4.5, respectively.

2. VM vs Container
Massively popular technology virtualization is possible

due to virtual machines. The VMs are Infrastructure as a

service (IaaS) that share the physical device with the host OS

[4]. It requires its own physical memory and space. The fact

that VMs work with the help of virtualization technology is

not new. They use VM-specific software applications to

recreate the virtual hardware. Hence, this way a hypervisor

manages the resources like storage and memory. Containers

are defined to be lightweight; as a result, they deliver higher

efficiency. Unlike VMs, containers are platform-as-a-service

(PaaS) components that work on the host OS. Recently, there

has been a staggering peak in the development of

containerized software. As per [5], nearly 79% of applications

had implemented internal containerization in 2020. Since

containers are capable of delivering real-time and real-world

benefits, they are preferred over VMs. Under the hood,

containers use a Linux utility called cgroups for resource

sharing and a namespace for isolation [6]. Table 1 shows the

comparison of Virtual Machine and Container.

3. Orchestration Tools
As more and more applications involve containers, it

becomes essential to scale them rapidly. There was a demand

for software that automatically regulates container scaling and

management. Container orchestration is a tool designed to

drive thousands of distributed containers. A few popular

container orchestrators are Docker Swarm, Kubernetes,

Apache Mesos, OpenShift, and Nomad.

3.1. Kubernetes

Kubernetes was introduced by Google in 2014. It is also

known as K8s. It is an open-source orchestration tool for PaaS.

It provides features like load balancing, deployment, and

scalability, etc. It operates on a master and slave model to

manage containerized applications [7]. It provides services

like load balancing, storage management, rollouts, rollbacks,

and self-healing. Pod is the smallest and fundamental unit of

Kubernetes. A pod is a collection of one or more closely

related containers that are placed next to one other and share

resources. Alongside containers, pods encapsulate storage

resources, a network IP, and a set of configurations dictating

the operational aspects of the pod's container(s). The primary

purpose of a pod is to execute a singular instance of an

application; this facilitates horizontal scaling by utilizing

multiple pods if needed. Information such as the CPU,

memory, and storage for a container can be specified at the

time of creating the pod. The scheduler uses this information

to determine the optimal placement of pods. The allocation of

compute resources can be expressed either as a requested

amount or as a constraint on the maximum consumption

allowed by the container [9]. The master consists of the API

server, scheduler, controller manager, and Etcd for

configuration storage. Worker nodes consist of Kubelet,

Kube-proxy, and a container runtime and run containerized

applications [10].

Table 1 . VM Vs. Container [3]

Aspect
Containers

(CoaaS Model)

Virtual Machines

(VMs)

Kernel

Sharing

All containers share a single OS kernel with varying

abstraction levels.

VMs require their own virtualized network,

BIOS, CPU, and OS.

Usage
Preferred in PaaS and SaaS due to their lightweight nature

and quick startup.

Typically less favored in PaaS and SaaS due

to heavier resource overhead.

Size and

Performance

Smaller in size, leading to quick startup, improved

performance, and better compatibility.

Larger size, slower startup times, and

potentially higher resource consumption.

Migration

Characteristics
Supports lightweight and energy-efficient migration.

Requires hardware emulation for migration,

potentially less energy-efficient.

Live System

Updates

Facilitates live system updates using the underlying host

OS, eliminating the need for hardware emulation.

Updates might involve

more complex procedures due to the entire

VM structure.

Energy

Consumption

Container migration consumes less energy with minimal

resource wastage.

VM migration may result in higher energy c

onsumption and resource utilization.

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

60

Fig. 1 Docker client-server architecture

3.2. Docker Swarm

Swarm serves as Docker's native platform for

orchestrating containerized applications. It involves a

collection of machines, whether physical or virtual, working

collaboratively to run Docker applications. The Swarm

Manager takes charge of swarm operations, overseeing

container interactions across various host machines (nodes).

Docker Swarm maximizes the advantages of containers,

facilitating the creation of highly portable and flexible

applications, all the while ensuring redundancy for high

application availability. Swarm managers are responsible for

allocating workloads to the most suitable hosts based on the

load of the node. The Swarm Manager manages scaling by

adding or removing worker tasks to maintain the cluster's

intended state [11].

3.3. MesOS

Apache Mesos is an open-source cluster manager used for

data center environments. It deals with the difficulties of

sharing resources across a range of workloads. Mesos

provides fine-grained resource allocation and scalability. Its

architecture consists of a master and slaves. A master for

resource allocation and multiple slaves for task execution.

Developers can write custom schedulers for their applications

using the framework API. Mesos supports various resource

allocation policies and offers fault tolerance. Real-world

evaluations show its efficiency. Mesos is a scalable and

extensible platform for resource sharing, benefiting data

center environments and diverse workloads [12].

3.4. HashiCorp Nomad

Nomad is an open-source scheduler and orchestrator

designed for deploying and managing applications at scale. It

supports a range of workloads, including Docker containers,

VMs, and standalone applications. It supports multiple

workload types (containers, VMs, and more). It is a simple and

flexible job specification. It has built-in high availability and

fault tolerance[13].

