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Abstract - Networks play crucial roles in the modern world, and cybersecurity has evolved into a vital research field. An Intrusion 

Detection System (IDS) is a significant cybersecurity system that monitors the status of hardware and software operating within 

the network. Even after decades of development, current IDSs still encounter problems enhancing recognition accuracy, 

decreasing the False Alarm Rate (FAR), and identifying unknown attacks. To resolve the above challenges, several researchers 

have concentrated on emerging IDSs that exploit Machine Learning (ML) approaches. ML techniques automatically learn the 

crucial differences between normal and abnormal data with maximum accuracy. Moreover, ML approaches have strong 

generalizability, enabling them to effectively identify unknown or novel attacks, further bolstering their capabilities in 

cybersecurity. Deep Learning (DL), a subcategory of ML that utilizes Neural Networks (NNs), is gaining attention for its 

outstanding performance. This study introduces an Enhanced IDS using the Osprey Optimization Algorithm with Ensemble 

Learning (EIDS-OSOAEL) model. The EIDS-OSOAEL technique mainly focuses on the design of an ensemble classifier that 

integrates the output from multiple classes. Primarily, the EIDS-OSOAEL technique involves a min-max scalar for scaling the 

input data into a uniform format. Besides, the Tandem‐Twirl Modified Bacterial Foraging Optimization Algorithm (TT‐MBFOA) 

approach is employed to achieve the optimal Feature Selection (FS). For intrusion detection, the EIDS-OSOAEL approach 

undergoes an ensemble of three classifiers, namely AutoEncoder (AE), Feed-Forward NN (FFNN), and Elman NN (ENN). The 

OS-OA approach is utilized to adjust the hyperparameter values of these models. The experimental results of the EIDS-OSOAEL 

technique are evaluated under a standard dataset. The performance validation of the EIDS-OSOAEL technique showed a 

superior 99.76% over recent approaches. 

Keywords - Intrusion detection system, Osprey optimization algorithm, Network security, Ensemble learning, Feature selection. 

1. Introduction  
The world is advancing in computer technology, and as a 

result, the modern era offers the Internet of Things (IoTs) and 

networking technology for everyday usage [1]. Therefore, the 

networking infrastructure stores an abundance of government 

information and military, commercial, and personal data [2]. 

Network security is considered a significant concern in 

internet applications since intellectual properties that are 

stored easily on the net are copied from the internet. Antivirus 

firewalls and IDSs are some solutions for safeguarding 

network environments [3]. Intrusion detection is more 

widespread to provide security for social networks and 

networking systems. By deploying a strategy on intrusion 

detection-based network security, the user can protect their 

system from intruders [4]. As an active defence technology, 

Network IDS (NIDS) has become a crucial area of research 

[5]. It mainly analyses and detects information in the audit 

files, network system and related logs to define whether the 

behaviour breaches computer system security and security 

policies [6]. NIDS is a classification problem used to resolve 

model optimization, data dimensionality reduction, and 

classifier construction to improve detection efficiency. The 

objective of FS is to choose the optimum subset and decrease 

the data dimensionality to enhance the intrusion detection 

performance [7]. ML-based IDSs can obtain better detection 

accuracy once the training dataset is sufficiently accessible, 

and the ML model has a better generalization ability to 

identify novel attacks and attack variants. Moreover, ML-

based IDSs do not heavily rely on domain information; thus, 

it is easy to construct and design [8]. DL is a subdivision of 

ML techniques that can attain remarkable success. DL 

techniques are better at dealing with big data than classical ML 

methods. Furthermore, DL techniques can learn representative 

features automatically from raw information and later output 

the results; they are practical and work end-to-end [9]. As 

technology grows and interconnected devices proliferate, the 

risk of cyber threats escalates, emphasizing the urgent 

requirement for robust safety measures. Protecting sensitive 
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data in this digital landscape is paramount, necessitating 

innovative solutions that efficiently detect and respond to 

intrusions. By employing advanced optimization methods and 

ensemble learning, the efficacy of IDSs is enhanced, 

confirming a safer network environment [10]. This study 

introduces an Enhanced IDS using the Osprey Optimization 

Algorithm with Ensemble Learning (EIDS-OSOAEL) model. 

Primarily, the EIDS-OSOAEL technique comprises a min-

max scalar for scaling the input data into a uniform format. 

Besides, the Tandem‐Twirl Modified Bacterial Foraging 

Optimization Algorithm (TT‐MBFOA) technique is employed 

for the optimum choice of features. For intrusion detection, the 

EIDS-OSOAEL technique undergoes an ensemble of three 

classifiers, namely AutoEncoder (AE), Feed-Forward NN 

(FFNN), and Elman NN (ENN). The OS-OA approach is 

utilized to adjust the hyperparameter values of these models. 

