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Abstract - An in-depth study of audio separation, delving into avant-garde and conventional methodologies for isolating musical 

tones. The exploration aims to investigate various techniques for isolating musical tones and extracting individual components 

of sound. By comparing traditional and advanced approaches, the study seeks to offer insights beneficial to researchers, 

educators, musicians, and composers. This paper briefly investigates conventional approaches like Non-Negative Matrix 

Factorization (NMF), Independent Deeply Learned Matrix Analysis (IDLMA), Independent Low Rank Matrix Analysis (ILRMA), 

Independent Component Analysis (ICA), and Principal Component Analysis (PCA), detailing their working principles and 

advantages. Also, Analysis of the numerous forms of machine learning techniques. Afterwards, it explores how the models are 

used to dissect the instrumental acoustics when deep learning techniques like Convolutional Neural Networks (CNN) and 

Recurrent Neural Networks (RNN) are applied. Additionally, coupled deep learning frameworks that include High-Resolution 

Long Short-Term Memory (HR-LSTM), Dense-U-Net, Wave-U-Net, Conv-tasnet, Res-U-Net and Long-term Recurrent 

Convolutional Network (LRCN) are analyzed. DenseLSTM and Audio Spectrogram Transformer are evaluated because the 

combined architecture is more efficient than the individual architecture. This Paper bridges avant-garde and conventional audio 

separation methodologies, offering valuable insights for various stakeholders and indicating a path towards enhanced practical 

applications in the field of audio separation. 

Keywords - Conventional approaches, Machine learning, Deep learning, Coupled deep learning framework, Avant-Garde. 

1. Introduction  
The extraction and analysis of instrumental acoustics 

from musical pieces represent a vital endeavour within the 

realm of audio processing. This comprehensive exploration 

delves into the methodologies employed, ranging from avant-

garde to conventional techniques, to dissect and isolate 

instrumental tones from the complex audio landscape. By 

comparing traditional methods with advanced approaches, this 

study aims to offer valuable insights for researchers, 

educators, musicians, and composers alike. The research field 

of instrumental acoustics provides a means of accessing the 

complex interaction between human creativity and sound 

creation in the context of music. Customs, steeped in centuries 

of musical history, serve as a basis for the creation of 

compositions and the execution of performances. Conversely, 

avant-garde methods defy expectations by expanding the 

realm of auditory inquiry and rethinking the fundamental 

qualities of music. At its core, instrumental acoustics 

examines how sound is produced inside different instruments 

by taking into account things like material composition, 

resonance chambers, and playing style. Traditional techniques 

demonstrate a deep awareness of instrument artistry and 

performance history. They are frequently rooted in historical 

practices and cultural settings. From the rich tapestry of 

musical expression refined over decades, these approaches 

embody the resonant timbres of classical string instruments to 

the percussive brightness of brass and woodwinds. The 

fundamental goal of this study is to shed light on the diverse 

approaches utilised in the separation of instrumental acoustics. 

Conventional methodologies such as NMF [1-6], IDLMA [7-

9], ILRMA [10,11,6], ICA [12-14], and PCA [15-17] form the 

bedrock of analysis, each offering distinct advantages and 

modes of operation. Furthermore, this investigation extends its 

purview to encompass various machine learning techniques, 

including reinforcement learning [24,81], unsupervised 

learning [20,21], semi-supervised learning [22,23], and 

supervised learning [18,19]. By dissecting these 

methodologies, researchers can gain a nuanced understanding 

of their efficacy in isolating and analysing instrumental 

acoustics. As the study progresses, it delves into the 

application of deep learning techniques, such as CNNs and 

RNNs, in the realm of audio processing. The exploration of 

coupled deep learning frameworks, such as HR-LSTM [47], 

Dense-U-Net [55-57], Wave-U-Net [50-54], Conv-Tasnet 

[62-65], Res-U-Net [58,59], and LRCN [49], provides a 

holistic view of the cutting-edge approaches employed in this 
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field. Moreover, the evaluation of combined architectures, 

such as DenseLSTM [60,61] and Audio Spectrogram 

Transformer [77], underscores the potential for increased 

efficiency and efficacy in separating instrumental acoustics. 

The requirements of instrumental performance are tested by 

unusual inquiries, on the other hand, which embrace 

nontraditional methods and experimental soundscapes. Here, 

the focus switches from following tradition to pursuing 

innovation as musicians work to stretch the bounds of what is 

technically possible. Avant-garde musicians explore unknown 

ground and create new aural environments that resist easy 

classification by employing extended approaches, electronic 

manipulation, and unorthodox instrumentation. Conventional 

approaches, rooted in respect for history and artistry, provide 

an insight into the enduring beauty of classical music customs. 

A new age of sound inquiry, where the limits of musical 

expression are constantly stretched and redefined, is heralded 

by avant-garde experimentation. Figure 1 illustrates that it is 

beneficial to musicians, composers, educators, researchers, 

and audiences alike to compare classic and avant-garde 

methodologies in the study of instrumental acoustics. By 

learning about a variety of acoustic possibilities, musicians are 

able to experiment and broaden their creative boundaries. 

Both well-established practices and novel strategies serve as 

sources of inspiration for composers, encouraging innovation 

and expanding the possibilities for musical expression. By 

using these parallels, teachers may enhance their courses in 

music education and provide students with a thorough grasp 

of musical history and technique. Scholars utilize the 

understanding gained from this examination to propel the 

discipline of acoustics forward and create novel methods for 

producing and modifying sound. A wide range of musical 

experiences is available to audiences, ranging from the cozy 

confines of tradition to the thrilling boundaries of avant-garde 

innovation. By taking a comprehensive approach to analyzing 

instrumental acoustics, one may enhance cultural heritage and 

encourage artistic creativity in society while also fostering 

awareness of the richness and diversity of musical expression. 
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Instrumental acoustics serves as a fascinating gateway 

into understanding the intricate relationship between human 

creativity and the production of sound within the realm of 

music. As musicians delve into this field, they navigate 

through centuries-old customs and traditions, drawing 

inspiration from the rich tapestry of musical history to inform 

their compositions and performances. However, alongside 

these time-honored practices, there exists a realm of avant-

garde exploration where artists push the boundaries of sonic 

experimentation. Here, conventional norms are challenged, 

and new frontiers of musical expression are forged through 

innovative techniques and unconventional approaches. 

Through the lens of instrumental acoustics, we embark on a 

journey that traverses the spectrum between tradition and 

innovation, unveiling the diverse array of ideologies and 

methodologies that shape the ever-evolving landscape of 

music creation and performance. Our goal in doing this 

comparison analysis is to shed light on how musical 

expression and creativity are always growing while also 

unravelling the complexities of instrumental acoustics. 

Through an analysis of the methods, ideologies, and auditory 

environments of conventional and innovative methods, we 

acquire a more profound understanding of the multiplicity and 

energy that are intrinsic to the realm of instrumental music. 

We cordially encourage readers to accompany us on this 

voyage of inquiry and revelation as we work to solve the 

puzzles of sound, tradition, and innovation. 

2. Conventional Voice Extraction Techniques 
The conventional voice extraction techniques are 

discussed in this section, about primary methods like NMF, 

IDLMA, ILRMA, ICA, and PCA are included. These 

techniques provide a basis for the extraction of voice 

components from intricate audio signals, and they all have 

unique benefits and uses in the domains of source separation 

and audio processing. To clarify their function in improving 

the quality and clarity of extracted vocal content, hence 

advancing audio processing technologies, by analysing their 

fundamental ideas and working methods. 

2.1. Non-Negative Matrix Factorization  

The manner of splitting down a non-negative matrix into 

two lower-dimensional matrices is known as NMF. NMF is 

particularly helpful for studying data containing intrinsic non-

negative characteristics, such as pictures or audio signals, 

because it limits the generated matrices to only contain non-

negative values, in contrast to other matrix factorization 

techniques.  

Table 1 offers a succinct overview of the main source 

separation strategies employed in instrumental acoustics 

research, outlining the procedures, advantages, and 

disadvantages of each strategy. In order to help academics and 

practitioners make well-informed decisions while searching 

for efficient source separation solutions, that are available for 

identifying distinct sound sources inside complicated audio 

recordings. 

2.1.1. Independent Deeply Learned Matrix Analysis 

IDLMA diverges from matrix factorization, employing 

deep learning architectures to glean an array of independent 

factors from datasets. It aids in tasks such as feature extraction 

and dimensionality reduction across various domains. By 

harnessing Deep Neural Networks (DNN), IDLMA extracts 

pertinent representations from data, capturing intricate 

relationships within. This approach circumvents the 

limitations of traditional matrix factorization techniques. Its 

utilization extends to diverse fields, leveraging the power of 

deep learning to unravel complex data structures.  IDLMA 

stands as a versatile tool, offering insights into intricate data 

patterns through sophisticated neural network architectures. 

With its ability to unveil meaningful features, IDLMA 

reshapes how data is analyzed, transcending conventional 

methods. 

Table 1. Comparative analysis of source separation NMF techniques for instrumental acoustics 

Author Name 

& Year 
Methods (NMF) Justification Benefits Drawbacks 

Schmidt,  

Mikkel N.,  

and Morten 

Mørup [1]  

2006 

Non-negative  

Matrix  

Factorization 

(NMF), 2-D 

deconvolution 

Utilizing a 2-dimensional 

convolution model to 

factorize spectrogram 

representations into time-

frequency and time-pitch 

signatures, enabling  

effective instrument 

separation and analysis 

Blindly separating instruments 

in single-channel polyphonic 

music and employing a 

convolutional model that 

operates across both time and 

frequency for factorization are 

central to this approach. It finds 

applications in automatic 

music transcription, music 

information retrieval, and 

computational auditory scene 

analysis, offering versatile 

solutions across these domains. 

