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Abstract - This study aims to compare different reliability indices in order to enhance industry production processes. In this 

case, we are looking at a system with three parallel units. This study centers on reliability analysis, taking into account 

the availability, estimated busy period, Mean Time to System Failure (MTSF), and expected number of repairman visits. There 

is a backup unit for the primary unit. Semi-Markov and regenerative point methods have been used to assess the system’s 

performance. In the beginning, all three units will be functional, and a single repair facility will handle all required repairs. 

The repair time distribution is thought to be universal, but the unit failure time distribution is found to be exponential 

with variable parameters. Mean residence time, MTSF, system utilization time, steady state availability, and other 

critical reliability characteristics are examined. Graphs were used in the investigation process to further increase the study’s 

adaptability. 

Keywords - Reliability, Markov process, Failure rate, Repair rate, Laplace transforms, Regenerative points. 

1. Introduction  
The investigation of reliability and analysis of working 

systems holds significant importance in enhancing 

performance and profitability in engineering systems. In 

today’s competitive environment, it is critical to ensure a 

system’s reliable operation and maintenance throughout its 

expected lifespan. Reliability is essential for the efficient 

utilization and maintenance of any technical system, 

particularly in industrial manufacturing, where multiple 

products and equipment are involved. Despite extensive 

research in reliability theory, there remains a deficiency in 

comprehensive analyses of intricate repairable systems under 

varying failure and repair distributions. This study aims to 

address this gap by focusing on a system comprising three 

parallel units, incorporating a backup unit for the primary 

unit, and employing a singular repair facility. The integration 

of regenerative point methods and semi-Markov process to 

evaluate multiple reliability indices in such a system 

configuration is a novel approach compared to previous 

research that has focused on various aspects of reliability. 

Investigators have evaluated their work in the field of 

reliability in the past by studying the performance of 

complex systems under various failure and repair 

distributions. Zuhair et al. [1] conducted a comprehensive 

examination of the reliability analysis concerning two 

distinct units, focusing on their performance metrics and 

operational dependability. In a related study, Sharma [2] 

explored the availability of a standby system, categorizing 

itnto three different types of failures to better understand its 

resilience and efficiency in various scenarios. Meanwhile, 

Kumar et al. [3] developed a sophisticated model to evaluate 

the performance of the furnace draft air cycle within a 

thermal power plant, providing valuable insights into its 

operational dynamics and potential areas for optimization. 

These studies collectively enhance our understanding of 

reliability and availability in complex systems. Bhatia et al. 

[4] focused on reliability modeling for a three-unit cold 

standby system (induced draft fan) operating at both full and 

reduced capacities. Naithani et al. [5] explored the 

probabilistic assessment of a three-unit induced draft fan 

system that includes one warm standby unit and a repair 

prioritization scheme for functional units. Gupta and Gupta 

[6] investigated the reliability model of a single-unit system, 

considering factors such as post-inspection, post-repair, 

preventive maintenance, and replacement. Rizwan et al. [7-8] 

examined the dependability, availability, and profitability of 

various systems. Wang, Xie, and Yang [9] analyzed the 

reliability of a two-unit warm standby repairable system, 

incorporating usage priority. Lastly, Yusuf, Yusuf, and 

Suleiman [10] assessed the reliability of a repairable system 

under both online and offline preventive maintenance 

strategies. Goyal et al. [11] conducted a study on the 

dependability, sensitivity and maintainability of the physical 

processing component of a wastewater treatment facility. 

Moreover, Gupta, Saini and Kumar [12,13] assessed the 

operational availability of generators in steam turbine power 
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plants and a single-unit system considering degradation and 

inspection. Dahiya et al. [14] modelled and analyzed a 

concrete mixing plant following the coverage factor and 

robust reliability strategy. Fairly. Our previous study is about 

the dependability of various anode-rodding strategies in the 

aluminum industry.  

Building on these approaches, one can explore the 

integration of Semi-Markov and regenerative point methods 

with artificial neural networks [15] and deep neural networks 

[16, 17]. This combination has the potential to significantly 

enhance the model’s ability to account for temporal 

dependencies and state transitions, particularly in dynamic 

environments where events occur irregularly. By adopting 

this innovative methodology, researchers could gain deeper 

insights into system behaviors and improve predictive 

accuracy.  

Systematic testing and refinement of this integration will 

be crucial for assessing its effectiveness and uncovering new 

applications in various fields. The researchers discussed 

above focused on modelling and analyzing a concrete mixing 

plant by employing a coverage factor and robust reliability 

strategy to ensure efficient and reliable operation under 

various conditions. They also examined the dependability of 

different anode-rodding techniques in the aluminum industry, 

aiming to identify methods that enhance operational 

reliability and performance.  