The experimental results of the EIDS-OSOAEL approach are 

evaluated under a standard dataset. 

2. Related Works 
Al Essa and Bhaya [11] develop a novel IDS trust on 

fusion ensemble and FS classifiers. A fusion FS technique 

contains dual models, such as hard voting and mean, and also 

uses three dissimilar FS methods. Next, a hard-voting model 

and a mean method are employed. In [12], a hybrid ensemble 

model utilizing Bagging and AdaBoosting for IDS is 

projected, which contains 3 phases. The first phase is pre-

processing. The 2nd phase includes using Bagging and 

AdaBoosting models by four diverse classifiers: SVM, Naïve 

Bayesian (NB), KNN, and RF. Then, the AdaBoosting 

classification model is united to work in the Bagging model. 

At last, the voting method is applied. Mogollón-Gutiérrez et 

al. [13] developed a network traffic identification system for 

dissimilar classes dependent upon numerous AI models. In the 

initial task, binary techniques were used to discriminate 

clearly between every kind of traffic. An ensemble method has 

been projected in dual stages, which permits the separation of 

illegitimate and legitimate traffic (stage 1) and classifies the 

kind of illegitimate traffic (stage 2). In [14], a novel structure 

termed BoostIDS is intended to influence ensemble learning. 

BoostIDS includes dual significant modules: (i) A data 

observing and FS module that uses an effectual Boosting FS 

method to pick the finest SG-based feature and (ii) An EL-

based attacks recognition method that executes a Lightweight 

Boosting Algorithm (LBA) to determine SG-assisted threats. 

Saheed and Misra [15] present an innovative EL model 

based on a Grey Wolf Optimizer (GWO). The method uses a 

voting method and a hybrid of FS and feature extraction 

models. Then, GWO was applied to enhance the parameters 

of EL methods. The hybrid of Principal Component Analysis 

(PCA) and Information Gain (IG) was used to reduce 

dimensionality. The research employed an innovative GWO-

EL technique that combined a decision tree, RF, KNN, and 

multi-layer perceptron for identification. Le et al. [16] 

presented an ML-based IDS model with DT and RF classifiers 

dependent upon the ensemble trees method. Besides, dual 

massive datasets are employed for the experimentation 

estimation of the projected technique over the feature set. 

Moreover, the SHAP is used in the XAI approach to clarify 

and take the classification results of RF and DT techniques. 

Yao et al. [17] present an NIDS utilizing a One-Class BiGRU-

AE and EL approach. Initially, a One Class Classification 

method dependent upon a BiGRU-AE model has been given.  

Then, a multi-classification detection model based on EL 

has been projected. Kumar et al. [18] examine the Chebyshev 

Osprey Optimization-based LSTM (ChOs_LSTM) for 

intrusion detection. The ChOs model fine-tunes LSTM 

parameters, integrating Chaotic Chebyshev mapping to 

improve randomness and avoid local optima. Alghanam et al. 

[19] present an improved Pigeon-Inspired Optimization (PIO) 

methodology, integrating a Local Search Algorithm (LS-PIO) 

model. Furthermore, it utilizes an ensemble learning method 

with diverse 1C classifiers to improve the accomplishment. 

Yao et al. [20] propose a novel leukaemia diagnosis 

methodology utilizing an optimized Capsule NN (CapsNet). 

Kagade and Vijayaraj [21] introduce a Clustering-based IDS 

(CIDS) for Wireless Sensor Networks (WSNs). It employs a 

hybrid approach, OCCOA, for optimal selection of Cluster 

Head (CH). It also implements a Multilayer Perceptron-

Recurrent NN (MLP-RNN) method for intrusion detection, 

with weights fine-tuned by OCCOA to improve performance. 

Kushwah and Prasad [22] propose a Mobile Agent (MA)-

based IDS technique. 