Implicitly addressing the 

challenge of grouping  

notes, this method may 

encounter limitations if 

the assumption of 

identical pitch-shifted  

time-frequency 

signatures for all notes is 

not met. 

Lee, Daniel, 

 and H. 

Non-negative  

Matrix  

NMF involves 

decomposing multivariate 

This technique offers effective 

decomposition for multivariate 

Sensitivity to choosing a 

step size in gradient-
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Sebastian  

Seung [2]  

2000 

Factorization  

(NMF) 

data into non-negative 

matrices,  

optimizing for  

approximation quality via 

iterative update rules, and 

ensuring convergence to 

locally optimal solutions. 

data, with its monotonic 

convergence empirically 

proven. Its interpretation as 

diagonally rescaled gradient 

descent  

provides a clear framework for 

understanding its optimization 

dynamics. 

based methods. 

Smaragdis,  

Paris [3]  

2004 

Non-negative 

 Matrix  

Factorization 

deconvolution 

(NMFD) 

NMFD effectively 

captures complex 

temporal structures in 

audio data. NMF with 

temporal shift (NMF-TS),  

the model considers the 

temporal positions of 

 spectral components, 

enhancing the 

representation of audio 

signals by incorporating 

temporal information. 

This method extends its 

capabilities to identify 

components with temporal 

structure, making it suitable for 

applications such as isolating  

and removing different sound 

elements from an auditory 

context, even when working 

with a single channel input. 

Lack of a useful and 

intuitive measure to  

describe separation  

quality. 

Ozerov,  

Alexey, and 

Cedric Févotte 

[4] 2009 

Multichannel 

Nonnegative  

Matrix  

Factorization 

(MNMF) 

MNMF is a data-driven 

approach for multichannel 

audio source separation, 

utilizing a model  

inspired by NMF. 

This method offers inference 

for audio source separation 

within convolutive blends, 

employing two distinct 

approaches for estimating both 

the mixing and source 

parameters: the EM algorithm 

and the multiplicative update 

algorithm. 

The potential for  

Heightened 

computational 

complexity hinges on the 

precise parameterization  

of the model. 

Lee, Seokjin, 

Koeng-Mo  

Sung and Sang 

Ha Park [5] 

2011 

Beamspace-domain 

& Multichannel 

NMF (MC-NMF) 

Transforming input 

signals into the beamspace 

domain. MC-NMF aims to 

capture underlying 

patterns or features present 

in MC data. 

This method proves more 

effective in multichannel 

source separation compared to  

traditional NMF techniques, 

leveraging the beamspace 

transform for  

enhancement purposes. 

Specificity to 

multichannel real-world 

recording data. 

Wang, Jianyu, 

and Shanzheng 

Guan [6] 2024 

Separating sources 

of multichannel 

blind speech using a 

disjoint constraint 

source model 

s-MNMF was tailored for 

specific optimization 

objectives and constraints. 

Disjoint constraint 

Penalizes components 

between vocal and non-

vocal parts of the mixed 

audio signal. 

Enhancing separation 

performance is achieved by 

incorporating the sparseness 

properties of speech signals, 

which involves integrating a 

disjoint constraint regularizer 

into both MNMF and ILRMA 

algorithms. 

There is a potential for 

increased computational 

complexity, which is 

contingent upon accurate 

model parameterization. 

Table 2. Audio source separation methods based on IDLMA 

Author 

Name & 

Year 

Dataset 

Applied 

Method 

(IDLMA) 
Justification Functionalities 

Makishima, 

Naoki [7] 

2019 

Music 

signals 
IDLMA 

The use of DNNs in IDLMA offers a 

significant advantage by allowing for the 

integration of pretrained DNN source models 

and statistical independence-based 

multichannel audio source separation. 

Combines statistical independence 

between sources and DNN for 

separation. A heavy-tailed 

distribution is introduced in order 

to achieve better results. Uses the 

right data augmentation to handle a 

semi-supervised scenario. 
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Hasumi, 

Takuya [8] 

2021 

DSD100 

PoSM-

based 

IDLMA 

The utilization of DNNs within IDLMA 

enhances its ability to model complex 

relationships within audio signals 

effectively, adaptively represent sources, 

efficiently estimate parameters, and address 

timbral mismatches, ultimately resulting in 

more accurate and robust source separation 

compared to conventional methods like 

NMF. 

The concept of the product of 

source models is expanded to 

incorporate the DNN-based source 

paradigm as well as the NMF-

based source paradigm. 

Develops a parameter estimation 

approach that is computationally 

efficient. efficient at addressing 

timbral mismatches. 

Hasumi, 

Takuya [9] 

2023 

DSD100 
PoP-

IDLMA 

Compared to traditional techniques such as 

NMF, source separation performance is 

improved when DNNs are used in IDLMA to 

learn flexible source representations, model 

intricate relationships within audio signals, 

incorporate expert knowledge, and 

effectively resolve timbral mismatches. 

Provides source models that are 

built on both DNN and NMF 

models present the source power 

spectrogram's previous 

distribution, which was based on 

an expert's notion. 

Efficient in resolving timbral 

mismatches without compromising 

DNNs' expressive capabilities. 
 

The main objective of these studies is to use the most 

traditional technique for audio source separation, IDLMA, as 

presented in Table 2, with modifications and improvements to 

handle problems such as timbral mismatches and semi-

supervised situations. They introduce techniques like PoSM-

based IDLMA and PoP-IDLMA, which extend IDLMA's 

capabilities for enhanced performance in many settings, and 

they evaluate their findings using datasets such as music 

signals and DSD100. 

2.2. Independent Low Rank Matrix Analysis 

Consisting of basis vectors that can be combined linearly 

to represent any source, ILRMA is a technique for dissecting 

a mixture of sources into their component elements. ILRMA 

is very helpful for applications like blind source separation in 

audio signal processing as it seeks to separate the sources 

while reducing interference between them.  

Table 3 presents a succinct overview of the latest 

developments in ILRMA-based blind source separation 

techniques, revealing information about the approaches, 

datasets, and new features brought forward by every study. 

2.3. Independent Component Analysis 

A statistical method called Independent Component 

Analysis (ICA) is used to divide a multivariate signal into 

additive, statistically independent components. Through the 

utilization of the sources' non-Gaussian characteristics, ICA 

may reveal latent variables that lie beneath the observable 

data, rendering it advantageous for applications including 

feature extraction, picture denoising, and blind source 

separation across diverse domains.  

Table 4 compares three studies that use Independent 

Component Analysis (ICA) for audio processing. A succinct 

synopsis of the authors' methodologies and conclusions is 

given, together with information on the publishing years, 

techniques used, advantages, and disadvantages. This 

systematic comparison helps to clarify the many uses and 

consequences of ICA in the audio processing domain. 

Table 3. Blind source separation techniques based on ILRMA 

Author & Year 
Dataset 

Applied 

Methods 

(ILRMA) 
Description Functionalities 

Mogami, Shinichi, et 

al. (2017) [10] 

Music and 

Speech 

Independent 

Low-Rank 

Matrix Analysis 

(ILRMA) 

Assuming a time-varying 

distribution for every source, 

ILRMA is a blind source 

separation approach. By 

minimising a negative log-

likelihood function, it 

estimates source 

spectrograms from mixes 

using a generative model 

with NMF parameters. 

Performance and stability in 

blind audio source separation are 

improved by a generalized 

source-generating model that 

uses a complicated Student's t-

distribution. 

Kitamura, Daichi, 

and Kohei Yatabe 

(2020) [11] 

SiSEC 2011 

and RWCP-

SSD 

Consistent 

ILRMA 

(Consistent 

Consistent ILRMA improves 

blind source separation by 

integrating consistency in the 

Optimizes isolation efficiency 

during estimated blind source 

separation by utilizing the 
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ILRMA) spectrogram during 

parameter updates. It 

guarantees coherence 

between time-frequency 

components by projecting the 

spectrogram of each 

separated signal onto a 

collection of uniform 

spectrograms, which helps 

solve permutation problems. 

general structure of 

spectrograms to address 

permutation issues. 

Wang, Jianyu, and 

Shanzheng Guan 

(2024) [6] 

Wall Street 

Journal 

(WSJ0) 

corpus 

ILRMA and 

Multichannel 

Nonnegative 

Matrix 

Factorization 

(MNMF) 

Advanced algorithms for 

blind source separation, such 

as ILRMA and MNMF, 

efficiently extract speech 

signals from multichannel 

mixes by modelling the 

sources' spectral 

characteristics and boosting 

separation efficiency with 

sparse prior data. 

The sparse character of speech 

signals is taken into account by 

using Bingham and Laplace 

distributions, which improves 

separation efficiency for 

multichannel blind voice source 

separation. 

 

Table 4. Comparative overview of ICA-based techniques in audio processing 

Author & 

Year 

Methods 

(ICA) 
Illustration Benefits Drawbacks 

Uddin, 

Zahoor, et al. 

(2021) [12] 

Sensor fault 

diagnosis 

using ICA and 

SOT–EST 

By improving recorded signals, comparing 

amplitude factors with thresholds to 

identify problematic sensors, and then 

modifying mixed signals appropriately to 

boost ICA performance, sensor fault 

diagnosis using ICA and SOT-EST is 

accomplished. 

Enhanced separation 

performance and 

efficient problem 

diagnostics with the use 

of expanded sensor 

techniques 

Limited 

robustness to 

variance in 

signals. 

Ezilarasan, 

M. R., et al. 

(2023) [13] 

Blind source 

separation 

with ICA-FFT 

algorithms 

Overcoming ICA's inefficiency in the 

presence of additive noise, blind source 

separation with ICA-FFT algorithms 

successfully denoises mixed signals and 

separates sources approximating the 

originals. 