Together, these studies provide valuable insights into 

improving processes in their respective fields. The following 

reliability measures are obtained using semi-Markov 

processes and the technique based on regenerative points.  

Mean Time of System Failure (MTSF), Availability of the 

system (A0), An expected busy period for the repairman to 

repair (B0), the estimated frequency of visits required for 

repairs (V0),  and the profit analysis for the system (Profit).  

2. Symbols and Notations 
𝑆𝑖 𝑖𝑡ℎ state mode. 

𝛼𝑖 𝑖𝑡ℎ units failure rate. 

𝑝𝑖,𝑗 
The probability of transitioning from regenerative 

state 𝑖 to regenerative state 𝑗 within the time 

interval (0, t]. 

µ𝑖 
Mean duration in the regenerative state before 

moving to another state. 

𝜙𝑖(𝑡) 

Distribution Function Cumulative (c. d. f) of the 

initial transition period from a state of 

regeneration (𝑖) to a state of failure (j). 

𝐴𝑖(𝑡) System availability in the initial state 𝑖. 

𝐵𝑖(𝑡) 

Represent the probability that the repairman is 

actively working during the inspection time 𝑡, 

given that the system entered regenerative state 𝑖 
at 𝑡 =  0. 

𝑉𝑖(𝑡) The expected number of repairman visits, given 

that the system entered regenerative state 𝑖 at 𝑡 =
 0. 

𝑀𝑖(𝑡) 

The likelihood that a system, which was initially 

in a regenerative state 𝑖, will become active once 

more at time 𝑡 without changing into a 

regenerative state. 

𝑊𝑖(𝑡) 

The chance that the mechanic is involved in 

regenerative state 𝑖 at time 𝑡, without passing 

through another regenerative state. 

𝐶0 Revenue obtained for each unit of system uptime. 

𝐶1 
Cost per unit operating time that the mechanic is 

engaged in the repair. 

𝐶2 The price per repairman visit. 

𝐴0 The duration of the system’s availability. 

𝐵0 The total time the mechanic spends on the repair. 

𝑉0 The total expected number of visits or mechanics. 

𝑔𝑖(𝑡) 

The Probability Density Function (PDF) of the 

repair rate for the 𝑖𝑡ℎ unit experiencing repairable 

failures. 

𝑞𝑖,𝑗(𝑡) 
The Probability Density Function (PDF) describes 

the transition from state 𝑖 to state 𝑗. 

𝑄𝑖,𝑗 (𝑡) 
The Cumulative Distribution Function (CDF) of 

the first passage time from regenerative state 𝑖 to 

failed state 𝑗. 

© The symbol of Laplace Convolution. 

ⓢ The Stieltje's Convolution symbol. 

∗ The Laplace Transforms symbol. 

∗∗ The Laplace Steiltje’s transforms symbol. 
 

3. System Assumption and Description 
This research explores a multifaceted repairable system 

composed of three interconnected units arranged in series. 

Initially, the system functions flawlessly, operating at peak 

efficiency.  

However, if either the second or third unit experiences a 

failure, it will result in a complete breakdown of the entire 

system, highlighting the critical interdependence of its 

components. In the meantime, if the first unit fails, it will not 

affect the system and will be operational due to the standby 

unit for the first unit.  

If all 2nd and 3rd units fail, the system is in a complete 

failure state. The subsequent expectations are taken 

throughout the discussion of the model (Table 1):  

1. All of the units are initially in good operating order. 

2. Three units are working parallelly, and unit one is the 

only standby unit of the entire system.  

3. The system is inoperable if both units one and two fail. 

4. All failure rates are constant and are assumed to follow 

an exponential distribution.  

5. Repairs of minor/significant errors are carried out by the 

general sales department. 

6. A repaired system is assumed to work like a new one. 
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Table 1. Transition table of the states 

States 𝑺𝒋 

𝑺𝒊  𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 

𝑆0 − 𝛼1 𝛼2 𝛼3 − − − 

𝑆1 𝑓1(𝑡) − − − 𝛼1 𝛼2 𝛼3 

𝑆2 𝑓2(𝑡) − − − − − − 

𝑆3 𝑓3(𝑡) − − − − − − 

𝑆4 − 𝑓1(𝑡) − − − − − 

𝑆5 − 𝑓2(𝑡) − − − − − 

𝑆6 − 𝑓3(𝑡) − − − − − 

4. Transition Characteristics and Average 

Sojourn Times 
A state transition diagram illustrating the potential states 

and transitions of the units, with the following transition 

probabilities and intensities: 

 

∑ 𝑑𝑄0𝑖(𝑡)3
𝑖=1 = ∑ 𝛼𝑖𝑒

−𝑡(𝛼1+𝛼2+𝛼3)3
𝑖=1   (1) 