4. Docker Container Placement and Scheduling

in Docker Swarm
4.1. Docker Containers

Docker is open-source software for creating and running

container applications. Docker mainly enforces client and

server architecture. Hence, it has three central pieces -

daemon, client, and REST API, which simultaneously are

known as Docker Engine [13]. The client works as user-end

software that allows users to connect to the daemon. The

daemon is responsible for all the back-end handling of

container creation, execution, and deployment. Moreover, the

client and daemon communicate via the REST API interface.
Figure 1 presents the architectural design of the Docker

system [14]. The Docker daemon includes containers, images,

configuration files, networking settings, and storage. While

the daemon listens for Docker API, the docker client sends the

request for the daemon. A Docker image is a layered read-only

file that has the application software. Similarly, a container is

an instance of the image. To meet the demands, Docker

programmed Docker Swarm to govern a cluster of Docker

nodes. Docker Swarm is the implementation of the Docker

project called SwarmKit, which provides the core

orchestration layer for Docker. Spread is the only scheduling

approach that Swarm Mode presently uses [15]. In this

approach, the tasks are distributed equally among the cluster's

nodes. Therefore, when a new container arrives, it is

assigned to the node with the fewest running containers.

The resource utilization of the node is not considered. So

if there are enough resources available on a selected node to

run a container and the node has having least number of

running containers, then it places the new container to the

node irrespective of its current resource utilization. Another

placement situation in Docker swarm mode is that the

scheduler aims to assign a new task to a node, prioritizing

nodes that are not currently executing a task for the same

service. If all cluster nodes have at least one task for the

service, the scheduler chooses the node with fewer tasks

related to the same service before considering the overall task

User
Docker Daemon

(dockered)

Manages

Docker client

(docker)

Communication

via

REST API

Containers Execution Images

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

61

distribution across all nodes. This scheduling approach is

colloquially known as "HA scheduling" or High Availability

scheduling [15]. These situations might lead to load imbalance

within cluster nodes.

4.2. Related Work

H. Li [16] provides a thorough approach to tackling the

problems associated with service performance by using

dynamic scheduling techniques in conjunction with the

service performance framework for container clouds in the big

data era. Through the integration of real-time fundamental

resource monitoring, service delays, and dynamic

modifications grounded in particle swarm optimization, the

framework seeks to optimize container-based service

deployment under complex conditions. It is crucial to strike

the ideal balance because the algorithm is sensitive to the

weight assignment. In [17] uses a graph-based approach by

mapping the scheduling problem to a graphical model and

representing the service placement as a min-cost flow problem

(MCFP), which allows encoding multi-resource requirements

and affinities to other containers. ECSched presented

concurrent container scheduling in heterogeneous clusters and

showed that it enhanced the performance over queue-based

container scheduling. The complexity of the algorithm is high

and requires more study on resource dynamics and container

dependencies. C. Kaewkasi et al. [18] describe an ACO and

show how to utilize it in practice to create a new container

scheduler for Docker. The ACO-based algorithm distributes

application containers among Docker hosts in order to balance

resource utilization overall, which improves application

performance over the current greedy scheduler. The ACO-

based algorithm outperformed the greedy one, according to

the experimental data. It resulted in an approximate 15%

improvement in overall application performance. But, the

fine-tuning of parameters is required. K. N. Vhatkar et al. [19]

introduce the Whale Random update assisted Lion Algorithm

(WR-LA), which is the hybrid form of the Lion Algorithm

(LA) and Whale Optimization Algorithm (WOA). With the

use of this algorithm, they can get advantages of both

algorithms by incorporating the WOA in LA in place of the

fertilization function. Performance evaluation shows that WR-

LA outperforms other models, demonstrating a cost reduction

of 9.58% to 21.63% compared to SW-GA, SH-GA, GM-GA,

LA, and WOA at various iterations. They simulated the

algorithm. Actual environment container behaviour may be

different and also, the computational time might increase. Y.

Fu et al. [20] introduced the ProCon container placement

scheme in the Kubernetes cluster. Procon considers both

current and future resource utilization. The author introduces

two algorithms: one for calculating the contention rate for

workers based on resource utilization and remaining time, and

the other places containers on available workers having lower

contention rates. Procon demonstrates significant reductions

in completion time (up to 53.3%) and improvement in

Makespan (up to 37.4%) compared to the Kubernetes in-built

scheduler. It requires monitoring the application and also

increases response time. Y. Alahmad et al.[21] proposed an

Availability-Aware container scheduling strategy. It improves

application service availability in the cloud. Availability is

measured by Mean Time To Fail (MTTF) and Mean Time To

Repair (MTTR). The strategy finds availability for VMS and

Hosts, selects them based on high availability, and places

containers based on availability, functional resource

constraints and dependency constraints. This strategy achieves

the highest service availability and maintains acceptable host

CPU utilization. Implementation is done on Cloudsim with

simulated workloads. The simulated environment may have

different behaviour than the actual environment, so the

algorithm must be implemented in a real cloud environment.

Y. Guo [22] proposed a method which focuses on Load

balancing and Response time in order to improve the system

performance. This algorithm divides the containers into

neighbourhoods and improves the particle swarm algorithm in

terms of results. It improves the efficiency at a rate of 20 to 25

percent more than commonly used swarm algorithms.