In [23], an IDS employs a stack-based ensemble learning 

model. To address computational resource constraints, FS and 

hyperparameter optimization methods are integrated. Zuo et 

al. [24] introduce "GSOOA-1DDRSN," a methodology for 

detecting network traffic anomalies by utilizing a Deep 

Residual Shrinkage Network (DRSN) model. It employs an 

improved OS-OA to choose significant features and reduce 

dimensionality, improving detection performance with a one-

dimensional DRSN (1DDRSN) as the classifier. The 

limitations of the existing studies comprise dependence on 

diverse FS models, which enhances complexity and 

negatively impacts real-time performance. Binary 

classification methods may oversimplify traffic types, while 

ensemble learning can restrict adaptability to dynamic 

environments. Moreover, sensitivity to parameter tuning may 

affect stability, and overfitting on smaller datasets can 

mitigate generalizability. There are also risks of losing 

significant data during feature reduction, which encompasses 

anomaly detection accuracy. Despite enhancements in IDS, 

there remains a gap in efficiently handling dynamic network 

environments and adapting to growing attack patterns. Current 

methodologies may face difficulty with balancing complexity 

and performance, and maintaining accuracy across diverse 

datasets. Furthermore, the integration of FS and optimization 

techniques requires additional exploration to improve real-

time detection capabilities. 
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3. The Proposed Method 
This paper proposes a novel EIDS-OSOAEL 

methodology. The technique mainly focuses on designing an 

ensemble classifier that integrates the output from multiple 

classes. It involves four stages of procedures: Min-Max 

Normalization, TT-MBFOA-based FS, Ensemble learning, 

and OS-OA-based tuning. Figure 1 portrays the structure of 

the EIDS-OSOAEL methodology. 

3.1. Pre-Processing 

Primarily, the EIDS-OSOAEL model involves a min-max 

scalar for scaling the input information into a uniform format. 

The term "data preparation" represents the action that should 

be carried out to encode or convert information so that the 

computer can understand and read it [25]. The model that 

underpins it should be capable of quickly analyzing data 

quality to generate precise and accurate model predictions. 

Assuming that the valuable information and quality of data 

resultant from it directly impacts the potential model for 

learning, the pre-processing of data before providing for into 

the method is significant.  

The significant step of ML is data pre-processing. The 

data preparation process involves smoothing noisy data, 

filling in missing values, removing outliers, and resolving 

inconsistency, known as "filling in missing values". 

Normalizing a data component or group of independent 

variables is obtained using feature scaling.  

During the data preparation phase, normalizing is 

frequently done in the data processing, known as data 

normalization. Min‐max normalization or Min‐max scaling is 

the simplest technique, which includes rescaling the range of 

factors to scale the interval of zero and one. 

𝑥 − 𝑥min
𝑥max − 𝑥min

                               (1) 

3.2. FS Using TT‐MBFOA 

The TT‐MBFOA method is deployed to ensure the 

optimal FS. This approach goes back to the tandem twirl to 

improve its searchability and for simplification  [26]. The TT-

MBFOA technique is an efficient choice for FS due to its 

robust exploration capabilities and effectual convergence 

properties.  

This methodology improves conventional bacterial 

foraging models by incorporating a twirling mechanism, 

which enhances the capability of the algorithm to navigate 

intrinsic feature spaces and avert local optima.  

The TT-MBFOA model effectually balances exploration 

and exploitation, allowing it to detect the most relevant factors 

while minimizing redundancy. Furthermore, its population-

based nature enables the simultaneous analysis of multiple 

solutions, accelerating the FS procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1 Overall procedure of EIDS-OSOAEL methodology 

The algorithm's adaptability makes it appropriate for 

high-dimensional datasets, confirming that the chosen features 

contribute meaningfully to the performance and 

interpretability of the model. On the whole, the TT-MBFOA 

model provides a compelling merit for FS tasks in diverse 

applications. A tandem twirl is applied within the chemotaxis 

process. The purpose of the first twirls is to complement the 

swarming operator by letting the bacterium search in the 

direction of arbitrarily chosen bacteria and other areas of 

search space. The second spin uses real twirls but with a 

minuscule step size value, which concentrates on the tiny 

bacterial motion. In the following, the proposed tandem twirls 

are briefly discussed. 
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3.2.1. Exploration Twirl 

The initial twirl is calculated as follows: 

𝜃𝑖(𝑗 + 1, 𝐺) = 𝜃𝑖(𝑗, 𝐺) + 𝛽 − 1(𝜃𝑟1(𝑗, 𝐺) − 𝜃𝑟2(𝑗, 𝐺))  (2) 

In Equation (2), the user‐defined value is more than 1 for 

the swarming operator of MBFOA. The swarm's arbitrarily 

chosen bacteria are 𝜃𝑟2(𝑗, 𝐺) and 𝜃𝑟2(𝑗, 𝐺) and (𝑖 ≠ 𝑟1 ≠ 𝑟2), 
correspondingly. The twirl operator uses the position of both 

bacteria to choose the search direction and begin twirling from 

the bacteria 𝜃𝑖(𝑗, 𝐺).  