Denoising mixed 

signals effectively and 

generating isolated 

signals that resemble the 

originals 

The ICA method 

is ineffective in 

the presence of 

additive noise. 

Shihab, 

Ammar I. 

(2023) [14] 

ICA 

ICA is a voice and source separation signal 

processing approach that uses iterative 

optimisation to minimise mutual 

information between components by 

breaking down mixed signals into 

statistically independent components. 

Improved robustness 

and accuracy in voice 

isolation, as well as 

insightful knowledge of 

speech processing 

Permutation 

ambiguity 

complicates 

speech separation. 

 

Table 5. Analysis of PCA-based techniques in singing voice separation 

Author & 

Year 
Dataset Method (PCA) Benefits Drawbacks 

Burute et al. 

(2015) [15] 
MIR-1K 

Robust Principal Component 

Analysis (RPCA) 

PCA benefits by separating 

signals based on rank and 

sparsity. 

Struggle with complex 

music compositions. 

Watanabe et 

al. (2016) [16] 
MIR-1K 

Improved RPCA, Post-

processing 

PCA minimizes dimensionality, 

effectively isolating crucial 

information for study. 

Post-processing adds 

computational 

overhead. 

Li et al. 

(2023) [17] 

ccMixter, 

DSD100 

Weighted RPCA with 

Gammatone Auditory 

Filterbank, Vocal Activity 

Detection 

Dimensionality reduction and 

feature extraction for data 

analysis. 

Potential challenges 

with complex music 

mixtures. 
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2.4. Principal Component Analysis 

Principal Component Analysis (PCA) serves as a 

dimensionality reduction method, striving to condense high-

dimensional data into a lower-dimensional space while 

retaining the bulk of the original data's variability. This 

process is facilitated by identifying principal components—

orthogonal vectors delineating the directions of maximal 

variance within the dataset. PCA's versatility finds application 

across diverse domains, including signal processing, image 

analysis, and machine learning. It proves invaluable for tasks 

like exploratory data analysis, aiding in the visualization of 

complex datasets, and mitigating noise interference. Its 

efficacy lies in its capacity to distill essential information 

while minimizing information loss. Through PCA, data 

analysts and researchers gain insights into the underlying 

structures of their datasets, facilitating informed decision-

making processes. Its widespread adoption underscores its 

utility in extracting meaningful patterns from high-

dimensional data, enhancing understanding and interpretation 

across various fields.Table 5 focuses on vocal activity 

detection, post-processing, and weighting based on a gamma 

tone filter bank in addition to various forms of Robust 

Principal Component Analysis (RPCA) to separate the singing 

voice from the musical backdrop. Though RPCA-based 

techniques are useful for distinguishing singing voices, 

managing intricate musical compositions still presents 

difficulties, and further processing stages may result in 

computational costs. 

3. ML Approaches for Vocal Extraction 
The goal of machine learning is to create algorithms as 

well as models that permit systems to utilize data as well as 

make predictions without requiring them to be manually 

programmed. Distinct machine learning techniques are 

appropriate for different kinds of challenges. Figure 2 

articulates the machine learning techniques. Supervised 

learning makes predictions on unseen data by mapping inputs 

to outputs based on identified information.  

To improve learning accuracy, semi-supervised learning 

makes use of unidentified as well as identified information. 

Unsupervised learning finds latent structures and patterns in 

unidentified information without the need for supervision. 

Through trial-and-error interactions with their surroundings, 

agents are trained to maximize rewards through reinforcement 

learning. Such prominent approaches are discussed below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 2 Approaches of machine learning 
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3.1. Performance of Supervised Learning 

In supervised learning, the models learn to differentiate 

among sources based on known inputs (mixed audio signals) 

and their matching labels (specific source frequencies) 

through the process of learning from data with labels. The 

two-phase method of separating sources via end-to-end Neural 

Autoregressive Networks (NAEs) [18] was employed, 

involving training and inference. During training, appropriate 

end-to-end NAE models for predicted sources were 

discovered.  Pre-trained models were utilized to construct a 

deductive network in the inference step, which split sources 

from unknown mixtures. Two inference frameworks were 

analysed: one that utilized only decoders and the other that 

utilized both encoders and decoders. Either waveform spaces 

or activation spaces were used in the inference optimization 

process. The approach was illustrated using the Device and 

Produced Speech (DAPS) dataset. K-Nearest Neighbours 

(KNN) [19] had been utilized as a component of an approach 

that involved breaking down data into spectrograms and then 

processing audio recordings using soft-masking. KNN was 

used to classify or predict the classification of each data point 

depending on its proximity to other points in the dataset. 

Additionally associated with the supervised learning 

principles was the classification task, which involved using a 

pre-trained model from the Librosa library. The model 

mentioned above demonstrates supervised learning by using 

labelled samples to train the model to make predictions on 

unseen data. In order to extract voices, NAEs were used in a 

two-phase process: first, models were trained on labels and 

known inputs in order to forecast sources; next, the models 

were used to build a deductive network that would separate 

sources from unknown mixes. Additionally, spectrogram data 

points were classified using KNN, and supervised learning-

based vocal extraction was carried out using a pre-trained 

model from the Librosa package. 

3.2. Role of Unsupervised Learning 

Unsupervised learning is intended to take relevant details 

from unlabelled data so the model can learn from the dataset's 

intrinsic structure. Differentiable parametric approaches, like 

as the voice production source-filter structure, were used in 

the DNN-based Source Separation with Source-Filter Model 

[20], which indicates an unsupervised approach, as the 

algorithm did not require independent source data during 

training. The training reconstruction loss was developed as a 

multiple-scale spectral loss by comparing the input mixture's 

magnitude spectral images with their estimated values. This 

loss function was ideal for unsupervised learning because it 

does not depend on labelled information. The DNN 

characteristics were set at test time, and each source's soft 

mask was created by dividing the generated source signal's 

magnitude spectrogram element-by-element. The fact that 

these soft masks were created without clear supervision 

suggests that source isolation was done in an unsupervised 

manner. The Unsupervised Multi-Source Separation (UMSS) 

model [20] did not require isolated source signals during 

training, indicating an unsupervised separation of sources. 

Alternatively, the model [21] learned to differentiate only 

between sources and mixed signals in the absence of direct 

supervision. The UMSS model was trained with datasets 

including BC1Song, BCBSQ, and the Choral Singing Dataset 

when individual sources were not available for training. 

Unsupervised learning techniques, such as the UMSS model 

[20], which did not require isolated source signals during 

training and learned to distinguish between sources and mixed 

signals without direct supervision, and the DNN-based Source 

Separation with Source-Filter Model [20], which used 

differentiable parametric methods like the voice production 

source-filter structure, were used to extract vocal information. 

3.3. Behaviour of Semi-Supervised Learning 

Semi-supervised learning makes use of unlabelled as well 

as labelled information to improve the accuracy of models, 

using techniques like generative models, self-training, co-

training, and graph-based techniques. To enable the student 

model to make predictions on unlabeled data reliably, a semi-

supervised learning architecture (Teacher-Student model) [22] 

pre-trained the instructor model with labeled data. As part of 

an iterative process, the student model was trained after the 

teacher model. Labeled datasets from RWC, MedleyDB, and 

iKala were used in the training process, in addition to 

unlabeled datasets from YouTube and FMA. Filtering data 

samples, training a student network with the labelled and 

filtered data, training a teacher separator structure on a little 

labelled dataset, and using the teacher model to allocate fake 

labels to a massive unlabeled dataset comprised the noisy self-

training approach [23] for Singing Voice Separation (SVS). 

Using the student framework as the fresh instructor, the 

process was repeated until no performance increase was seen.  

The fully-convolutional two-dimensional U-Net with 

DenseNet and focused attention blocks discovered in the 

PoCoNet architecture were employed by both the student and 

teacher models [66]. The DAMP dataset served as the 

unlabeled training dataset, and examples of labelled datasets 

were MUSDB, MIR-1K and ccMixter training split. Using 

semi-supervised learning techniques, such as the Teacher-

Student model [22], vocal extraction was accomplished by 

having the student model make iterative predictions on 

unlabeled data with the assistance of the teacher model, which 

had been pre-trained with labelled data. A student network 

was trained using labelled and filtered data in a noisy self-

training manner [23]. A teacher model was then used to 

provide fictitious labels to a sizable amount of unlabeled 

datasets, and the procedure was repeated until performance 

improvement reached a plateau. 

3.4. Functions of Reinforcement Learning 

Reinforcement Learning (RL) incorporates an agent 

acquiring decision-making abilities through interactions with 

its environment, wherein it is given feedback about its 

behaviour in the form of incentives or fines. To manage 
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complicated contexts, Deep Reinforcement Learning (DRL) 

was frequently used in conjunction with DNNs to optimize 

expected discounted cumulative rewards. DRL algorithms 

facilitated a variety of applications, including audio-based 

activities, by varying in characteristics such as policy-based or 

value-based approaches, off-policy or on-policy, and model-

based or model-free [81]. The RL model consisted of 

reviewers calculating predicted rewards, actors producing 

vocalization instances, and an intrinsic reward. The pitch of 

syllables or calls created by a single-actor model could be 

affected by mean frequency and contextual changes. 

A bunch of extended typical distributions were used to 

simulate the produced frequency and target, which determined 

the intrinsic reward. By updating the mean frequency in the 

direction of the goal, learning used stochastic gradient descent 

to reduce the mean square error. Hebbian-like learning 

methods were used to update the critics of many actors, who 

tracked the expected reward linked with vocalization instances 

[24].  