 
𝑑𝑄10(𝑡) = 𝛿1𝑒−𝑡(𝛿1+𝛼1+𝛼2+𝛼3)  (2) 

 

∑ 𝑑𝑄1𝑗(𝑡)6
𝑗=4 = ∑ 𝛼𝑖𝑒

−𝑡(𝛿1+𝛼1+𝛼2+𝛼3)3
𝑖=1   

(3) 

  

∑ 𝑑𝑄𝑖0(𝑡)3
𝑖=2 = ∑ 𝛿𝑖𝑒

−𝛿𝑖𝑡3
𝑖=2   (4) 

 

 

                                              ∑ 𝑑𝑄𝑖1(𝑡)6
𝑖=4 = ∑ 𝛿𝑖𝑒

−𝛿𝑖𝑡3
𝑖=1   

(5) 

Then, the transition probabilities 𝑝𝑖𝑗  are given below:  

𝑝01 = lim
𝑠→0

𝑞∗
01

(𝑠) = lim
𝑠→0

𝐿[𝑞01(𝑡)] =

lim
𝑠→0

𝐿[𝛼1𝑒−𝑡(𝛼1+𝛼2+𝛼3)] = lim
𝑠→0

(
𝛼1

𝑠+𝛼1+𝛼2+𝛼3
) =

𝛼1

𝛼1+𝛼2+𝛼3
  and  

similarly, 

𝑝02 =
𝛼2

𝛼1 + 𝛼2 + 𝛼3

 

𝑝03 =
𝛼3

𝛼1 + 𝛼2 + 𝛼3

 

𝑝10 =
𝛿1

𝛿1 + 𝛼1 + 𝛼2 + 𝛼3

 

𝑝14 =
𝛼1

𝛿1 + 𝛼1 + 𝛼2 + 𝛼3

 

𝑝15 =
𝛼2

𝛿1 + 𝛼1 + 𝛼2 + 𝛼3

 

𝑝16 =
𝛼3

𝛿1 + 𝛼1 + 𝛼2 + 𝛼3

 

 
From the probabilities above, the following equations can 

be varied:    

𝑝0,1 + 𝑝0,2 + 𝑝0,3 = 1  

𝑝1,0 + 𝑝1,4 + 𝑝1,5 + 𝑝1,6 = 1  

and  𝑝2,0 = 𝑝3,0 = 𝑝4,1 = 𝑝5,1 = 𝑝6,1 = 1 

5. Mean Sojourn Times 
The mean sojourn time in a regenerative state refers to 

the expected duration spent in that state before transitioning to 

another. This concept can be understood through two main 

approaches. The first involves integrating the time spent in 

the state, which helps calculate the average duration by 

considering all possible times until leaving. The second 

approach utilizes the Laplace transform, providing an 

alternative method to analyze this duration by examining how 

the transform behaves as it approaches a specific limit. 

Together, these perspectives offer a thorough understanding 

of mean sojourn time, which is essential for modelling and 

analyzing regenerative processes in fields such as queueing 

theory, reliability engineering, and Markov processes. 

The mean sojourn time (𝑢𝑖) 

𝜇𝑖 = ∫ 𝑡𝑑𝑄𝑖𝑗(𝑡)
∞

0

= − 𝑙𝑖𝑚
𝑠→0

𝑑

𝑑𝑠
(𝑞𝑖𝑗

∗(𝑠)) 

       In a regenerative state, the mean sojourn time refers to the 

duration spent in that state before transitioning to another. If 

we consider the sojourn time in this state, it represents the 

average amount of time one typically remains in state 𝑖  
before moving on to a different state. This concept is 

important for understanding how systems operate and can 

help in modelling transitions between various states. Consider  

𝑇 denotes the sojourn time in regenerative state 𝑖, then: 

µ0 =
𝛼1

(𝛼1 + 𝛼2 + 𝛼3)2
 

µ1 =
1

𝛿1 + 𝛼1 + 𝛼2 + 𝛼3

 

µ2 = µ5 =
1

𝛿2

 

µ3 = µ6 =
1

𝛿3

 

µ4 =
1

𝛿1
. 