The behaviours of the twirl operator with two decision 

variables range between -5 and 5. On the twirl completion, the 

new bacterium location is divided into the purple spot that 

bact1 and bact2 specify and are represented as 𝜃𝑟2(𝑗, G) and 

𝜃𝑟2(𝑗, 𝐺), correspondingly. The best bacterium is inserted, 

which shows that these operators are working to obtain the 

search space (viz., not those existing in the neighbourhood of 

the present optimum solution as the swarm motion pushes it). 

3.2.2. Exploitation Twirl 

Based on random search direction, the second twirl 

reverts to the new twirl; however, it is combined with a lesser 

arbitrary step size value such that smooth motion might be 

accurately defined: 

𝜃𝑖(𝑗 + 1, 𝐺) = 𝜃𝑖(𝑗, 𝐺) + 𝐶(𝑖, 𝐺)𝜑(𝑖)               (3) 

In Equation (3), the step size value consists of an 𝑛‐

dimension random vector represented as (𝑖, 𝐺), calculated at 

all the generations as follows: 

𝐶(𝑖, 𝐺)𝑘 = 𝑅 ∗ 𝛥(𝑖)𝑘 , 𝑘 = 1,… , 𝑛                     (4) 

In Equation (4), 𝛥(𝑡) indicates the uniformly distributed 

random number in [𝐿𝑘, 𝑈𝑘] of search space 𝑘. 𝑅 specifies a 

user-defined parameter to increase the size of the step, and its 

value should be nearly 0, for example, 5.00𝐸 − 03. In the 1st 

cycle, the step size calculation is performed by 𝛥(𝑡) to allow 

the bacteria in the early swarm to traverse in different 

directions and escape the attractor once the process begins.  

This result is possible since TT‐ MBFOA involves a twirl 

for the exploration, a twirl to choose convergence, and a 

delicate twirl to increase the quality of the solution. The 

Fitness Function (FF) in the TT‐ MBFOA approach is 

designed for balancing the chosen features (lower) and the 

classification accuracy (superior) attained with those features. 

Equation (5) implies the FF for assessing performances. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
                         (5) 

Whereas, 𝛾𝑅(𝐷) denotes the classifier error rate. 

|𝑅| signifies the cardinality of the chosen subset, and |𝐶| 
represents the overall feature counts from the dataset; 𝛼 and 𝛽 

are the two parameters comparable to the impact of classifier 

quality and length of subset ∈ [1,0] and 𝛽 = 1 − 𝛼. 

3.3. Ensemble Learning  

For intrusion recognition, the EIDS-OSOAEL technique 

uses an ensemble of three classifiers: AE, FFNN, and ENN 

models, which offer various merits. AEs outperform 

unsupervised learning, enabling them to detect anomalies by 

reconstructing input data and emphasizing deviations 

efficiently. The FFNN model provides strong generalization 

capabilities, allowing them to learn intrinsic patterns in 

labeled data, while ENNs, with their recurrent architecture, are 

adept at capturing temporal dependencies in network traffic. 

This incorporation employs the merits of every technique, 

enhancing overall detection accuracy and robustness. 

Furthermore, the ensemble technique reduces the weaknesses 

of individual classifiers, resulting in more reliable 

performance in detecting diverse intrusion kinds. By 

incorporating these diverse architectures, the system can adapt 

to a wider range of attack scenarios and enhance its overall 

effectiveness in safeguarding network environments. 

3.3.1. AE Model 

To overcome the backpropagation in an unsupervised 

context, input is employed as output since input and output are 

similar. Rumelhart et al. first introduced an AE, which is 

classified as self‐supervised [27]. According to Goodfellow et 

al., an AE is a trained NN to copy its input to the output". The 

Hidden Layers (HLs) count and the architecture of AE differ 

based on the usage scenario and the domain. Consider an input 

𝑥, an AE has trained to minimize the reconstructed error, as 

follows: 

      𝜑:𝒳 → ℱ 

𝜓:ℱ → 𝒳                                    (6) 

 

𝜑,𝜓 = 𝑎𝑟𝑔 min
𝜑,𝜓

||𝒳 − (𝜑 ∘ 𝜓)𝒳||2  

Where 𝜑 and 𝜓 are the encoder and decoder functions, 

correspondingly. The reconstructed error signifies the 

difference between 𝑥 and 𝑥′: 
𝑥′ = 𝑔(𝑓(𝑥)) 

In the Equation, 𝑓(𝑥) denotes the encoder function, which 

constructs the encoded vector of 𝑥, and 𝑔(𝑥) shows the 

decoder function and restores 𝑥 to its initial value. The 

common functions of MAE and MSE compute the 

reconstructed error as follows. 