Chen et al. [23] use the Improved Genetic algorithm in

which mutation operation and control parameter is changed. It

has proved more efficient than the particle swarm algorithm,

Conventional GA and first fit algorithm when Virtual machine

resource utilization is high. It is also more efficient than

binpack and spread in terms of energy efficiency. This

algorithm has two mutation functions and also the control

parameter to choose the Mutation operation to be performed

on the data. It only tries to optimize only one objective energy

efficiency. They implemented in a simulation environment of

MATLAB, so implementation in a real cloud environment is

required. Alwabel [24] presents a Dynamic Container

Placement (DCP) mechanism. It is for energy-efficient

management in Container-as-a-Service (CaaS) cloud systems.

It extends the Whale Optimization Algorithm (WOA) to

minimize power consumption by optimizing the placement of

containers on virtual machines (VMs) and Physical Machines

(PMs). DCP is compared with IGA (improved genetic

algorithm) and DWO(discrete whale optimization)

mechanisms for homogeneous and heterogeneous cloud

systems. The results show that in homogenous clouds, DCP

reduces the search time by around 50% and consumes

approximately 78% less power. Whereas, in heterogeneous

clouds, DCP reduces search time by around 30% and

conserves power by 85%. More parameters should be

considered for optimization and implemented in the real

environment. Bouflous[25] proposed the Resource-Aware

Least Busy (RALB) method. The main focus of this work is

load balancing in a containerized cloud environment. RALB

optimizes workload distribution by taking container migration

time and server resource capabilities into account. RALB

shows improvement over conventional random algorithms in

terms of performance, resource consumption, and improved

quality of service. However, it must be implemented in a real

scenario. Table 2 shows a short comparison of all the above

work done.

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

62

Table 2. Comparison of container scheduling strategies

Algorithm Key Features Benefits Limitations

Dynamic scheduling

technique

[16]

Service performance framework

using dynamic scheduling and

particle swarm optimization

Resource monitoring and

service delay management

Sensitive to the weight

assignment

ECSched

[17]

Graph-based approach uses a

Min-Cost Flow Problem (MCFP)

Enhanced the performance

over queue-based container

scheduling in a

heterogeneous cluster

The complexity of the

algorithm is high

ACO

[18]

Ant Colony Optimization for

workload scheduling

Improvement in overall

application performance

Fine-tuning of a parameter is

required.

Whale Random update

assisted Lion Algorithm

(WR-LA)[19]

Uses a hybrid form of the Lion

Algorithm (LA) and Whale

Optimization Algorithm (WOA).

Cost Reduction
Implemented in a simulated

environment.

ProCon

[20]

Progress rate estimation.

Considers both current and

future resource utilization.

Reductions in completion

time and improvement in

Makespan

Requires monitoring the

application and also increases

response time. For Short-lived

Containers

Availability-Aware

container scheduling

[21]

Enhances service availability

using MTTF and MTTR

Achieves the highest service

availability and maintains

host CPU utilization

Needs real-world system

implementation

Neighbourhood

division

[22]

Divides the containers into

neighbourhoods and improves the

particle swarm algorithm

Focus on Load balancing

and Response time,

improves the efficiency

Needs real-world system

implementation

Improved GA

[23]

It Improved the genetic algorithm

in which mutation operation and

control parameter is changed.

Improve energy efficiency

Only one parameter is considered:

Needs real-world system

implementation

DCP

[24]

It extends the Whale Optimization

Algorithm (WOA) for dynamic

container placement.

Power savings and reduced

search time.

Needs real-world system

implementation

RALB

[25]

Resource-Aware Least Busy

algorithm for load balancing

Better resource utilization,

improved performance,

enhanced QoS

Needs real-world system

implementation

4.3. Proposed Model

The Spread algorithm does not consider current resource

utilization and may create load imbalance. To overcome this,

some modification in the spread is introduced in the proposed

algorithm. Before placing the container on a node, it checks

the utilization of resources in all the nodes in the cluster and

finds the node with minimum resource utilization. Currently,

the algorithm only considers the CPU utilization of a node.

And find the best node for initial container placement.The

cluster of three nodes is created by using an Oracle VM virtual

box. This cluster contains 3 nodes, of which one is the

manager and the other two are worker nodes. Currently only

considers CPU utilization.The manager node has 4GB RAM

and 2 CPU cores. At the same time, worker nodes have 3GB

RAM and 2 CPU cores.

The algorithm uses Docker Python API for container

placement if a set of Nodes are denoted as {n1,n2… ni}.

The resource considered is the CPU

Total CPU on node ni is: Ci

Total no. of containers on node i is Ki

Resource used by container j on node i are 𝑅𝐶𝑖
𝑗
.

So total resource(CPU) used by all containers running

on node i is given by equation 1.

 𝑈𝐶𝑖 =
∑ 𝑅𝐶𝑖

𝑗𝑘𝑖
𝑗=1

𝐶𝑖
 (1)

Then, the algorithm is going to deploy a container on a

node having minimum CPU utilization, as shown in Equation

2.