The unconditional mean time (𝑚𝑖𝑗),  

𝑚𝑖,𝑗 = ∫ 𝑡𝑑𝑄𝑖,𝑗(𝑡) 
∞

0

= 𝑙𝑖𝑚
𝑠→0

−
𝑑

𝑑𝑠
(𝑞𝑖,𝑗

∗(𝑠)) = −𝑞𝑖,𝑗
∗́ (0) 

taken by the system to transition to any  for any regenerative 

state 𝑗, starting from the epoch entry into state 𝑖 , is 
mathematically stated as:  

𝑚0,1 =
𝛼1

(𝛼1 + 𝛼2 + 𝛼3)2
 

𝑚0,2 =
𝛼2

(𝛼1 + 𝛼2 + 𝛼3)2
 

𝑚0,3 =
𝛼3

(𝛼1 + 𝛼2 + 𝛼3)2
 

𝑚1,0 =
𝛿1

(𝛿1 + 𝛼1 + 𝛼2 + 𝛼3)2
 

𝑚1,4 =
𝛼1

(𝛿1 + 𝛼1 + 𝛼2 + 𝛼3)2
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𝑚1,5 =
𝛼2

(𝛿1 + 𝛼1 + 𝛼2 + 𝛼3)2
 

𝑚1,6 =
𝛼3

(𝛿1+𝛼1+𝛼2+𝛼3)2 , 

𝑚2,0 = 𝑚51 =
1

𝛼2

 

𝑚3,0 = 𝑚61 =
1

𝛼3

 

𝑚4,1 =
1

𝛿1
. 

6. The Mathematical Analysis of the System 
6.1. Mean Time to Failure of the System (MTSF) 

The Mean Time to Failure (MTSF) measures how long a 

system is expected to operate before failing. To calculate the 

MTSF, we treat the failed state as an absorbing state, 

meaning once the system fails, it does not recover. We use 

two key equations that describe the probabilities of 

transitioning between operational states and the failed state. 

By applying Laplace-Stieltjes transforms to these equations, 

we derive a new expression that helps determine the 

probability of the system being operational. The MTSF is 

calculated by taking the limit of this probability as a 

parameter approaches zero. This approach allows us to 

capture various transition probabilities and provides valuable 

insight into the system’s reliability and performance. 

Equations 6 and 7 are obtained using probabilistic reasoning 

when we consider the system’s failed state to be an absorbing 

state in order to calculate the MTSF of the system. 

∅0(𝑡) = 𝑄01(𝑡)Ⓢ ∅1(𝑡) + ∑ 𝑄0j(𝑡)3
𝑗=2   

(6) 

  

∅1(𝑡) = 𝑄10(𝑡)Ⓢ ∅0(𝑡) + ∑ 𝑄1j(𝑡)6
𝑗=4   

(7) 

Taking Laplace Stieltje’s transforms of the number of 

Equations 6 and 7 and solving for ∅0
∗∗(𝑠), MTSF is obtained. 

 

𝑀𝑇𝑆𝐹 = lim
𝑠→0

1−∅0
∗∗(𝑠)

𝑠
 =  

𝑁

𝐷
     

 

𝑁 = 𝑚02 + 𝑚03 + 𝑚10𝑝01 + 𝑚14𝑝01 + 𝑚15𝑝01 + 𝑚16𝑝10 +
𝑚01𝑝14 + 𝑚01𝑝15 + 𝑚01𝑝16  

𝐷 = 1 − 𝑝01 − 𝑝10  

6.2. Availability Analysis of the System 

Availability analysis evaluates the likelihood that a 

system is operational at any given time. It employs recursive 

relationships to calculate the probability of the system 

entering various states, starting from an initial operational 

state. These equations capture the transitions between 

operational and failed states.  To simplify the analysis, we 

use the Laplace transform, which helps convert time-domain 

relationships into a more manageable form. By evaluating 

the transformed equation, we can derive the availability of 

the initial state.  

 

This analysis is essential for understanding system 

reliability and identifying potential downtime. Equations 8-

11 provide the following recursive relations, which yield 

𝐴𝑖(𝑡). These expressions are derived by organizing the 

probabilities and defining 𝐴𝑖(𝑡) as the probability that the unit 

enters state 𝑖 at time 𝑡, starting from the regenerative state at 

time zero. 

A0(t) = M0(t) + ∑ q0,j(t)
j=3
j=1 ©Aj(t)  

(8) 

A1(t) = M1(t) + q1,0(t)©A0(t) + ∑ q1,j(t)
j=6
j=4 ©Aj(t)  

(9) 

∑ Ai(t)3
𝑖=2 = ∑ qi,0(t)©A0(t)3

𝑖=2   
(10) 

∑ Ai(t)6
𝑖=4 = ∑ qi,1(t)©A1(t)6

𝑖=4   
(11) 

Where, 

M0(t) =  e−t(𝛿1+α2+α3) 
  

M1(t) =  e−t(𝛿1+α1+α2+α3) 
  

 then taking the Laplace transforms of equations and solving 

them for A∗(s), then the equation (12) is obtained:  

A0 = lim
s→0

sA0
∗(t)  = lim

s→0

sN(s)

D(s)
 =

N1

D1
  

               (12) 