𝑀𝑆𝐸 =∑(

𝑁

𝑖=1

𝑥′ − 𝑥)2                             (7) 

𝑀𝐴𝐸 =∑|

𝑁

𝑖=1

𝑥′ − 𝑥|                              (8) 

The AE corresponds to PCA, assuming that the encoder 

function 𝑓(𝑥) is a single-layered network with a linear 

function. Figure 2 demonstrates the architecture of the AE 

method. 



Swapna Sunkara et al. / IJETT, 72(10), 180-190, 2024 

 

184 

Fig. 2 AE structure 

3.3.2. FFNN Model 

This technique transfers data from the input through the 

HL to the output [28]. The NN and output layers are connected 

to the input and weight layers. The activation function of 𝑖𝑡ℎ 

hidden neurons are: 

ℎ𝑖 = 𝑓(𝑢𝑖) = 𝑓 (∑𝑤𝑘𝑖

𝐾

𝑘=0

𝑥𝑘)                       (9) 

Now, 𝑓(𝑢𝑖) shows the connection function that provides 

non‐linearity amongst input and HLs, ℎ𝑖 indicates the 𝑖𝑡ℎ 

hidden neuron, 𝑥𝑘 denotes the 𝐾 input value and 𝑤𝑘𝑖  
represents the weight in 𝑘𝑖𝑡ℎ entry in (𝐾×𝑁) weight matrices: 

𝑦𝑗 = 𝑓(𝑢𝑗
1) = 𝑓 (∑𝑤𝑖𝑗

𝑁

𝑖=1

ℎ𝑖)                    (10) 

In Equation (10), 𝑦𝑗 denotes the 𝑗𝑡ℎ output values. 

3.3.3. ENN Model 

An Elman network integrates context nodes. The context 

node attains input from the hidden nodes and transfers its 

output to the hidden node. As the context node relies on 

activating the hidden node from the prior input, the context 

node keeps the state data amongst inputs. This is 

mathematically modelled as below: 

𝑥(𝑡) = |𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)|
𝑇                   (11) 

The output vector is described as: 

𝑦(𝑡) = |𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡)|
𝑇                   (12) 

The output vector of HL is represented as: 

𝑐(𝑡 − 1) = |𝑐1(𝑡 − 1), 𝑐2(𝑡 − 1), … , 𝑐𝑚(𝑡 − 1)|
𝑇    (13) 

The output vector linked to the HL is: 

𝑥2(𝑡) = |𝑥1
2(𝑡), 𝑥2

2(𝑡), … , 𝑥𝑚
2 (𝑡)|𝑇 = 𝑐(𝑡 − 1)       (14) 

The input vector is: 

𝑥(𝑡)[𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡); 𝑥𝑛+1
2 (𝑡), … , 𝑥𝑘

2(𝑡)]𝑇

= [𝑥(𝑡)]𝑇[𝑥2(𝑡)]𝑇 = 

[𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡), 𝑐1
2(𝑡 − 1), 𝑐𝑚

2 (𝑡 − 1)]𝑇     (15) 

Where 𝑘 = 𝑚 + 𝑛. 

𝑦𝑖(𝑡) = 𝑓(𝑎𝑖
𝑜(𝑡) =

1

1 + exp (−𝑎𝑖
𝑜(𝑡))

, 𝑖 = 1,2, … , 𝑛   (16) 

𝑎𝑖
𝑜(𝑡) =∑𝑊𝑗𝑖

𝑜,ℎ

𝑚

𝑗=1

(𝑡) × ℎ𝑗(𝑡), 𝑖 = 1,2, … , 𝑛          (17) 

The relationship between the input, the context, and the 

HL weight matrices are defined by: 

𝑊ℎ(𝑡) = |𝑊ℎ,𝑖(𝑡)𝑊ℎ,𝑐(𝑡)|                       (18) 

The output of input vector 𝑥(𝑡) is: 

ℎ𝑗(𝑡) = 𝑓 (𝑎𝑗
ℎ(𝑡)) =

1

1 + exp (−𝑎𝑗
ℎ(𝑡))

, 𝑗

= 1,2, … ,𝑚                                              (19) 

𝑎𝑗
ℎ(𝑡) = ∑𝑊𝑗𝑙

ℎ

𝑘

𝑙=1

(𝑡) × 𝑥𝑙(𝑡), 𝑗 = 1,2, … ,𝑚        (20) 

The training of ELMAN aims to reduce the MSE: 

𝐸(𝑡) =
‖𝑒(𝑡)‖2

2
                                (21) 