Min(UC) (2)

4.4. Proposed Algorithm

Algorithm

Step 1. Start the Docker Swarm Cluster

Step 2. For each service in the list, do steps 3 to 8

Step 3. For each node ni in the cluster

Step 4. For each container running on the node

Step 5. Find the CPU used by container j on node i 𝑅𝐶𝑖
𝑗

Step 6. Total CPU used by all containers on node ni is

𝑈𝐶𝑖=
∑ 𝑅𝐶𝑖

𝑗𝑘𝑖
𝑗=1

𝐶𝑖

Step 7. Select a node having minimum UC.

Step 8. Create a service for the image and place its container

on the selected node

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

63

4.5. Proposed Architecture

Fig. 2 Architecture of placement of container

Figure 2 describes the architecture of the proposed model.

Here Docker Swarm cluster with 3 nodes is created. As

factorials utilize more CPU in calculations, A Python script is

created to find factorials of 5lac and 10lac. Then, it is

converted to a Docker image and pushed to the Docker Hub.

Now, the services from the same image are created and run on

Docker cluster nodes selected by the proposed algorithm. To

get the load of cluster nodes and other matrices, Prometheus

and Graphana are used and deployed by using the

Swarmprom[26] stack. Swarmprom has various monitoring

service containers that are running on all three nodes to

monitor the cluster. To see the workings of the inbuilt spread

strategy in the Docker swarm cluster, some experiments are

done.

4.6. Experiments and Results

Initially, nodes of the cluster have had the following

containers (Swarmprom) running on them (Figure 3).

Now the service of factorial of 10lac is created from its

image. The container of it is placed on the Worker1 node by

default strategy (Figure 4).

Fig. 3 Initial Docker swarm node status

Then, to understand the working of the default strategy of

Docker Swarm, 12 services of nginx image are created, and

Docker Swarm does container placement is observed in

experiment 1 (Figure 5).

Fig. 4 Placement of factorial 10lac service container on worker1

Fig. 5 Placement of Nginx services

(using default strategy to demonstrate the behaviour of spread)

Manger

Node

8 containers of

swarmprom

Nginx12

Nginx12

Worker1

Node

3 Containers of

swarmprom

Contaienr of fact_10l

Nginx3

Nginx5

Nginx7

Nginx9

Nginx11

Worker1 Node

3 Containers of

swarmprom

Contaienr of fact_10l

Nginx3

Nginx5

Nginx7

Nginx9

Nginx11

Worker2

Node

3 Containers of

swarmprom

Nginx1

Nginx2

Nginx4

Nginx6

Nginx8

Nginx10

Worker2 Node

3 Containers of

swarmprom

Nginx1

Nginx2

Nginx4

Nginx6

Nginx8

Nginx10

Manger

Node

8 containers

of

swarmprom

Worker1

Node

3 Containers

of

swarmprom

Worker2

Node

3 Containers

of

swarmprom

Manger

Node

8 containers of

swarmprom

Worker1

Node

3 Containers of

swarmprom

1 container of

fact_10l

Worker2

Node

3 Containers

of swarmprom

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

64

As shown in Figure 5 initially, Worker2 has 3 containers

of Swarmprom stack, which are the least among all nodes, so

nginx1 and nginx2 services containers are placed on Worker2.

Now, irrespective of the container of factorial 10lac CPU

Usage on the Worker2 node, other Nginx containers are

distributed between the Worker2 and Worker1 nodes. So

spread will not consider the current CPU usage on the node

while placing a new container.To compare the proposed

minimum CPU usage strategy with spread, the CPU load is

generated by creating 3 services of factorial 5lac and 1 service

of factorial 10lac in experiment 2.

By using the Spread Strategy of the Docker swarm, the

following distribution of containers is obtained among Docker

cluster nodes (Figure 6).As shown in Figure 6, all 4 containers

are distributed among Worker1 and Worker2 Node. As the

manager contains 8 number of Docker Swarm monitoring

Containers, no new container is placed on it.

Now, by using Graphana, the CPU usage of all nodes

while using the Spread strategy is obtained (Table 3) and

plotted in the graph (Figure 7). CPU usage by the proposed

strategy is shown in Table 4 and plotted in Figure 9.

Fig. 6 Placement of 1 factorial 10lac service and 3 factorial 5lac service container(Using Default strategy)

Table 3. Container Utilization having 1 10lac factorial and 3 5lac factorial services containers (Default Strategy)

Time (seconds) 0 90 180 270 360 450 540 630 720 810 900

Manager(%) 20.233 18.322 20.333 10.567 32.667 12.5 12.3 12.318 24.377 15.445 13.539

Worker1(%) 100 97.2 93.4 50.027 99.7 51.533 97.6 55.303 96.299 85.874 95

Worker2(%) 56.17 99.5 99.067 98.967 67.349 88.299 58.003 99.8 85.916 98.633 96.667

Table 4. Container Utilization having 1 10lac factorial and 3 5lac factorial services containers (Proposed Strategy)

Time (Seconds) 0 90 180 270 360 450 540 630 720 810 900

Manager(%) 53.95 56.397 54.036 54.282 39.499 53.172 54.661 58.164 58.317 53.907 58.512

Worker1(%) 99.339 79.583 91.026 85.77 93.45 96.071 79.496 95.014 97.031 92.483 88.933

Worker2(%) 60.371 59.386 61.595 58.705 61.708 59.153 59.872 60.204 59.49 61 59.202

Fig. 7 CPU Usage of all Nodes having 1 10lac factorial and 3 5lac

factorial services containers (Using Default strategy)

As seen in Figure 7, the Load is unbalanced among the

three nodes Manager node has having least CPU Load where,

whereas Worker1 and Worker2 are overloaded. Now some

services placement is done by the proposed strategy in Figure

8.