Where,  

𝑁1 = 𝑢0 + 𝑢1𝑝0,1 − 𝑢0𝑝1,4𝑝4,1 − 𝑢0𝑝1,5𝑝5,1 + 𝑢0𝑝1,6𝑝6,1  

D1 = 𝑚0,1 + 𝑚1,0𝑝0,1 + 𝑚2,0𝑝0,2 + 𝑚3,0𝑝0,3 + 𝑚4,1𝑝1,4 +

𝑚5,1𝑝1,5 − 𝑚6,1𝑝1,6 + 𝑚0,2𝑝2,0 − 𝑚4,1𝑝0,2𝑝1,4𝑝2,0 −

𝑚5,1𝑝0,2𝑝1,5𝑝2,0 + 𝑚6,1𝑝0,2𝑝1,6𝑝2,0 + 𝑚0,3𝑝3,0 −

𝑚4,1𝑝0,3𝑝1,4𝑝3,0 − 𝑚5,1𝑝0,3𝑝1,5𝑝3,0 + 𝑚6,1𝑝0,3𝑝1,6𝑝3,0 +

𝑚1,4𝑝4,1 − 𝑚2,0𝑝0,2𝑝1,4𝑝4,1 − 𝑚3,0𝑝0,3𝑝1,4𝑝4,1 −

𝑚1,4𝑝0,2𝑝2,0𝑝4,1 − 𝑚0,2𝑝1,4𝑝2,0𝑝4,1 − 𝑚1,4𝑝0,3𝑝3,0𝑝4,1 −

𝑚0,3𝑝1,4𝑝3,0𝑝4,1 + 𝑚1,5𝑝5,1 − 𝑚2,0𝑝0,2𝑝1,5𝑝5,1 −

𝑚3,0𝑝0,3𝑝1,5𝑝5,1 − 𝑚1,5𝑝0,2𝑝2,0𝑝5,1 − 𝑚0,2𝑝1,5𝑝2,0𝑝5,1 −

𝑚1,5𝑝0,3𝑝3,0𝑝5,1 − 𝑚0,3𝑝1,5𝑝3,0𝑝5,1 − 𝑚1,6𝑝6,1 +

𝑚2,0𝑝0,2𝑝1,6𝑝6,1 + 𝑚3,0𝑝0,3𝑝1,6𝑝6,1 + 𝑚1,6𝑝0,2𝑝2,0𝑝6,1 +

𝑚0,2𝑝1,6𝑝2,0𝑝6,1 + 𝑚1,6𝑝0,3𝑝3,0𝑝6,1 + 𝑚0,3𝑝1,6𝑝3,0𝑝6,1   

6.3. Expected Busy Period Analysis of the System 

Equations 13 to 16 show the recursive relations that can 

be obtained by applying probabilistic arguments. Using the 

unit entering regenerative state 𝑖 at 𝑡 =  0, define 𝐵0
∗(𝑠)  as 

the probability that the repairman is busy with repair at 

instant 𝑡. 

B0(t) = ∑ q0j(t)
j=3
j=1 ©Aj(t)  

(13) 

B1(t) = W1(t) + q10(t)©B0(t) + ∑ q1j(t)
j=6
j=4 ©Bj(t)  (14) 
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∑ Bi(t)3
𝑖=2 = ∑ W𝑖(t) + qi0(t)©B0(t)3

𝑖=2   (15) 

 

∑ Bi(t)6
𝑖=4 = ∑ W𝑖(t) + qi1(t)©B1(t)6

𝑖=4   
(16) 

Where,  

W1(t) =  e−t(𝛿1+α1+α2+α3) 
 ,  

W2(t) = W5(t) =  e−𝛿2t 
 ,  

W3(t) = W6(t) =  e−𝛿3t 
  

W4(t) =  e−𝛿1t 
  

Then, taking the Laplace transform of the Equations (13-

16) and solving them, the busy period of the repairman is 

given by Equation 17 as the following:   

B0 = lim
s→0

𝑠B0
∗(t)  = lim

s→0

sN(s)

D(s)
 =

N2

D1
  

(17) 