𝑒(𝑡) = 𝑑(𝑡) − 𝑦(𝑡)                             (22) 

Here, 𝑑(𝑡) is the desired output. The training model 

reduces 𝐸(𝑡) by measuring the weight: 

𝑊𝑜,ℎ(𝑡 + 1) = 𝑊𝑜,ℎ(𝑡) − 𝜇
𝜕𝐸(𝑡)

𝜕𝑊𝑜,ℎ(𝑡)
= 𝑊𝑜,ℎ(𝑡) − 𝜇𝑦′(𝑡)𝑒(𝑡)ℎ𝑇(𝑡)            (23) 

𝑊ℎ(𝑡 + 1) = 𝑊ℎ(𝑡) − 𝜇
𝜕𝐸(𝑡)

𝜕𝑊ℎ(𝑡)
= 𝑊ℎ + 𝜇ℎ′(𝑡)[𝑊𝑜,ℎ(𝑡)]𝑇𝑦′(𝑡)𝑒(𝑡)𝑥𝑇(𝑡)                       (24) 

 

𝑦′(𝑡) = 𝑑𝑖𝑎𝑔[𝑓′(𝑎1
𝑜(𝑡)), 𝑓′(𝑎2

𝑜(𝑡)), … , 𝑓′(𝑎𝑛
𝑜(𝑡))]    (25) 

 

ℎ′(𝑡) = 𝑑𝑖𝑎𝑔 [𝑓′ (𝑎1
ℎ(𝑡)) , 𝑓′ (𝑎2

ℎ(𝑡)) , … , 𝑓′(𝑎𝑚
ℎ (𝑡))] (26) 

Where 𝜇 denotes the learning rate of ELMAN. The input, 

context, and output weight matrices are 𝑊ℎ,𝑖(𝑡), 𝑊ℎ,𝑐(𝑡) and 

𝑊𝑜,ℎ(𝑡). 

3.4. Hyperparameter Tuning utilizing OS-OA 

Eventually, the OS-OA method is utilized to adjust the 

hyperparameter values of these models [29]. The OS-OA 

model is particularly well-suited for hyperparameter 

optimization due to its ability to balance exploration and 

exploitation effectively. Its unique structure allows for 

Encoder Decoder 

Input Output 

Codr 
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adaptive adjustments during the search process, which 

enhances convergence speed and accuracy. Unlike traditional 

optimization techniques, OS-OA incorporates chaotic 

elements that improve randomness, reducing the likelihood of 

getting trapped in local optima. This is critical in high-

dimensional parameter spaces often encountered in ML 

models. Furthermore, its simplicity and efficiency make it 

computationally feasible, even in resource-constrained 

environments. By applying OS-OA, we can achieve better 

performance in tuning hyperparameters, ultimately leading to 

more effective and reliable IDSs. In recent times, various 

optimization models have been established in prior research to 

finetune the parameter with minimal iteration. However, the 

classical optimizer fails to generate a global optimum solution 

and quickly falls into early convergence. Therefore, the study 

presents a new OS‐OA technique for hyperparameter tuning 

of the presented method. The Osprey is generally called a sea 

hawk that eats prey in a wide range. The mathematical 

modelling of the presented technique is discussed below. 

3.4.1. Initialization Stage 

Here, the ospreys are initialized at random in the search 

range, and the mathematical expression is represented by, 

𝑧𝑎,𝑏 = 𝐿𝐵𝑏 + 𝑟𝑎𝑛𝑑𝑎,𝑏 × (𝑈𝐵𝑏 − 𝐿𝐵𝑏), 𝑎 = 1,2,⋯⋯𝑀, 𝑏

= 1𝑡2……𝑥                                             (27) 

In Equation (27), 𝑥 denotes the overall problem variables; 

𝑧𝑎,𝑏 represents the problem variable of 𝑏𝑡ℎ dimensions;  𝑈𝐵𝑏  

and 𝐿𝐵𝑏  are the upper and lower boundaries of 𝑏𝑡ℎ 

dimensions; 𝑀 represents the number of ospreys, and 𝑟𝑎𝑛𝑑a,𝑏 

specifies the random number within [0,1]. 

3.4.2. FF 

On every iteration, the accuracy of the technique is 

evaluated for the FF, and the mathematical expression is given 

below:  

𝑓 = max(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)                              (28) 

3.4.3. Exploration Phase 

In the exploration phase, the Osprey identifies an arbitrary 

place to attack the fish (prey). The updated osprey position is 

mathematically expressed depending on the osprey movement 

towards the fish. 