Through the use of DRL and RL approaches, vocal 

extraction was accomplished. In this process, actors produced 

vocalisation events based on predicted rewards determined by 

reviewers. The RL model tracked the expected reward 

connected with vocalisation events by incorporating Hebbian-

like learning approaches to update criticisms of various actors 

and random gradient descent to change average frequencies 

towards the target. 

4. Deep Learning Techniques for Voice 

Separation 
Neural network architectures are used in deep learning 

approaches for vocal separation to extract individual sound 

sources from mixed audio inputs automatically. Deep learning 

often relies on RNNs and CNNs for learning representations 

of audio signals and extracting individual voice components 

from complex audio mixtures. By investigating the core 

concepts and operational procedures, we can understand the 

role of enhancing the quality and clarity of captured vocal 

information and upgrading the processing of audio.  

4.1. Various Convolutional Neural Network Models 

CNNs are designed especially to handle data that is 

organized into grids, such as spectrograms or images. They are 

made of various layers, such as fully connected, pooling, and 

convolutional layers, which can effectively capture complex 

relationships in audio data, boosting the efficiency of 

separation compared to conventional extraction methods. In-

depth analysis of several CNN Models, including U-net, 

WaveNet, denseNet, Transformer, HRNet, ResNet, and 

TasNet, are discussed below:  

4.1.1. U-Net 

U-Net aims to categorize every pixel in an image into pre-

established groups or classes. Then, U-Net was adopted for 

manipulating audio separation tasks. It is appropriate for 

hiring with less training data since it promotes the effective 

utilisation of labelled data. While DL strategies for musical 

separation of sources typically performed satisfactorily in the 

instrument classes they were instructed on, they encountered 

difficulty extending and isolating instruments that were not 

utilised in the training phase.  

To tackle that problem, suggested conditions included a 

U-Net separation model with few target instrument audio 

examples via few-shot learning. It integrated conditioning 

vectors at the bottleneck layer using Feature-wise Linear 

Modulation (FiLM) [67], which enabled tuning for various 

instruments. In contrast to other methods, this approach went 

from one-shot to a few-shot by using a more straightforward 

conditioning technique that was only performed at the layer of 

bottlenecks for better performance [25].  

The U-Net architecture [68] utilised soft masks to identify 

speakers from audio input periphrastically. Its layers were 

composed of Strided 2D convolutions, batch normalisation, 

and the activation of Rectified Linear Units (ReLUs). Masks 

were implemented to change and retain the stage while 

handling the magnitudes of spectrograms, contributing to 

isolating vocals amid mixtures as well [26].  

A contracting path with convolutions and Downsampling 

(DS), as well as an expansive path with Upsampling (US), 

were employed in the U-Net architecture to extract features 

from mixed coefficients. The training involved using Huber 

loss, which struck a balance between linear and quadratic 

rates. The integration of both actual and fictive components 

improved stability and accuracy in various acoustic situations, 

enabling real-time processing of sound [27]. Vocal extraction 

was achieved using U-Net architecture [68], which employed 

soft masks to identify speakers from the audio input and 

utilized conditioning vectors via FiLM for instrument 

separation [25]. The architecture's layers, consisting of Strided 

2D convolutions, batch normalization, and ReLUs, facilitated 

the manipulation of spectrogram magnitudes to isolate vocals 

within mixtures [26]. 

Figure 3 reveals the typical U-Net, which earns this name 

because it looks like the U-shaped. It is made up of a decoder 

path (right side) for a precise mask and an encoder path (left 

side) to collect information. U-Net's skip connections (orange 

arrow) between corresponding layers in the decoder and 

encoder enable gathering small details by facilitating the flow 

of high-resolution information.  

It is comprised of a pooling layer (red arrow), 

convolutional layers (blue arrow), and final convolutional 

layers (yellow arrow). Usually, in order to convert an 

extracted mask back to an image, each class in the mask is 

given a distinct color, which is then superimposed over an 

empty background. 
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Fig. 3 Schematic structure of U-Net

 
Fig. 4 Casual convolutional design of WaveNet 

4.1.2. WaveNet 

The primary purpose of WaveNet is to take the raw audio 

signal and derive realistic, high-quality waveforms from it. Its 

ability to generate high-fidelity audio waveforms with fine-

grained details. Fast Wavenet [28] was similar to one layer of 

a multiple-layer RNN in that it produced audio diligently by 

utilizing stored recurrent phases. This procedure was made 

easier by its two primary parts, the convolution queues and 

generation model. After initializing the model and queues, 

repeated pop and push cycles were performed for every result, 

and recurrent states were estimated and altered. Wavenet [29] 

enforced time continuity by predicting the likelihood 

distribution of the subsequent data based on the preceding 

ones, resulting in the creation of a natural-sounding voice. It 

included gated units for activation control and causal, dilated 

convolutions for receptive field expansion, tailoring 

PixelCNN characteristics for audio. It also made use of skip 

connections for deep model training and feature inclusion and 

µ-law quantization for computational tractability. Context 

stacks reduced the receptive field length without significantly 

deepening the network, but they came with a large time-

complexity cost in the form of sequential sample production. 
Vocal extraction was facilitated by WaveNet [29], which 

enforced time continuity by predicting the likelihood 

distribution of subsequent data based on preceding ones, 

creating a natural-sounding voice. Fast WaveNet [28] utilized 

stored recurrent phases, akin to one layer of a multiple-layer 

RNN, to diligently produce audio with fine-grained details.  

Figure 4 indicates WaveNet's Casual Convolutional 

Design, where each convolutional layer solely considered past 

and present inputs due to the model's lack of access to future 

data. This method protected against conflicting with the 

natural data order, preserving fidelity to historical data without 

anticipation. Employing causal convolutions circumvented 

recurrent connections, resulting in expedited training, which 

is notably beneficial for lengthy sequences compared to 

RNNs. Nevertheless, causal convolutions faced the challenge 

of necessitating numerous filters or layers to expand their 

receptive field. The receptive field in Figure 4 remained 

limited to 5, calculated as the sum of layers and filter length 

minus one. To address this constraint, dilated convolutions 

were recommended. Operating akin to widening the filter by 

zero-padding dilation, dilated convolutions augmented 

efficiency by enlarging the effective filter area through 

selective input omission [69]. 
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Fig. 5 Workflow of DenseNet 

4.1.3. DenseNet 

In the working of DenseNet, all previous layers' features 

are accessible to each layer due to their high 

interconnectedness. In addition to helping to capture complex 

patterns and relationships contained in the audio signals, this 

speeds up information propagation throughout the 

network. DenseNets had the potential to increase 

computational complexity, potentially resulting in greater 

processing and memory requirements. Methods such as model 

optimization and compression were utilized to alleviate this 

issue. One approach involved incorporating transition layers 

into the DenseNet architecture, which reduced computational 

load by decreasing the number of feature maps or compressing 

feature representations before forwarding them to higher 

layers. In addition, methods like pruning, quantization, and 

the use of effective designs were used to minimise the overall 

size and processing requirements of the model without 

sacrificing its functionality [30].  

The operation of DenseNet is demonstrated in Figure 5, 

where the mixed audio spectrogram passes through four dense 

blocks. The convolution layers can alter the feature map sizes 

and, lastly, receive an extracted source. Recently developed 

approaches utilise massive neural networks to extract 

harmonic spectra using mixed audio, tackling the complex and 

ambiguous nature of audio source separation. In order to 

reduce computational cost and capture longer contexts and 

wider frequency relationships, the MMDenseNet framework 

makes use of dense blocks and down-sampling layers using 

inter-block skip connections and up-sampling layers to 

provide compression-free signal flow. For effective modelling 

of fine and global structures, input is divided into frequency 

bands, multi-scale DenseNet is applied to each, and outputs 

are then concatenated [31].  

The blended song's spectrogram was represented in its 

Short-Time Fourier Transform (STFT) format. A DenseNet-

based model was utilized, operating on magnitude 

spectrograms with distinct networks for each source. US and 

skip connections were incorporated for signal reconstruction 

and flow. The spectrogram was divided into frequency bands, 

which were then individually handled by DenseNet 

autoencoders and concatenated again. VGG-based feature 

losses and composite spectrogram losses with pixel-level L2 

were employed during inference. The musdb18 dataset was 

used, which includes 150 professionally recorded tracks in 

various genres with isolated voices, drums, bass, and other 

sounds available for analysis, and was made available by 

SiSEC [32].  

The source separation architecture for media and musical 

background recognition utilised a dilated time-frequency 

DenseNet. The goal of the suggested architecture was to 

efficiently increase the receptive field by introducing a 

multiband, multiscale, dilated time-frequency DenseNet. It 

employed both up- and down-sampling, similar to 

MDenseNet. Drawing inspiration from its performance in 

semantic segmentation tasks, dilated convolution was used to 

improve the receptive field. To avoid overfitting, dropout was 

utilized following each dilated dense block convolution layer. 

The DSD100 dataset was used in the studies [33]. 

 

More effective convolutional designs, such as DenseDsc, 

were suggested to mitigate the problem of parameter 

redundancy in CNNs. Depthwise separable convolutions were 

established, which were used to create DenseDsc, a more 

efficient structure, in place of regular convolutions in 

DenseNet. This method saved parameters without 

compromising functionality. Additionally, Dense2Net, 

inspired by Res2Net, was introduced. It built progressively 

larger scales inside a single convolution module to enhance 

multi-scale representation capabilities. To improve parameter 

efficiency, input feature maps were rearranged so that every 

convolution group received information from a different 

previous block. DenseDsc and Dense2Net were assessed 

using the CIFAR and ImageNet datasets. Tested on CIFAR 

and ImageNet datasets, these models optimized parameter 

utilization while retaining performance [34]. 