Where, 

𝑁2 = 𝑢1𝑝0,1 + 𝑢2𝑝0,2 + 𝑢3𝑝0,3 + 𝑢4𝑝0,1𝑝1,4 + 𝑢2𝑝0,1𝑝1,5 −

𝑢3𝑝0,1𝑝1,6 − 𝑢2𝑝0,2𝑝1,4𝑝4,1 − 𝑢3𝑝0,3𝑝1,4𝑝4,1 −

𝑢2𝑝0,2𝑝1,5𝑝5,1 − 𝑢3𝑝0,3𝑝1,5𝑝5,1 + 𝑢2𝑝0,2𝑝1,6𝑝6,1 +

𝑢3𝑝0,3𝑝1,6𝑝6,1  and D1 = 𝑚0,1 + 𝑚1,0𝑝0,1 + 𝑚2,0𝑝0,2 +

𝑚3,0𝑝0,3 + 𝑚4,1𝑝1,4 + 𝑚5,1𝑝1,5 − 𝑚6,1𝑝1,6 + 𝑚0,2𝑝2,0 −

𝑚4,1𝑝0,2𝑝1,4𝑝2,0 − 𝑚5,1𝑝0,2𝑝1,5𝑝2,0 + 𝑚6,1𝑝0,2𝑝1,6𝑝2,0 +

𝑚0,3𝑝3,0 − 𝑚4,1𝑝0,3𝑝1,4𝑝3,0 − 𝑚5,1𝑝0,3𝑝1,5𝑝3,0 +

𝑚6,1𝑝0,3𝑝1,6𝑝3,0 + 𝑚1,4𝑝4,1 − 𝑚2,0𝑝0,2𝑝1,4𝑝4,1 −

𝑚3,0𝑝0,3𝑝1,4𝑝4,1 − 𝑚1,4𝑝0,2𝑝2,0𝑝4,1 − 𝑚0,2𝑝1,4𝑝2,0𝑝4,1 −

𝑚1,4𝑝0,3𝑝3,0𝑝4,1 − 𝑚0,3𝑝1,4𝑝3,0𝑝4,1 + 𝑚1,5𝑝5,1 −

𝑚2,0𝑝0,2𝑝1,5𝑝5,1 − 𝑚3,0𝑝0,3𝑝1,5𝑝5,1 − 𝑚1,5𝑝0,2𝑝2,0𝑝5,1 −

𝑚0,2𝑝1,5𝑝2,0𝑝5,1 − 𝑚1,5𝑝0,3𝑝3,0𝑝5,1 − 𝑚0,3𝑝1,5𝑝3,0𝑝5,1 −

𝑚1,6𝑝6,1 + 𝑚2,0𝑝0,2𝑝1,6𝑝6,1 + 𝑚3,0𝑝0,3𝑝1,6𝑝6,1 +

𝑚1,6𝑝0,2𝑝2,0𝑝6,1 + 𝑚0,2𝑝1,6𝑝2,0𝑝6,1 + 𝑚1,6𝑝0,3𝑝3,0𝑝6,1 +

𝑚0,3𝑝1,6𝑝3,0𝑝6,1  

6.4. Expected Repair Visits in the System 

Let V𝑖(t) be defined as the expected number of repair 

visits in the interval (0, 𝑡], assuming the system initially 

starts in a regenerative state 𝑖. The following recursive 

relationships are derived using probabilistic arguments for 

V𝑖(t): 

V0(t) = Q01(t)Ⓢ(1 + V0(t)) + ∑ Q0j(t)Ⓢ3
𝑗=2 V𝑗(t)  (18) 

V1(t) = Q10(t)©V0(t) + ∑ Q1j(t)
j=6
j=4 ©(1 + Vj(t))  (19) 

 

∑ V2(t)3
𝑖=2 = ∑ Qi0(t)©V0(t)3

𝑖=2   
(20) 

∑ V𝑖(t)6
4 = ∑ Qi1(t)©(1 + V1(t))6

𝑖=4   
(21) 

By applying the Laplace-Stieltjes transform to Equations 

(18) − (21) and solving for V0
∗∗(s), the expected number of 

visits is determined as follows:  

V0 = lim
s→0

𝑠V0
∗∗(s)  = lim

s→0

sN(s)

D(s)
 =

N3

D1

 
                      (22) 