Fig. 8 Placement of 1 factorial 10lac service and 3 factorial 5lac service

container(Using Proposed strategy)

0

10

20

30

40

50

60

70

80

90

100

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0

C
P

U
 U

sa
g

e
(i

n
 %

)

Time (in seconds)

CPU Utilization

Manager Worker1 Worker2

Manger Node

8 containers of

swarmprom

Fact_5l_2

Manger Node

8 containers of

swarmprom

Fact_5l_2

Worker1 Node

3 Containers of

swarmprom

Fact_5l_1

Fact_5l_3

Worker1 Node

3 Containers of

swarmprom

Fact_5l_1

Fact_5l_3

Worker2 Node

3 Containers of

swarmprom

Fact_10l

Worker2 Node

3 Containers of

swarmprom

Fact_10l

Manger Node

8 containers of swarmprom

Manger Node

8 containers of swarmprom

Worker1 Node

3 Containers of swarmprom

Fact_5l_1

Fact_5l_2

Worker1 Node

3 Containers of swarmprom

Fact_5l_1

Fact_5l_2

Worker2 Node

3 Containers of swarmprom

Fact_10l

Fact_5l_3

Worker2 Node

3 Containers of swarmprom

Fact_10l

Fact_5l_3

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

65

As shown in Figure 8, the new containers are distributed

among all nodes according to the current CPU load of nodes.

Factorial 5lac services 1 and 3 are running on Worker1, and

Factorial 5lac Service 2 is running on Manager. Again, the

Factorial 10lac service is running on the Worker2 node. Figure

9 shows the CPU load is almost balanced among all three

nodes by the proposed strategy. Completion time of containers

of each service is calculated in both cases i.e. by using the

Spread strategy and the proposed approach. Table 5 shows the

Completion time of four containers of factorial 5lac services

1,2, 3 and 2 containers for factorial 10lac service and the

average completion time using both the default and proposed

placement approaches.

Figure 10 shows the graphical representation of the above

values of Completion Time. As shown in Figure 10, four

containers of fact_5l_1, fact_5l_2, and fact_5l_3 services and

two containers of fact_10l services. As shown in the result,

minor improvement in completion time is found as only

factorial services are running. Another experiment, 3, is done

in order to see the effect of resource-based placement. Now,

mixed services are taken, and the results are obtained. Two

nginx services named Nginx and Nginx1 are created. Created

5 tasks (containers) for each of these services and placed them

on the manager and Worker1 Node by using placement

constraint of node id in Docker swarm as shown in following

Figure 11.

Fig. 9 CPU Usage of all Nodes having 1 10lac factorial service and 3 5lac

factorial service container(Using Proposed strategy)

Table 5. Completion time of containers of factorial services

(Experiment 2)

 Services
Containers

AVG
1 2 3 4

P
ro

p
o

se

S
tr

a
te

g
y

Fact_5l_1 145 142 136 139 140.5

Fact_5l_2 125 137 133 129 131

Fact_5l_3 148 142 147 142 144.75

Fact_10l 485 582 - - 533.5

D
ef

a
u

lt

S
tr

a
te

g
y

Fact_5l_1 132 144 150 151 144.25

Fact_5l_2 147 142 147 152 147

Fact_5l_3 153 140 140 147 145

Fact_10l 710 660 - - 685

Fig. 10 Comparison of completion time for factorial 5lac and 10lac

services containers (Using default strategy and proposed strategy)

Now, three services for factorial of 5lac are created and

placed by default spread strategy of the Docker Swarm. All of

the three services are placed on the worker2 node (Figure 12)

because the manager node has having total of 13 containers of

Swarmprom and Ngnix services, and the Worker 1 node has

having total of 8 containers of Swarmprom and Ngnix1

services. Worker 2 has only 3 containers of Swarmprom, so it

has having least number of running containers, and all new

Factorial 5lac services are placed on the Worker 2 node.

Fig. 11 Placement of Nginx services containers (Using placement

criteria on manager and worker1)

Fig. 12 Placement of Nginx, Nginx1 services and 3 factorial 5lac services

containers (Nginx and Ngnix1 services are placed using placement

criteria on node manager and worker1 and Factorial services are placed

using Default strategy)

0

20

40

60

80

100

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0

C
P

U
 U

sa
g

e(
in

 %
)

Time (in seconds)

CPU Utilization

Manager Worker1 Worker2

0 100 200 300 400 500 600 700 800

5l_1

5l_2

5l_3

10l

5l_1

5l_2

5l_3

10l

Time (in Seconds)