Vocal extraction leveraged DenseNet-based models, 

which operated on magnitude spectrograms with distinct 

networks for each source, utilizing skip connections for signal 

reconstruction. Additionally, a dilated time-frequency 

DenseNet architecture was utilized, aiming to efficiently 

increase the receptive field and improve source separation 

performance through multiband, multiscale processing. 

Conv Conv Conv 

Input 

Extracted Source 

DenseBlock 
DenseBlock DenseBlock DenseBlock 
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4.1.4. Transformer 
Transformer architecture has been utilised for vocal 

separation, which entails modifying the model to recognise 

and isolate the vocals from an audio file that has a variety of 

sound sources, including background noise, instruments, and 

vocals. The model learns to distinguish the vocals from the 

other sounds in the mixture by identifying patterns in the 

audio spectrogram that correspond to the vocals. It consists of 

an encoder and a decoder. Figure 6 illustrates how the 

sequence is created by the decoder and analysed by the 

encoder. 

SepFormer was an advanced neural model for voice 

separation. It was designated as an RNN-free design and used 

a masking network made entirely of transformers. The model 

made use of two different kinds of transformer blocks, IntraT 

and InterT, to represent long-term and short-term 

dependencies, respectively. Several transformer layers were 

used, each including a Feed-Forward Network (FFW), Multi-

Head Attention (MHA), and layer normalization.  

The datasets WSJ0-3mix and WSJ0-2mix were utilised to 

assess the model's performance for source separation [35]. An 

adaptation of the original Hybrid Demucs model was the 

Hybrid Transformer Demucs model, which included dual U-

Nets, one in the spectrogram domain and another in the time 

domain. The Cross-domain Transformer Encoder, which 

processed spectral and temporal data using self-attention and 

cross-attention, replaced the deepest convolutional layers in 

the Hybrid Transformer Demucs. To increase memory usage 

and attention performance, the model made use of Locally 

Sensitive Hashing (LSH) and sparse attention kernels. As a 

result, the model could scale to longer sequences [36]. 

For source separation tasks, the Single-Input-Multi-

Output (SIMO) [74] paradigm employed multiple outcomes 

that corresponded to the target source spectrograms and just 

one input that represented the input mixing. Drawing 

inspiration from the U-Net topology, the model integrated 

skip connections within an encoder-decoder design. 

Convolutional layers were used to downsample spectral 

representations of features, followed by the inclusion of 

residual CNN blocks. These blocks facilitated the recovery of 

high-resolution information by aggregating details from 

neighboring regions. At the core of the architecture lay the 

Stripe-Transformer block, a crucial component responsible 

for capturing dependencies between vertical and horizontal 

stripes in representations of features with multiple scales. The 

Stripe-Transformer block allowed for efficient modeling of 

complex relationships, comprising three modules: a Squeeze-

and-Excitation (SE) [73] module, a Mixed-scale 

Convolutional Feed-Forward Network (MixCFN) [72], and a 

Stripe-wise Self-Attention (SiSA) module. The Musdb18 

dataset was utilized for both training and evaluation purposes 

[37]. Vocal extraction was achieved through the SepFormer 

model, utilizing a transformer-based masking network. In 

contrast, the Hybrid Transformer Demucs model employed a 

cross-domain transformer encoder for spectral and temporal 

data processing, enabling source separation. Additionally, the 

SIMO paradigm incorporated skip connections and a Stripe-

Transformer block for efficient modeling of complex 

relationships in the source separation task. 

4.1.5. High-Resolution Network 
High-Resolution Networks (HRNet) might be useful with 

tasks like identifying overlapping sources with similar 

spectral characteristics by maintaining fine-grained features in 

audio signals. This could involve integrating techniques for 

attending to both short-term and long-term temporal features, 

as well as recurrent or convolutional layers designed 

specifically to interpret audio data. Figure 7 Exploring an 

outline of HRNet, which eliminates fixed-resolution DS by 

simultaneously extracting features at numerous resolutions 

from an input image. It processes information at different 

resolutions simultaneously while capturing minute details and 

the larger context.  To preserve high resolution, HRNet began 

with a magnitude spectrogram input and progressed through 

two convolutional layers without DS. The process comprised 

four steps featuring residual units akin to ResNet-50 [75], 

gradually refining the representation. Multi-resolution 

convolutions and fusion were employed in each step to 

exchange data between branches with varying resolutions. 

Each step doubled the number of channels while halving the 

resolution.  

The final output comprised four feature maps, which 

were processed and concatenated to form the target mask. 

Selected datasets, including MIR1k, MUSDB18, MedleyDB, 

iKala, RWC Popular Music, MIREX05, and ADC2004, were 

utilized to train HRNet for tasks such as source separation and 

Vocal Melody Extraction (VME) [38]. To retain resolution, 

HRNet processes the input image first through an image stem 

made up of two stride convolutions. Streams with varying 

resolutions are gradually included in the main body by 

repeated multi-resolution fusions and parallel multi-resolution 

convolutions. Ultimately, the Representation Head, similar to 

HRNetV1, HRNetV2, and HRNetV1p, integrates low-

resolution representations by concatenating and US them, or 

it utilises high-resolution streams alone to process the outputs 

for various tasks [39]. 

 

Using convolutional layers to analyse magnitude 

spectrogram inputs without DS, multi-resolution convolutions 

and fusion to refine representations gradually, and 

concatenated feature maps to produce target masks were the 

methods used by HRNet to perform vocal extraction. By using 

two stride convolutions to process the image stem and 

progressively adding streams with different resolutions via 

multi-resolution fusions and parallel convolutions, the HRNet 

architecture was able to maintain input resolution. In the end, 

low-resolution representations were integrated for voice 

utilisation tasks. 
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Fig. 6 Unveiling the transformer model 

 
Fig. 7 Overview of HRNet 

 

 

 

 

 
 

   Fig. 8 Primary structure for ResNet 

4.1.6. Residual Networks 
A residual network, commonly known as ResNet, allows 

the network to attempt to learn residual mappings rather than 

the intended underlying mapping directly. Figure 3 reflects the 

framework of ResNet, where the residual block has more than 

one convolutional layer. A sequence of convolutional layers 

processes the input and extracts features. The features are 

flattened and then sent through one or more fully connected 

layers after the convolutional layers. These layers map the 

features to the intended output and further alter them. 

Nonlinear processing without shortcut connections is made 

possible by the addition of parallel streams for residual and 

transient information flow in the ResNet extended residual 

block. It enables variable-depth processing by merging these 

streams and utilising batch normalisation and ReLU to bridge 

standard CNNs and ResNet blocks. This method, when used 

repeatedly, creates the generalised residual architecture, 

which can be adjusted for different processing depths. RiR is 

a derivative architecture that improves expressivity and 

flexibility by substituting generalised residual blocks for the 
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convolutional layers of ResNet [40]. An autoencoder with a 

latent separation network based on ResNet was trained. To 

create distinct latent representations, the architecture mapped 

inputs to a latent space using an encoder and a residual 

network. After that, a common decoder received these 

representations in order to reassemble them. The input mixture 

was divided into length segments that each comprised 

frequency bands along the time axis. The first latent 

representation was produced by the encoder, a 3-layer CNN, 

and fresh latent representations were then produced by a 

residual network. A decoder evaluated each source. It was 

assessed using the DSD100 and MUSDB18 datasets [41]. It 

incorporates a residual network and an encoder to map inputs 

to a latent space for unique representations, which makes 

voice extraction easier. Splits the input mixture along the time 

axis into length segments that contain frequency bands. The 

first latent representation is produced by the encoder (3-layer 

CNN), and then new representations are produced by the 

residual network. The decoder assesses every source. 

4.1.7. Time-domain Audio Separation Network 

Unlike conventional techniques that require frequency-

domain representations like spectrograms, Time-domain 

Audio Separation Networks or TasNet for short acts directly 

in the time domain. TasNet can comprehend intricate temporal 

correlations in the audio signal. Figure 9 discloses the TasNet 

Encoder-Decoder Architecture, which receives a mixed 

waveform as input, which is split up into smaller units called 

frames and comes from several sources. Usually, each section 

has an amount of time. 

The encoder neural network changes the input mixture 

into a latent representation that has the necessary information 

to distinguish between different sources. After that, a 

separation module receives the latent representations in an 

effort to separate the mixed waveforms into their sources. For 

every source, the discrete latent representations are decoded 

back into individual audio signals. Finally, acquire an 

extracted waveform. Using TasNet and Dual-path RNN 

(DPRNN) in the time domain, it attempted to create a multi-

talker, real-time, speaker-independent separation of speech 

structure. Architectural changes included adding skip 

connections between stacked RNNs in the separator, 

swapping out the encoder's 1-D convolutional layers for 

complete layers and 50% overlap in voice.  

The model used the Acoustic-Phonetic Continuous 

Speech Corpus dataset to conduct experiments [43]. The 

suggested Beam-TasNet integrated frequency-domain 

beamformers, such as Minimum Variance Distortion-less 

Response (MVDR) [76], with TasNet. A frequency domain 

blend enhanced the observed Short Time Fourier Transform 

(STFT) coefficients of the mixture. TasNet outputs were used 

to compute spatial covariance (SC) matrices for voice and 

noisy signals, allowing for improved time-domain waveforms 

and beamforming filter coefficient construction. A cross-

correlation function-based inter-channel permutation solver 

was developed to resolve the inter-channel permutation 

problem and guarantee the correct alignment of TasNet 

outputs for every channel [42]. This study investigated the 

difficulties in modifying current demixing models to meet the 

demand for current time minimal latency audio processing 

applications, like live concerts and hearing aids. The 

suggested HS-TasNet, drawing inspiration from the Hybrid 

Demucs architecture, utilized both the spectral and waveform 

domains to enhance performance. The architecture of HS-

TasNet comprised LSTM-based memory blocks, a learned 

convolution encoder, and a spectrogram encoder, 

concatenating 1000 hidden units. To achieve comparable 

performance with fewer parameters, HS-TasNet-Small, a 

computationally less expensive alternative, used summation 

instead of concatenation and single LSTMs in memory blocks. 