Where, 

𝑁3 = 𝑝0,1 + 𝑝0,1𝑝1,4 + 𝑝0,1𝑝1,5 + 𝑝0,1𝑝1,6 + 𝑝0,3𝑝3,0 −

𝑝0,3𝑝1,4𝑝3,0𝑝4,1 − 𝑝0,3𝑝1,5𝑝3,0𝑝5,1 + 𝑝0,3𝑝1,6𝑝3,0𝑝6,1   

D1 = 𝑚0,1 + 𝑚1,0𝑝0,1 + 𝑚2,0𝑝0,2 + 𝑚3,0𝑝0,3 + 𝑚4,1𝑝1,4 +

𝑚5,1𝑝1,5 − 𝑚6,1𝑝1,6 + 𝑚0,2𝑝2,0 − 𝑚4,1𝑝0,2𝑝1,4𝑝2,0 −

𝑚5,1𝑝0,2𝑝1,5𝑝2,0 + 𝑚6,1𝑝0,2𝑝1,6𝑝2,0 + 𝑚0,3𝑝3,0 −

𝑚4,1𝑝0,3𝑝1,4𝑝3,0 − 𝑚5,1𝑝0,3𝑝1,5𝑝3,0 + 𝑚6,1𝑝0,3𝑝1,6𝑝3,0 +

𝑚1,4𝑝4,1 − 𝑚2,0𝑝0,2𝑝1,4𝑝4,1 − 𝑚3,0𝑝0,3𝑝1,4𝑝4,1 −

𝑚1,4𝑝0,2𝑝2,0𝑝4,1 − 𝑚0,2𝑝1,4𝑝2,0𝑝4,1 − 𝑚1,4𝑝0,3𝑝3,0𝑝4,1 −

𝑚0,3𝑝1,4𝑝3,0𝑝4,1 + 𝑚1,5𝑝5,1 − 𝑚2,0𝑝0,2𝑝1,5𝑝5,1 −

𝑚3,0𝑝0,3𝑝1,5𝑝5,1 − 𝑚1,5𝑝0,2𝑝2,0𝑝5,1 − 𝑚0,2𝑝1,5𝑝2,0𝑝5,1 −

𝑚1,5𝑝0,3𝑝3,0𝑝5,1 − 𝑚0,3𝑝1,5𝑝3,0𝑝5,1 − 𝑚1,6𝑝6,1 +

𝑚2,0𝑝0,2𝑝1,6𝑝6,1 + 𝑚3,0𝑝0,3𝑝1,6𝑝6,1 + 𝑚1,6𝑝0,2𝑝2,0𝑝6,1 +

𝑚0,2𝑝1,6𝑝2,0𝑝6,1 + 𝑚1,6𝑝0,3𝑝3,0𝑝6,1 + 𝑚0,3𝑝1,6𝑝3,0𝑝6,1  

7. Profit Analysis of the System 
For graphical interpretation, consider the specific cases 

𝑔1(𝑡) = 𝛿1𝑒−𝛿1𝑡, 𝑔2(𝑡) = 𝛿2𝑒−𝛿2𝑡 and 𝑔3(𝑡) = 𝛿3𝑒−𝛿3𝑡 (23) 

The profit incurred by the system can be obtained by 

using Equation 24: 

𝑃 =  𝐶0𝐴0  −  𝐶1𝐵0 − 𝐶2V0  (24) 

where, 𝐶0 denotes the revenue per unit time, 𝐶1 denotes 

the cost per unit time for which the repairman is busy for 

repair, and C2 denotes the cost per visit of the repairman.  

Profit analysis is a crucial aspect of reliability studies as 

it directly impacts the economic viability of the system. In 

this section, we present a detailed profit analysis based on the 

reliability measures obtained from the study. The key metrics 

considered include Mean Time to System Failure (MTSF), 

System Availability(A0) , Busy Period of the Repairman 

(B0), and Expected Number of Visits (V0). 

7.1. Reliability Measures and Their Economic Implications 

The system’s reliability metrics are as follows: 

• Mean Time Plant Failure (𝑀𝑇𝑆𝐹): 12.1298 

• System Availability (A0): 0.357576,  

• Busy Period of the Repairman (B0): 0.158757   

• Expected Number of Visits (V0): 0.0288487 

7.2. Mean Time to System Failure (MTSF) 

The MTSF value of 12.1298 indicates that the system is 

expected to operate for an average of 12.13 hours before 

experiencing a failure. This long MTSF is advantageous as it 

implies lower downtime and less frequent interruptions, 

leading to higher productivity and reduced costs associated 

with unscheduled maintenance. 
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7.3. System Availability (𝑨𝟎) 

The system availability of 0.357576, or 35.76%, reflects 

the proportion of time the system is operational. While this 

availability might seem moderate, it is crucial to understand 

that it can be significantly improved with strategic 

investments in maintenance and reliability enhancements. 

Higher availability translates to increased production 

capacity and better utilization of resources, ultimately 

boosting profitability. 

7.4. Repairman’s Busy Time (𝑩𝟎) 

The busy period of the repairman is 0.158757, indicating 

that the repair facility is engaged 15.88% of the time. 

Efficient management of the repairman’s time ensures that 

repairs are conducted promptly without excessive waiting 

periods. This efficiency reduces the overall downtime and 

maintenance costs, contributing positively to the system’s 

profitability. 

7.5. Expected Number of Visits (𝑽𝟎) 

The repairman is expected to make 0.0288487 visits, 

suggesting that repair interventions are relatively infrequent. 

This low frequency of repairs implies a robust system with 

well-maintained units, which minimizes repair costs and 

maximizes production uptime. 

8. Graphical Interpretation  
For the graphical interpretation, we considered specific 

cases to illustrate the system’s behavior under varying failure 

and repair rates. 

8.1. Behavior of MTSF and Availability with Failure Rate 

Figures 1 and 2 depict the Mean Time to System Failure 

(MTSF) and system availability (𝐴0) as functions of the 

failure rate (𝜆1).  