Completion Time

Container4 Container3 Container2 Container1

P
r
o

p
o

se
d

 S
tr

a
te

g
y

D
e
fa

u
lt

 S
tr

a
te

g
y

Manger Node

8 containers of

swarmprom

5 Containers of

Nginx

Manger Node

8 containers of

swarmprom

5 Containers of

Nginx

Worker1 Node

3 Containers of

swarmprom

5 Containers of

Nginx1

Worker1 Node

3 Containers of

swarmprom

5 Containers of

Nginx1

Worker2 Node

3 Containers of

swarmprom

Worker2 Node

3 Containers of

swarmprom

Manger Node

8 containers of

swarmprom

5 Containers of

Nginx

Manger Node

8 containers of

swarmprom

5 Containers of

Nginx

Worker1 Node

3 Containers of

swarmprom

5 Containers of

Nginx1

Worker1 Node

3 Containers of

swarmprom

5 Containers of

Nginx1

Worker2 Node

3 Containers of

swarmprom

Fact_5l_1

Fact_5l_2

Fact_5l_3

Worker2 Node

3 Containers of

swarmprom

Fact_5l_1

Fact_5l_2

Fact_5l_3

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

66

Table 6. CPU Utilization of nodes having 5 Nginx, 5Nginx1 and 3 Factorial 5lac services (Using Default Strategy)

Time(Seconds) 0 90 180 270 360 450 540 630 720 810 900

Manager(%) 12.922 6.933 61.867 12.954 13.806 25.228 16.3 9.152 11.327 9.006 9.748

Worker1(%) 19.8 23.033 20.611 16.672 14.933 14.933 16.356 12.933 14.194 12.798 13.6

Worker2(%) 85 99.667 99.767 98.6 99.767 96.833 98.267 99.8 100 99.933 98.767

Table 7. CPU Utilization of nodes having 5 Nginx, 5Nginx1 and 3 Factorial 5lac services (Using Proposed Strategy)

Time(Seconds) 0 90 180 270 360 450 540 630 720 810 900

Manager(%) 95.672 67.508 68.916 69.771 62.099 66.672 85.09 93.667 74.375 59.091 84.852

Worker1(%) 55.138 53.064 52.912 47.745 52.662 55.063 52.046 51.716 50.129 52.825 51.48

Worker2(%) 73.103 51.404 52.63 38.648 57.164 52.956 53.221 53.34 51.631 51.486 51.33

The CPU load Utilization taken from Prometheus and

Graphana for the Default strategy of Experiment 3 is shown in

Table 6. and its graphical representation is in Figure 13. As

displayed in Figure 13, the Worker2 node is overloaded, as all

CPU-oriented tasks are running on it. Now, proposed

placement criteria are used as shown in equation 1 to find out

minimum CPU utilization and then place tasks accordingly.

So, the factorial 5lac services are distributed among all three

nodes, as shown in Figure 14. The CPU Utilization is shown

in Table 7 and plotted in Figure 15. As shown in Figure 15,

CPU load is more evenly distributed among all nodes. The

manager has the highest CPU utilization due to its monitoring

tasks container. But load balancing is found among all cluster

nodes.

Fig. 13 CPU usage of all nodes having 5 Nginx, 5 Nginx1 and 3 factorial

5lac services containers(Using default strategy)

Fig. 14 Placement of Nginx, Nginnx1 services and 3 factorial 5lac

services containers (Nginx and Ngnix1 services are placed using

placement criteria on node manager and worker1 and Factorial services

are placed using Proposed Strategy)

Fig. 15 CPU usage of all nodes having 5 Nginx, 5 Nginx1 and 3 factorial

5lac services containers (Nginx and Ngnix1 services are placed using

placement criteria on node manager and worker1 and Factorial services

are placed using proposed strategy)

Table 8. Completion time of containers of factorial services

(Experiment 3)

Services
Containers

AVG
1 2 3 4

P
ro

p
o

se
d

S
tr

a
te

g
y
 Fact_5l_1 108 123 115 126 118

Fact_5l_2 119 121 122 124 121.5

Fact_5l_3 111 119 117 120 116.75

Average Completion Time of 4 Containers

(Proposed Strategy)
118.75

D
ef

a
u

lt

S
tr

a
te

g
y
 Fact_5l_1 160 187 177 152 169

Fact_5l_2 164 184 157 162 166.75

Fact_5l_3 161 181 160 161 166.75

Average Completion Time of 4 containers

(Default Strategy)
167.17

Now, the completion time of the container of service is

calculated. Table 8 shows the completion time of 4 containers

for each factorial 5lac 1, 2 and 3 services. The major

difference is seen in Completion time. The proposed strategy

(minimum CPU utilization) shows improvement in

completion time as compared to Docker's default Spread

strategy.

The average in Table 8 shows containers in the proposed

strategy are taking almost 49 seconds less time than the default

Spread strategy. The Graphical representation of Table 8 is

shown in Figure 16.