The MusDB-HQ dataset was used to train the model [44]. 

Time-domain processing is used in these experiments to 

separate speech in real-time, independent of the speaker. 

Complete layers in the encoder are also integrated, and a 50% 

overlap in voice is implemented. An alternative method 

combines frequency-domain beamformers with Beam-TasNet 

to improve STFT coefficients and uses TasNet outputs to 

compute spatial covariance matrices for noisy and spoken 

data. They also include waveform and spectral domains for 

vocal extraction, including 1000 hidden unit spectrogram 

encoder, convolution encoder, and LSTM-based memory 

blocks. 

4.2. Vocal Separation on Recurrent Neural Network 

This section explores methods for voice separation using 

RNNs. RNN-based methods take use of the sequential 

structure of audio data to extract voice components from 

mixed signals and capture temporal relationships. These 

models offer a viable solution for audio source separation 

problems by employing frameworks such as Gated Recurrent 

Units (GRUs) or Long Short-Term Memory (LSTM), which 

show promising results in identifying vocalists from 

background noise or music. 

 
     Fig. 9 TasNet Encoder-Decoder paradigm  
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4.2.1. LSTM and GRU based Models 

Several research works have investigated the 

effectiveness of RNN designs, including GRU and LSTM 

models, within the domain of audio source separation. To 

accomplish multi-talker speaker-independent speech 

separation tasks, a Speech separation model in real-time [44] 

makes use of the TasNet and DPRNN. They experimented 

with different batch sizes, optimizers, and RNN topologies to 

examine how hyperparameters affected the performance of the 

model. Using the DARPA TIMIT Acoustic-Phonetic 

Continuous Speech Corpus dataset, their study showed that 

their model was more accurate and had less latency than 

earlier models. In order to extract voices from musical 

compositions, developed algorithms that use neural networks 

to comprehend harmonic overtones and the mathematical 

patterns of spoken language. Their research [45] concentrated 

on two different model architectures: a GRU-based model that 

captured speech temporal relationships and a CNN-based 

model that employed semantic segmentation techniques. The 

CNN-based model also produced encouraging results, but the 

GRU-based system performed better and demonstrated the 

viability of quick inference with fewer datasets. Bidirectional 

GRU (BGRU) and Gaussian Mixture Models (GMM) were 

added to the improved Deep Attractor Network (DANet) [46] 

for voice separation in order to lower model complexity and 

improve learning speed and accuracy. Their approach 

outperformed the original DANet model concerning the 

Perceptual Evaluation of Speech Quality (PESQ) and Signal-

to-Distortion Ratio (SDR) scores when tested on speaker 

mixture datasets from the TIMIT corpus, demonstrating 

improvements in speech separation methods. 

Combining an LSTM module with a High-Resolution 

Learning (HR-Net) system [47], known as HR-LSTM, solved 

the drawbacks of low-resolution representation in music 

source separation. The goal of this method was to enhance the 

separation of music sources by preserving high-resolution 

feature maps and capturing temporal dynamics. When the HR-

LSTM system was tested on many datasets, such as DSD100 

and MIR-1K, it performed better than earlier techniques and 

showed improved accuracy in differentiating between singing 

voices. The band-split RNN (BSRNN) [48] model was 

expanded to facilitate stereo signal analysis in music source 

separation. Through the adaptation of BSRNN to a stereo and 

Single-Input-Multiple-Output (SIMO) mode, their goal was to 

lower the costs associated with inference and training while 

maintaining overall system performance. Wherein the 

temporal dimension on T is successively applied to two 

residual bidirectional LSTM (BLSTM) layers. The results of 

the experiment demonstrated the efficacy of SIMO stereo 

BSRNN in improving the separation of music tracks, 

providing improvements in stereo signal demonstrating for 

source separation tasks. The utilization of RNN-based models 

for audio source separation has advanced significantly, as seen 

by this research; nonetheless, issues with model architecture 

optimization, computational complexity, and reliable 

performance on a variety of datasets and real-world 

applications still need to be resolved. Novel ways to enhance 

the effectiveness, precision, and scalability of RNN-based 

methods in audio source separation tasks should be 

investigated further. 

5. Integrated Deep Learning Techniques  
When multiple deep learning architectures and 

methodologies are utilised to extract discrete sound sources 

from a mixture of audio signals, this is referred to as integrated 

deep learning techniques. Incorporating domain-specific 

knowledge into the network design or training process or 

merging various architectures into hybrid models are common 

integration tasks for these techniques. It tends to rely on HR-

LSTM, Dense-U-net, Wave-U-net, Res-U-Net, DenseLSTM, 

Conv-TasNet and long-term Recurrent Convolutional 

Network (LRCN). The following section discusses each of the 

strategies mentioned above. 

5.1. HR-LSTM 

HR-LSTM [47] improved SVS by integrating LSTM and 

HRNet. It had four branches that processed mixed 

spectrograms concurrently. These branches upheld 

resolutions. Features were concatenated following LSTM 

processing to provide multi-scale feature maps that depicted 

both local and global structures. A fusion layer balances time 

and frequency resolutions by combining data from high-, 

medium-, and low-resolution feature maps. Each branch's 

output feature maps were produced by adding the features that 

had been up- and down-sampled. The architecture improved 

separation accuracy by effectively capturing global structures 

and minute local features. The Nepal Idol SVS (NISVS) and 

DSD100 datasets were utilised. 

5.2. Long-Term Recurrent Convolutional Network 

For deep feature extraction, LRCN, a deep topological 

temporal model, combined spatial information and contextual 

interactions between time series. Consecutive frames' audio 

features created two-dimensional figures that aided LSTM 

layers and convolutional layers with deep feature encoding 

and spatial extraction, respectively. Input, hidden, and output 

layers made up the LRCN architecture, which also included 

LSTM cells that learned temporal dynamics and convolutional 

filters. To ensure robustness and diversity in model 

evaluation, data from publicly accessible datasets like 

Jamendo, RWC, MIR1k, iKala, and MedleyDB were used for 

both training and validation [49]. 

5.3. Dense-U-Net 
A DL architecture for the separation of sources and 

speech augmentation was called Dense-U-Net. It consisted of 

a mask estimation network, a decoder, and an encoder. The 

encoder created speech and noise masks for the input 

combination by utilizing STFT. To estimate noise and clean 

speech, these masks were applied to the input. To improve 

voice features, the mask estimation network used a U-Net 
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variation with Channel Attention (CA) units for beamforming-

like operations. Learned attention weights that reflected the 

Signal-to-Noise Ratio (SNR) demonstrated how the CA 

mechanism dynamically adjusted attention to optimize signal 

extraction by capturing global dependencies. Practice with 

datasets such as CHiME-3 improved robustness to changing 

SNRs [57]. 

A deep learning model named Dense-U-Net was designed 

for source separation in musical blends. It predicted voice and 

accompaniment masks by utilizing the magnitude of the STFT 

of a musical combination as input. After then, these masks 

were added to the mixture in order to recreate the original 

origins. The model employed self-attention techniques to 

capture long-range dependencies in music structures, utilizing 

DenseNet blocks for feature extraction. It was constructed on 

a modified version of the UNet architecture. Dense blocks, 

DS, US, and self-attention subnets were all incorporated into 

the architecture to facilitate effective learning and the capture 

of intricate relationships. Once trained on datasets like 

DSD100, MedleyDB, and CCMixter using the ADAM 

optimizer, the model's performance was assessed using 

metrics such as the Source-to-Artifact Ratio (SAR), Source-

to-Distortion Ratio (SDR), and Source-to-Interference Ratio 

(SIR) [55]. 

Traditional methods, such as CNNs, encountered 

performance degradation when time-frequency characteristics 

rapidly changed. The widely adopted Dense U-Net employed 

a bottleneck structure and dense block for feature extraction, 

yet it did not consider the spectrogram variations among 

different instruments. This issue was tackled by deformable 

convolution (deform-conv), which adapted the convolutional 

receptive field to the characteristics of each instrument. By 

introducing variable receptive fields and modifying sample 

sites in response to input features, deform-conv enhanced 

separation performance [56]. 

The technique generates speech and noise masks using a 

mask estimation network with a U-Net variation and CA units, 

improving voice attributes by means of dynamic attention 

changes. It also integrates self-attention methods to capture 

long-range dependencies, uses STFT magnitude to estimate 

voice and accompaniment masks, and integrates DenseNet 

blocks into a modified u-Net architecture. Additionally, it 

enhances separation performance by modifying sample sites 

according to input features through the use of deform-conv to 

alter convolutional receptive fields. 

5.4. Wave-U-Net 

A one-dimensional modification of the U-Net 

architecture intended for Audio Source Separation (ASS) was 

called the Wave-U-Net [50]. It avoided preset spectral 

transformations and worked directly in the time domain while 

maintaining phase information. Through iteratively 

resampling feature maps at various time scales, long-range 

temporal correlations that were essential for high-quality 

separation were captured. It computed multi-scale features 

using blocks of DS and US, guaranteeing precise predictions. 

In order to prevent unlikely outputs, it was essential to impose 

source additivity via a different output layer. Transposed 

convolutions were replaced for the US with linear 

interpolation and convolution, which minimized artifacts. 

This architecture offered promising improvements in ASS and 

performed comparably to spectrogram-based techniques. 