The results show that both MTSF and availability 

decrease with an increase in the failure rate. As the system 

encounters more frequent failures, the time until the system 

fails and its overall availability is reduced. Conversely, 

system availability increases with a higher repair rate, 

indicating that effective and timely repairs can mitigate the 

adverse effects of increased failure rates. 

8.2. Growth of Busy Period with Failure Rate 

The repairman’s busy period (𝐵0) is depicted in Figure 

3, along with the failure rate (𝜆1). The graph indicates that 

when the failure rate rises, the busy period also rises.  

This is to be expected since more frequent malfunctions 

require longer times to fix. Furthermore, the busy period also 

increases as the repair rate does, indicating that higher failure 

rates have a significant impact on the repair workload even 

with enhanced repair capabilities. 

8.3. Profit Pattern with Revenue and Cost per Visit 

Figure 4 shows the profit pattern for various values of 

the repairman’s cost per visit in relation to revenue (𝐶0). The 

financial burden of repair interventions is highlighted by the 

fact that profit declines as the cost per visit rises. Therefore, 

keeping repair visits profitable requires effective cost 

management. It shows that as the cost of repairs increases, 

profit declines, highlighting the financial strain of repair 

interventions.  

This relationship emphasizes the need for effective cost 

management to maintain profitability. To keep repair visits 

financially viable, organizations should consider optimizing 

repair processes, negotiating better service rates, and 

implementing preventive maintenance to reduce costly 

repairs. Additionally, exploring ways to enhance revenue 

during repair activities can contribute to overall profitability. 

8.4. Profit versus Failure Rate and Repair Rate 

The relationship between profit (P) and failure rate (𝛼1) 

for various repair rates is depicted in Figure 5. Even though 

the failure rate varies, the profit rises with higher repair rates. 

This emphasizes how crucial effective repair procedures are 

to maintaining profitability in spite of the difficulties brought 

on by system malfunctions.  

In summary, the graphical interpretation shows that 

system availability and MTSF performance decrease with 

increasing failure rates but that these declines can be avoided 

with good repair techniques. 

 Increased failure and repair rates add to the repairman’s 

workload, and increased repair efficiency leads to 

profitability, which is impacted by repair costs. These 

revelations emphasize how vital it is to optimize repair 

procedures and control expenses in order to guarantee the 

system’s dependability and financial sustainability. 

 
Fig. 1 MTSF versus (𝝀𝟏) for different repair rate values(𝜹𝟏) 
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Fig. 2 A0 versus rate (𝝀𝟏) for different values of repair rate(𝜹𝟏) 

 
Fig. 3 B0 versus rate (𝝀𝟏) for different values of repair rate(𝜹𝟏) 

 
Fig. 4 P versus C0 for different values of cost per V0 

An understanding of analysis and reliability aids profit 

development. The building of a robust and stable system 

necessitates the use of demand forecasting, modes and 

networks, product design, procurement of components, 

market research, and organizational capacity to manage 

operational challenges. 

 
Fig. 5 Profit (P) versus failure rate (α1) for different repair rates 

9. Conclusion 
This study conducted a comprehensive reliability 

analysis of a three-unit parallel system equipped with a 

backup unit. The focus was on critical performance metrics, 

including the expected number of visits to the system, the 

busy period of the repairman, the Mean Time to System 

Failure (MTSF), and overall system availability. The 

findings revealed that the system availability is 

approximately 0.3576, indicating that the system is 

operational about 35.76% of the time. Additionally, the busy 

period for the repairman was recorded at 0.1588, suggesting 

that the repairman is engaged in maintenance activities for 

roughly 15.88% of the time. The MTSF was determined to 

be 12.1298, highlighting the average duration the system can 

function before experiencing a failure. Lastly, the expected 

number of visits to the system was calculated at 0.0288, 

reflecting the anticipated maintenance interventions required. 

The operating probability and performance prediction of 

engineering systems depend heavily on reliability analysis. 

As upstream reliability affects downstream operations, 

reliability metrics are critical for guaranteeing efficacy and 

efficiency in sectors like crude palm oil supply. A reliable 

and stable manufacturing process can be established more 

easily when a variety of reliability models, such as economic, 

simulation, deterministic, multistage supply, and stochastic 

models, are used. Manufacturing reliability can be further 

enhanced by technology and digitization, as they can 

minimize disruptions and failures. Our graphical 

interpretations have shown that availability and MTSF 

improve with higher repair rates but decrease with increasing 

failure rates. While the rate of failure increases the 

repairman’s workload, an analysis of profit showed that an 

increase in repair costs results in a decrease in profitability. 

However, higher repair rates translate into higher profits, 

demonstrating the financial benefits of raising reliability 

metrics. The importance of reliability engineering and 

maintenance optimization in raising system profitability and 

performance is supported by this study. To further 

corroborate and improve these results, future studies should 

look at more complex systems and use multi-objective 

optimization.  
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