𝑧𝑎,𝑏
𝑙1 = 𝑧𝑎,𝑏 + 𝑟𝑎𝑛𝑑𝑎,𝑏(𝛽𝑎,𝑏 − 𝑦𝑎,𝑏 × 𝑧𝑎,𝑏)         (29) 

𝑧𝑎,𝑏
𝑙1 =

{
 

 𝑧𝑎,𝑏′
𝑙1 𝐿𝐵𝑏 ≤ 𝑧𝑎,𝑏

𝑙1 ≤ 𝑈𝐵𝑏

𝐿𝐵𝑏′𝑧𝑎,𝑏
𝑙1 < 𝐿𝐵𝑏

𝑈𝐵𝑏 , 𝑧𝑎,𝑏
𝑙1 > 𝑈𝐵𝑏

                 (30) 

Now, 𝑧𝑎,𝑏
𝑙1  indicates the updated location of 𝑎𝑡ℎ ospreys in 

𝑏𝑡ℎ dimensions, 𝛽𝑎,𝑏 shows that the fish have been carefully 

chosen by 𝑎𝑡ℎ ospreys, 𝑟𝑎𝑛𝑑a,𝑏 specifies the arbitrary value 

in [0,1], 𝑦𝑎,𝑏 depicts the random number in the range of [1,2]. 

3.4.4. Exploitation Phase 

In the exploitation phase, the Osprey selects the best, 

safest place to eat the fish, and the mathematical formula for 

updating the osprey location is given below, 

𝑧𝑎,𝑏
𝑙2 = 𝑧𝑎,𝑏 +

𝐿𝐵𝑏 + 𝑟𝑎𝑛𝑎𝑎.𝑏 × (𝑈𝐵𝑏 − 𝐿𝐵𝑏)

𝑓
, 

𝑎 = 1,2, … .𝑀, 𝑏 = 1,2,⋯𝑥, 𝑡 = 1,2… . 𝑇             (31) 

𝑧𝑎,𝑏
𝑙2 =

{
 

 𝑧𝑎,𝑏
𝑙2 , 𝐿𝐵𝑏 ≤ 𝑧𝑧𝑎,𝑏

𝑙2 ≤ 𝑈𝐵𝑏

𝐿𝐵𝑏 , 𝑧𝑎,𝑏
𝑙2 < 𝐿𝐵𝑏

𝑈𝐵𝑏 , 𝑧𝑎,𝑏
𝑙2 > 𝑈𝐵𝑏

                  (32) 

In Equation (32), 𝑧𝑎,𝑏
𝑙2  is the updated location of 𝑎𝑡ℎosprey 

in 𝑏𝑡ℎ dimension, 𝑇 shows the overall iterations and 𝑟𝑎𝑛𝑑a,𝑏 

refers to the random integers ranging from zero to one. Lastly, 

the optimum global solution is attained from the proposed OS‐

OA method for accurately tuning the parameter.  

The first step is initializing the population of the 

metaheuristic approach to enhance DSAtt‐CMNetV3's 

hyperparameter; the hyperparameter count indicates the 

number of dimensions to improve. Next, update the location 

of OS‐OA. The optimum performance has been selected from 

the novel result, and the procedure still attains the novel 

performance.  

This proposed OS‐OA is utilized to enhance classification 

accuracy. Fitness selection is crucial for determining the 

outcome of the OS-OA model. It involves assessing the 

encoded process's performance to evaluate the effectiveness 

of candidate outputs. In this context, OS-OA prioritizes 

accuracy as the key criterion for designing the fitness function, 

defined as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                               (33) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                     (34) 

𝑇𝑃 and 𝐹𝑃 demonstrate the true and false positive rates. 

4. Performance Validation 
The experimentation of the EIDS-OSOAEL methodology 

is performed by using a standard dataset [30]. The dataset 

encompasses 125973 instances under five classes, as stated in 

Table 1. The simulation is performed by utilizing the Python 

3.6.5 tool on PC i5-8600k, 250GB SSD, GeForce 1050Ti 

4GB, 16GB RAM, and 1TB HDD. The parameter settings are 

the rate of learning: 0.01, activation: ReLU, epoch count: 50, 

dropout: 0.5, and batch size: 5. Figure 3 depicts the confusion 

matrices of the EIDS-OSOAEL approach under 60:40 and 

70:30 of TRAPH/TESPH. The simulation value implied that 

the EIDS-OSOAEL method effectively recognizes and 

classifies all five classes. 
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Table 1. Dataset specification 

Classes Instance Numbers 

DoS 45927 

R2l 995 

Probe 11656 

U2r 52 

Normal 67343 

Overall samples 125973 

 
Fig. 3 Confusion matrices of (a-c) 60:70 of TRAPH and (b-d) 40:30 of 

TESPH 

In Table 2 and Figures 4-5, the IDS outcome of the EIDS-

OSOAEL methodology is exposed under 60% of TRAPH and 

40% of TESPH. The outputs ensure the enhanced capability 

of the EIDS-OSOAEL methodology to detect various five 

classes. With 60% of TRAPH, the EIDS-OSOAEL 

methodology offers 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and MCC of 

99.72%, 94.40%, 95.26%, 94.77%, and 94.57%, respectively.  