An improvement on the U-Net design, the Wave-U-Net 

[51] processed audio signals directly, reducing problems with 

reconstruction. Constantly resampling feature maps allowed it 

to capture long-range temporal correlations. Accurate 

predictions were guaranteed by the computation of multi-scale 

features by DS and US blocks. In order to prevent improbable 

outputs, it was essential to impose source additivity using a 

different output layer. Transposed convolutions were replaced 

by interpolation using linearity and convolution for the US, 

reducing artifacts. The musdb18 dataset was processed 

independently for voice, drum, bass, and accompaniment in 

order to do data augmentation. Pitch shifting, temporal 

stretching, and harmonic envelope modifications were 

examples of operations. Pitch and formant shifting in singing 

voice transformation were continuously controlled by F0. 

In order to facilitate the implementation of Acoustic Echo 

Cancellation (AEC), Wave-U-Net integrated an attention 

network and an auxiliary encoder. It estimated near-end 

speech by using as inputs a mixed signal and far-end speech. 

Far-end speech features were extracted by the auxiliary 

encoder, and pertinent features were emphasized by the 

attention network. The encoder of Wave-U-Net processed 

concatenated features in order to extract pertinent 

characteristics and recover clear near-end speech. Similar 

features were found in the latent space of far-end speech, and 

this architecture made use of attention mechanisms to enhance 

performance [52]. 

The suggested model addressed problems akin to Multi-

Resolution Analysis (MRA) by integrating Discrete Wavelet 

Transform (DWT) and inverse DWT layers into Wave-U-Net. 

It maintained the same encoder-decoder architecture with DS 

blocks and US blocks as Wave-U-Net. With the DWT layer, 

every DS block reduced the time resolution by half, and every 

US block increased it by double using the inverse DWT layer. 

A reflection padding layer preceded every DWT layer, and the 

final time elements of feature maps produced by inverse DWT 

layers were removed. This model utilized DWT and inverse 

DWT layers to provide a more dependable source separation 

technique. The framework was reduced to Wave-U-Net if 

linear US and decimation layers were substituted and if 

reflection padding layers were omitted [53]. 

For multi-channel speech enhancement, the TC-Wave-U-

Net used an encoder, bottleneck, and decoder topology. 
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Dilated casual convolution, batch normalisation, non-

linearity, dropout, and convolution were the steps in each 

block. A Parametric Rectified Linear Unit (PReLU) came next 

[79]. Self-attention mechanisms captured global 

dependencies, enhancing convergence and relevant feature 

extraction. Down-operation halved the time dimension after 

each Temporal Convolution (TC) block. Linear interpolation 

was used for up-sampling in the decoder. Streaming inference 

incorporated hidden state reuse to extend history context 

length without dramatic accuracy reduction. The Chinese and 

English datasets from VCTK, Librispeech, AISHELL-1, and 

AISHELL-3 were used to train the model [54]. 

To extract vocals, input the audio mixture into the Wave-

U-Net model, generating masks to separate vocals from other 

sources. Apply these masks to isolate vocals and perform post-

processing for refinement, ensuring clarity and fidelity of the 

extracted vocals. Evaluate the quality of the separation to 

confirm effectiveness in separating vocals from 

accompanying music or noise. 

5.5. Res-U-Net 

The Res-U-Net architecture addressed music source 

separation using real-valued Short-Time Discrete Cosine 

Transform (STDCT) data. It employed MultiRes blocks, 

residual skip connections, and an attention system. MultiRes 

blocks with progressively larger filter sizes and Res routes 

were integrated into the encoder-decoder architecture for 

effective feature extraction and transmission. A self-attention 

module aided in preserving important traits while suppressing 

unimportant ones. Mean Square Error (MSE) served as the 

loss function for regression, with continuous application of 

batch normalization and Exponential Linear Units (ELU) 

activation [78]. Each network was trained separately for every 

stem, producing a mono STDCT representation of a single 

desired stem [58]. 

The three-dimensional (3D) Inception-ResUNet structure 

[59] utilized spectral and spatial information from 

spectrograms to improve SVS on robots. It implemented 

magnitude correlation consistency loss, phase consistency 

loss, and consistency loss as multi-objectives for training. The 

architecture comprised six encoder or decoder layers, 

fractionally stridden convolutions, and directional Inception-

ResNet blocks. Each layer integrated Inception-ResNet blocks 

to handle multichannel spectrograms, enabling alignment of 

singing voice and accompaniment sources and management of 

sound propagation delays during recording. To prevent 

representational bottlenecks, the reduction blocks in the 

encoder layers used simultaneous 3 × 3 convolutions with 

stride 2. 

5.6. Conv-TasNet 

Conv-TasNet employed a time-domain fully 

convolutional method, revolutionizing single-channel speech 

separation. It addressed the shortcomings of conventional 

time-frequency approaches by directly operating on waveform 

representations. Temporal convolutional networks estimated 

masks for individual speakers at phases of encoder, separation, 

and decoder. Superior performance in applications that 

operated in real-time was ensured by employing normalization 

techniques and depth wise separable convolutions, which 

improved efficiency and adaptability [62]. 

Conv-TasNet, a waveform-based neural network system, 

achieved cutting-edge performance in speech separation. For 

expressing more intricate signal transformations, this article 

suggested improving the encoder or decoder by using deep, 

nonlinear variations. The deep encoder used a stack of small 

filters with nonlinear activations to transform the waveform 

into a nonlinear space known as latent. The deep decoder 

processed masked encodings to generate time-domain 

estimated source signals, mirroring the architecture of the 

encoder. Dilated convolutional layers were used as a variation 

to enhance the temporal receptive field, and Gated Linear 

Units (GLUs) [80] were used in place of PReLU activations 

to represent the relative kernel importance [63]. 

Demucs and Conv-TasNet were two architectures utilized 

for separating music sources. Conv-TasNet employed masked 

separation through stacked residual blocks, then transformed 

the signal into a high-dimensional representation, and finally 

reconstructed the sources. Demucs, however, estimated stereo 

sources directly from the input mixture waveform using an 

encoder-decoder structure with skip connections, bidirectional 

LSTM, and convolutional layers. Conv-TasNet adapted its 

architecture for stereophonic music separation, while Demucs 

improved performance with skip connections and 

convolutional operations. Both models aimed to isolate 

individual sources from mixed audio [64]. 

The suggested framework, VAT-SNet [65], addressed 

single-channel music source separation by optimizing Conv-

TasNet's structure. Convolution at the sample level was 

utilized in both the encoder and decoder to preserve deep 

audio data. An auxiliary network's voice and accompaniment 

embeddings had an impact on mask accuracy. VAT-SNet's 

separator combined these embeddings to create masks, 

enhancing separation accuracy. Waveform music was 

processed directly by the encoder, which fragmented it and 

applied deep convolution layers to extract information. The 

decoder reconstructed the separated sources using a 

symmetrical deconvolution method. During mask production, 

data from the main network was fused with voice and 

accompaniment embeddings produced by an auxiliary 

network that extracted deep acoustic properties. Consistent 

feature representation was ensured by the common weights 

throughout the main and auxiliary networks, facilitating 

fusion during mask construction. The music extractor then 

used 1D convolution and ResNet to extract features from the 

initial music sequence normalized it, and projected it onto a 

fixed-dimensional embedded space. 



S.P Sakthidevi et al. / IJETT, 72(10), 282-305, 2024 

 

299 

Table 6. Evaluation of performance 

Author and 

Year 
Model Dataset 

Vocal Accompaniment 

SDR SIR SAR SDR SIR SAR 

Takahashi et 

al., 2018 [60] 
MMDenseLSTM MUSDB18 4.77 53.40 19.62 15.80 37.74 21.32 

Gong, 

Yuanet al., 

2021 [77] 

Audio 

Spectrogram 

Transformer 

AudioSet 10.79 159.14 70.28 - - - 

To isolate vocals from mixed audio, employ Conv-

TasNet's time-domain fully convolutional method, which 

directly operates on waveform representations, estimating 

masks for individual speakers at various stages. Enhance the 

system by utilizing deep, nonlinear variations in both the 

encoder and decoder, incorporating dilated convolutional 

layers and GLU for improved performance. Additionally, 

consider VAT-SNet, which optimizes Conv-TasNet's 

structure for single-channel music source separation, utilizing 

convolution at the sample level, auxiliary networks for mask 

accuracy, and symmetrical deconvolution in the decoder, 

ultimately enhancing separation accuracy by fusing 

embeddings and ensuring consistent feature representation 

across the network. 

5.7. DenseLSTM 

The suggested dilated time-frequency multi-scale multi-

band DenseLSTM (MMDilDenseLSTM) [61] combined 

dilated blocks [33] with LSTM and DenseNet for audio source 

separation. Dilated blocks addressed independent effects on 

both frequency and time axes, improving the field of reception 

in spectrograms. MMDilDenseLSTM used parallel 

MDilDenseLSTM architectures and separated spectrograms 

into frequency bands. Through convolutions, compression 

blocks [30], and dilated dense blocks, each MDilDenseLSTM 

generated a mask. Each band was given a different set of 

hyperparameters, with low-frequency bands receiving more 

attention. Speech signals were combined with noise and music 

signals from multiple databases, including 115 sounds from 

database (DB) [82], ESC-50 [70], NOISEX-92 [71], WSJ1, 

and MUSDB. 

6. Performance Analysis of MMDenseLSTM 

and Audio Spectrogram Transformer 
Performance analysis is an empirical investigation of 

different metrics, like SDR, SIR, and SAR, and components 

associated with the task, and efficiency of a certain process. 

Performance analysis seeks to deliver practical insights for 

decision-making, optimization, and improvement through 

data gathering, statistical analysis, and interpretation.  