0

20

40

60

80

100

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0C

P
U

 U
sa

g
e(

in
 %

)

Time (in seconds)

CPU Utilization

Manager Worker1 Worker2

0

20

40

60

80

100

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0C

P
U

 U
sa

g
e(

in
 %

)

Time (in seconds)

CPU Utilization

Manager Worker1 Worker2

Manger Node

8 containers of

swarmprom

5 Containers of Nginx

Fact_5l_1

Manger Node

8 containers of

swarmprom

5 Containers of Nginx

Fact_5l_1

Worker1 Node

3 Containers of

swarmprom

5 Containers of Nginx1

Fact_5l_2

Worker1 Node

3 Containers of

swarmprom

5 Containers of Nginx1

Fact_5l_2

Worker2 Node

3 Containers of

swarmprom

Fact_5l_3

Worker2 Node

3 Containers of

swarmprom

Fact_5l_3

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

67

Fig. 16 Comparison of completion time for 3 factorial 5lac services

containers (Using default strategy and proposed strategy)

5. Conclusion
In this paper container placement scheme base on

resource usage is proposed. The proposed approach considers

resource usage by current task and availability of resources on

the node.

It is compared with the existing spread scheme of the

docker swarm cluster.The improvements in Completion time

and overall performance of service are found. It also has a

more balanced CPU load across all nodes compared to spread.

Right now, the algorithm is only considering the CPU

resource of Docker Swarm cluster nodes. In the future

algorithm can be improved by including memory and other

parameters for container placement in the Docker swarm

cluster.

References
[1] Cloud Ecosystem, 2021. [Online]. Available: https://www.includehelp.com/cloud-computing/cloud-ecosystem.aspx

[2] Wei-Tek Tsai, Xin Sun, and Janaka Balasooriya, “Service-Oriented Cloud Computing Architecture,” 2010 Seventh International

Conference on Information Technology: New Generations, Las Vegas, NV, USA, pp. 684–689, 2010. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Neeraj Kumar et al., “Renewable Energy-Based Multi-Indexed Job Classification and Container Management Scheme for Sustainability

of Cloud Data Centers,” IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp. 2947-2957, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[4] Rabindra K. Barik et al., “Performance Analysis of Virtual Machines and Containers in Cloud Computing,” 2016 International Conference

on Computing, Communication and Automation, Greater Noida, India, pp. 1204–1210, 2016. [CrossRef] [Google Scholar] [Publisher

Link]

[5] IBM Market Development & Insights, Containers in the Enterprise Rapid Enterprise Adoption Continues, 2020. [Online]. Available:

https://www.ibm.com/downloads/cas/VG8KRPRM

[6] Understanding the Docker Internals, Nitin AGARWAL 2017. [Online]. Available:

https://medium.com/@BeNitinAgarwal/understanding-the-docker-internals-7ccb052ce9fe

[7] Kubernetes Documentation, Overview | Kubernetes, 2023. [Online]. Available : https://kubernetes.io/docs/concepts/overview/

[8] Kubernetes Doc, Concepts | Kubernetes, 2020. [Online]. https://kubernetes.io/docs/concepts/

[9] Maria Rodriguez, and Rajkumar Buyya, “Container Orchestration with Cost-Efficient Autoscaling in Cloud Computing Environments,”

Handbook of Research on Multimedia Cyber Security, IGI global, pp. 190-213, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Kubernetes Components, 2023. [Online]. Available: https://kubernetes.io/docs/concepts/overview/components/

[11] Swarm Mode Overview, Docker. Docs. [Online]. Available: https://docs.docker.com/engine/swarm/

[12] Benjamin Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center,” 8th USENIX Symposium on

Networked Systems Design and Implementation, 2011. [Google Scholar] [Publisher Link]

[13] Docker Overview, Docker Docs. [Online]. Available: https://docs.docker.com/get-started/overview/

[14] Docker Architecture, Docker Docs. [Online]. Available: https://docs.docker.com/get-started/overview/#docker-architecture

[15] Scheduling Services on a Docker Swarm Mode Cluster, 2017. [Online]. Available:

https://semaphoreci.com/community/tutorials/scheduling-services-on-a-docker-swarm-mode-cluster

[16] Han Li et al., “A Service Performance Aware Scheduling Approach in Containerized Cloud,” 2020 IEEE 3rd International Conference on

Computer and Communication Engineering Technology, Beijing, China, pp. 194-198, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[17] Yang Hu et al., “ECSched: Efficient Container Scheduling on Heterogeneous Clusters,” Euro-Par 2018: Parallel Processing: 24th

International Conference on Parallel and Distributed Computing, Turin, Italy, pp. 365-377, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[18] Chanwit Kaewkasi, and Kornrathak Chuenmuneewong, “Improvement of Container Scheduling for Docker Using Ant Colony

Optimization,” 2017 9th International Conference on Knowledge and Smart Technology, Chonburi, Thailand, pp. 254-259, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

5l_1

5l_2

5l_3

5l_1

5l_2

5l_3

Time (in Seconds)