DenseLSTM utilises the MUSDB18 dataset, which 

includes 50 songs for testing and 100 songs for training. The 

analysis focused on the prevailing methodology, where the 

four sources of each song, vocals, drums, bass, and others, 

were recorded in stereo at 44.1 kHz and made available as a 

blend. The network was trained to estimate the source 

spectrograms using STFT magnitude frames of the mixture as 

inputs. The LSTM layers played a critical role in capturing 

global modulations, particularly when positioned at lower 

scales in the upscaling process [60]. 

Additionally, the Audio Spectrogram Transformer (AST) 

was assessed using the challenging AudioSet dataset, which is 

a standard for the categorization of audio events with weak 

labels. AudioSet consists of over 2 million 10-second audio 

snippets organized into 527 sound categories. The results 

indicated that when both models are trained from scratch, 

splitting the audio spectrogram into 128x2 rectangular patches 

performs better than the conventional 16x16 square patches. 

However, 16x16 patches remain the best option because 

pretrained models for 128x2 patches are not available. The 

superior performance of the AST, an attention-based model, 

demonstrates that CNNs are not necessary for audio 

differentiation [77]. 

Table 6 presents the performance evaluations of different 

music separation models. Takahashi's DenseLSTM model 

achieved an SDR of 4.77 for vocals and 15.80 for 

accompaniment, along with SIR and SAR metrics. Gong's 

Audio Spectrogram Transformer model, evaluated on the 

AudioSet dataset, achieved significantly higher SDR, SIR and 

SAR scores for vocals, showcasing advancements in music 

separation technology.  

This significant enhancement in performance can be 

attributed to the AST's attention-based architecture, which 

excels in capturing and distinguishing intricate patterns in 

audio data compared to the convolutional approach used in 

MMDenseLSTM. The values provided above have been 

assessed by us and are not directly copied from the referenced 

papers. 

7. Rigorous Methodologies for Audio Separation 

To ensure that the comparison between conventional and 

avant-garde techniques for audio separation is scientifically 

rigorous and reproducible, a detailed explanation of the 

experimental setup and data used is crucial. The setup begins 

with the selection of appropriate datasets that contain multi-

instrumental recordings where different musical instruments 

are played simultaneously. Commonly used datasets for this 

task include MUSDB18, which provides 150 tracks with 

individual stems (vocals, bass, drums, etc.), and DSD100, 

which offers 100 full-length tracks with ground truth isolated 
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tracks. These datasets ensure diversity in audio signals, 

making them suitable for testing the capabilities of both 

traditional and advanced models. Clearly, specifying the 

version of the dataset and any preprocessing steps applied is 

vital for reproducibility. 

Before applying the separation techniques, preprocessing 

steps transform the raw audio data into a format suitable for 

analysis. This typically involves resampling all audio files to 

a consistent sample rate, such as 44.1 kHz, and, if necessary, 

converting stereo audio to mono. A crucial step for most 

models is applying the STFT, which converts the time-domain 

signal into a time-frequency representation (spectrogram). 

The parameters for STFT, such as window length, hop size, 

and frequency bin resolution, must be specified, as they 

directly impact the input to both traditional and deep learning 

models. Ensuring consistency in preprocessing allows for a 

fair comparison across different techniques. 

To evaluate the performance of the audio separation 

methods, several widely accepted evaluation metrics are used. 

The most common is SDR, which measures the overall quality 

of the separated signal. SIR evaluates how well each sound 

source is separated from interfering sources, and SAR 

quantifies the presence of artifacts introduced by the 

separation process. These metrics are computed using the BSS 

Eval toolkit. For deep learning models, additional metrics 

such as MSE or MAE between the predicted and ground truth 

spectrograms can be used during training to track model 

performance. 

The implementation of conventional methods in the 

experiment involves techniques like NMF, which decomposes 

the magnitude spectrogram into non-negative components that 

represent individual sound sources. Important parameters like 

the rank (number of components) and initialization method 

should be detailed. Similarly, for ICA, which separates 

sources based on statistical independence, details of the 

optimization method (e.g., FastICA) and the assumed number 

of sources should be provided. Methods like PCA, ILRMA, 

and IDLMA also need to be clearly described in terms of how 

they were implemented and tuned. 

For the avant-garde techniques, deep learning models are 

applied to handle the complexities of audio separation. CNN 

and RNN are typically used to process spectrograms and 

extract spatial and temporal features. The architecture details, 

including the number of layers, kernel sizes, and pooling 

strategies, should be provided. The study also examines more 

sophisticated models like Dense-U-Net, Wave-U-Net, and 

HR-LSTM, which combine convolutional and recurrent layers 

to enhance feature extraction. Describing the model 

architectures, such as the depth of layers, activation functions, 

and any regularization techniques (e.g., dropout), is crucial for 

replicating the results. Finally, the training setup for the deep 

learning models must be thoroughly described. This includes 

specifying the loss function, which could be MSE or a 

spectrogram-based loss, and the optimizer (e.g., Adam, 

RMSprop) with associated hyperparameters like learning rate 

and momentum. Details about the batch size, the number of 

epochs, and the computational resources (e.g., GPU type, 

memory) used for training are essential to ensure that others 

can replicate the deep learning models' performance. 

Additionally, the testing protocol, including the cross-

validation method or train-test split ratio, should be clearly 

documented. This ensures that the results of both conventional 

and avant-garde techniques are evaluated consistently. 

By including these detailed steps, the study would not 

only offer a robust comparison between conventional and 

avant-garde approaches for audio separation but also ensure 

that future researchers can replicate the experimental results. 

The combination of well-documented datasets, preprocessing, 

model training, and evaluation procedures strengthens the 

scientific validity of the study, allowing for deeper insights 

into the performance of each method. 

7.1. Discussion 

This study focuses on comparing conventional and avant-

garde techniques for audio separation, aiming to isolate and 

extract individual musical tones. Conventional methods, such 

as NMF, IDLMA, ILRMA, ICA, and PCA, are well-

established in signal processing. These approaches rely on 

mathematical and statistical principles like matrix 

factorization, independence, and dimensionality reduction. 

They have been widely used in tasks involving audio 

decomposition, providing a solid foundation for separating 

mixed signals into their respective components. 

In contrast, avant-garde techniques leverage recent 

advancements in deep learning and artificial intelligence to 

address the complexities of audio separation. Models like 

CNN and RNN, which are adept at handling spatial and 

temporal data, have been adapted to analyze audio 

spectrograms and extract individual sound sources more 

efficiently. The study also highlights advanced frameworks 

such as HR-LSTM, Dense-U-Net, and Wave-U-Net, which 

combine different architectures to enhance feature extraction 

and achieve better separation results. 

By comparing these two sets of methodologies, the study 

offers insights into the strengths and limitations of each 

approach. Conventional methods provide a clear, interpretable 

foundation but may struggle with complex audio signals, 

while avant-garde models are more adaptable and powerful, 

though they often require more computational resources and 

data. The paper suggests that coupled architectures, which 

blend multiple deep learning techniques, offer a path toward 

more efficient and effective audio separation. Overall, this 

exploration benefits a range of audiences, including 

researchers, educators, musicians, and composers. It provides 

a clearer understanding of how traditional and advanced 
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techniques can be used to separate instrumental sounds. It also 

emphasizes the potential of deep learning frameworks to push 

the boundaries of audio processing, offering enhanced 

practical applications in the field. Instrumental acoustics 

separation techniques face significant challenges when 

applied to real-world scenarios due to the complexity of 

acoustic environments, computational demands, and the 

variability in musical structures. One key issue is the 

mismatch between pre-trained bases and real-world sounds, 

particularly affecting traditional supervised methods like 

NMF, which struggle with reduced accuracy when applied 

outside controlled environments. Moreover, techniques like 

BSS suffer from high computational complexity, making real-

time processing difficult, especially when estimating 

numerous acoustic parameters. Real-world environments also 

introduce challenges such as reverberation and background 

noise, complicating the separation process. Additionally, the 

availability and quality of labeled training data are often 

insufficient for data-intensive approaches like deep learning, 

which further hinders performance. Real-time processing 

requirements and the variability in the number and type of 

sound sources, particularly in polyphonic music, add to the 

difficulty of designing universally applicable solutions. 

Evaluating the quality of separation remains complex due to a 

lack of standardized metrics, making it hard to compare 

different methods. Finally, incorporating additional 

information, such as instrument labels or visual data, can 

improve separation but introduce further complexity.  

Addressing these challenges requires advancements in 

algorithm efficiency, more robust evaluation metrics, and 

innovative methods capable of handling the variability and 

intricacies of real-world audio scenarios. 

8. Conclusion and Future work 
This comprehensive exploration of audio separation 

methodologies bridges avant-garde and conventional 

approaches, providing valuable insights for researchers, 

educators, musicians, and composers. By comparing 

traditional methods like NMF, IDLMA, ILRMA, ICA, and 

PCA with advanced machine learning techniques, including 

reinforcement, supervised, semi-supervised, and unsupervised 

Learning, the study illuminates the landscape of instrumental 

acoustics separation. Deep learning models, particularly 

CNNs and RNNs, showcase promising capabilities in 

dissecting instrumental acoustics, as evidenced by the analysis 

of coupled frameworks such as HR-LSTM, Dense-U-Net, 

Wave-U-Net, conv-tasnet, Res-U-Net, and LRCN. 

Furthermore, the evaluation of combined architectures like 

DenseLSTM and Audio Spectrogram Transformer 

underscores their efficiency over individual models. As a 

comprehensive resource, this paper not only enriches audio 

processing research but also offers practical applications. 

Future endeavors could focus on refining hybrid architectures, 

exploring novel deep learning techniques, and addressing real-

world implementation challenges, thereby advancing the field 

of audio separation towards greater precision and usability. 
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