D
ef

a
u

lt
 S

tr
a

te
g

y

Completion Time

Container4 Container3 Container2 Container1

O
u

r
S

tr
a

te
g

y

https://www.includehelp.com/cloud-computing/cloud-ecosystem.aspx
https://doi.org/10.1109/ITNG.2010.214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Service-Oriented+Cloud+Computing+Architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/5501650
https://doi.org/10.1109/TII.2018.2800693
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Renewable+Energy-based+Multi-Indexed+Job+Classification+and+Container+Management+Scheme+for+Sustainability+of+Cloud+Data+Centers&btnG=
https://ieeexplore.ieee.org/abstract/document/8278252
https://doi.org/10.1109/CCAA.2016.7813925
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Analysis+of+Virtual+Machines+and++Containers+in+Cloud+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/7813925
https://ieeexplore.ieee.org/abstract/document/7813925
https://doi.org/10.4018/978-1-7998-2701-6.ch010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Containers+Orchestration+with+Cost-Efficient+Autoscaling+in+Cloud++Computing+Environments+&btnG=
https://www.igi-global.com/chapter/container-orchestration-with-cost-efficient-autoscaling-in-cloud-computing-environments/253033
https://kubernetes.io/docs/concepts/overview/components/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mesos%3A+A+Platform+for+Fine-Grained+Resource+Sharing+in+the+Data+Center&btnG=
https://www.usenix.org/legacy/event/nsdi11/tech/full_papers/Hindman.pdf
https://doi.org/10.1109/CCET50901.2020.9213084
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Service+Performance+Aware+Scheduling+Approach+in+Containerized+Cloud&btnG=
https://ieeexplore.ieee.org/document/9213084
https://doi.org/10.1007/978-3-319-96983-1_26
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ECSched%3A+Efficient+Container+Scheduling+on+Heterogeneous+Clusters&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-96983-1_26
https://link.springer.com/chapter/10.1007/978-3-319-96983-1_26
https://doi.org/10.1109/KST.2017.7886112
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improvement+of+Container+Scheduling+for+Docker+using+Ant+Colony+Optimization&btnG=
https://ieeexplore.ieee.org/abstract/document/7886112

Jalpa M. Ramavat & Kajal S. Patel / IJETT, 72(7), 58-68, 2024

68

[19] Kapil N. Vhatkar, and Girish P. Bhole, “Optimal Container Resource Allocation in Cloud Architecture: A New Hybrid Model,” Journal

of King Saud University - Computer and Information Sciences, vol. 34, no. 5, pp. 1906–1918, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[20] Yuqi Fu et al., “Progress-Based Container Scheduling for Short-Lived Applications in a Kubernetes Cluster,” 2019 IEEE International

Conference on Big Data, Los Angeles, CA, USA, pp. 278–287, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[21] Yanal Alahmad, Tariq Daradkeh, and Anjali Agarwal, “Availability-Aware Container Scheduler for Application Services in Cloud,” 2018

IEEE 37th International Performance Computing and Communications Conference, Orlando, FL, USA, pp. 1–6, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

[22] Yanghu Guo, and Wenbin Yao, “A Container Scheduling Strategy Based on Neighborhood Division in Micro Service,” NOMS 2018 -

2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, pp. 1–6, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[23] Rong Zhang et al., “A Genetic Algorithm-Based Energy-Efficient Container Placement Strategy in CaaS,” IEEE Access, vol. 7, pp.

121360–121373, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[24] Abdulelah Alwabel, “A Novel Container Placement Mechanism Based on Whale Optimization Algorithm for CaaS

Clouds,” Electronics, vol. 12, no. 15, pp. 1-19, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[25] Zakariyae Bouflous, Mohammed Ouzzif, and Khalid Bouragba, “Resource-Aware Least Busy (RALB) Strategy for Load Balancing in

Containerized Cloud Systems,” International Journal of Cloud Applications and Computing, vol. 13, no. 1, pp. 1-14, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[26] Swarmprom, 2021. [Online]. Available: https://github.com/stefanprodan/swarmprom

https://doi.org/10.1016/j.jksuci.2019.10.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+container+resource+allocation+in+cloud+architecture%3A+A+new+hybrid+model&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157819307190
https://doi.org/10.1109/BigData47090.2019.9006427
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Progress-based+Container+Scheduling+for+Short-lived+Applications+in+a+Kubernetes+Cluster&btnG=
https://ieeexplore.ieee.org/abstract/document/9006427/
https://doi.org/10.1109/PCCC.2018.8711295
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Availability-Aware+Container+Scheduler+for+Application+Services+in+Cloud&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Availability-Aware+Container+Scheduler+for+Application+Services+in+Cloud&btnG=
https://ieeexplore.ieee.org/abstract/document/8711295
https://doi.org/10.1109/NOMS.2018.8406285
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Container+Scheduling+Strategy+Based+on++Neighborhood+Division+in+Micro+Service&btnG=
https://ieeexplore.ieee.org/abstract/document/8406285
https://doi.org/10.1109/ACCESS.2019.2937553
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Genetic+Algorithm-Based+Energy-Efficient+Container+Placement+Strategy+in+CaaS&btnG=
https://ieeexplore.ieee.org/abstract/document/8813096
https://doi.org/10.3390/electronics12153369
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Container+Placement+Mechanism+Based+on+Whale+Optimization+Algorithm+for+CaaS+Clouds&btnG=
https://www.mdpi.com/2079-9292/12/15/3369
https://doi.org/10.4018/IJCAC.328094
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource-Aware+Least+Busy+%28RALB%29+Strategy+for+Load+Balancing+in+Containerized+Cloud+Systems&btnG=
https://www.igi-global.com/article/resource-aware-least-busy-ralb-strategy-for-load-balancing-in-containerized-cloud-systems/328094