Also, with 40% of TESPH, the EIDS-OSOAEL approach 

offers 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and MCC of 99.72%, 

95.52%, 93.48%, 94.12%, and 94.08%, correspondingly. In 

Table 3 and Figures 6-7, the IDS performances of the EIDS-

OSOAEL methodology are depicted under 70% of TRAPH 

and 30% of TESPH. The simulation value ensures the EIDS-

OSOAEL technique's improved ability to recognize multiple 

classes. 

Table 2. IDS output of EIDS-OSOAEL approach under 60:40 of 

TRAPH/TESPH  

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

TRAPH (60%) 

Dos 99.56 99.57 99.21 99.39 99.04 

R2l 99.89 88.97 98.17 93.34 93.40 

Probe 99.68 97.68 98.85 98.26 98.08 

U2r 99.99 86.21 80.65 83.33 83.37 

Normal 99.47 99.56 99.45 99.51 98.93 

Average 99.72 94.40 95.26 94.77 94.57 

TESPH (40%) 

Dos 99.55 99.53 99.23 99.38 99.02 

R2l 99.87 86.64 98.48 92.18 92.31 

Probe 99.71 98.11 98.81 98.46 98.30 

U2r 99.99 93.75 71.43 81.08 81.83 

Normal 99.47 99.55 99.45 99.50 98.94 

Average 99.72 95.52 93.48 94.12 94.08 
 

 
Fig. 4 Average of EIDS-OSOAEL method under 60% of TRAPH 

 
Fig. 5 Average of EIDS-OSOAEL method under 40% of TESPH 
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Table 3. IDS output of EIDS-OSOAEL approach under 70:30 of 

TRAPH/TESPH  

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

TRAPH (70%) 

Dos 99.57 99.36 99.47 99.42 99.08 

R2l 99.90 91.47 96.60 93.97 93.95 

Probe 99.72 97.93 99.11 98.52 98.37 

U2r 99.98 78.12 73.53 75.76 75.78 

Normal 99.50 99.71 99.35 99.53 98.99 

Average 99.74 93.32 93.61 93.44 93.24 

TESPH (30%) 

Dos 99.63 99.52 99.46 99.49 99.19 

R2l 99.92 93.39 97.80 95.55 95.53 

Probe 99.71 97.82 99.04 98.42 98.27 

U2r 99.98 78.95 83.33 81.08 81.10 

Normal 99.56 99.71 99.46 99.58 99.11 

Average 99.76 93.88 95.82 94.82 94.64 
 

 
Fig. 6 Average of EIDS-OSOAEL approach under 70% of TRAPH 

 
Fig. 7 Average of EIDS-OSOAEL approach under 30% of TESPH 

With 70% of TRAPH, the EIDS-OSOAEL method 

provides 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and MCC of 99.74%, 

93.32%, 93.61%, 93.44%, and 93.24%, correspondingly. 

Moreover, with 30% of TESPH, the EIDS-OSOAEL method 

gains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and MCC of 99.76%, 

93.88%, 95.82%, 94.82%, and 94.64%, respectively. The 

performance of the EIDS-OSOAEL model using a 70:30 

TRAPH/TESPH ratio is shown in Figure 8, exhibiting the 

accuracy curves of training (TRAA) and validation (VALA). 

The figure illustrates the learning and generalization abilities 

of the model over diverse epochs, with a consistent increase in 

TRAA/VALA. This growth highlights the EIDS-OSOAEL 

method's adaptability in detecting patterns within TRA/TES 

data and its capability to classify unseen data, underscoring 

strong generalization performance precisely. Figures 9 and 10 

depict the loss of training (TRLA) and validation (VALL) of 

the EIDS-OSOAEL approach using a 70:30 TRAPH/TESPH 

ratio over diverse epochs, emphasizing a consistent reduction 

in TRLA that represents efficient weight optimization and 

lessened classifier error. The figures accentuate the EIDS-

OSOAEL approach's robust association with TRA data, 

accentuating its capability to understand patterns in both 

datasets. Furthermore, the PR curve in Figure 10 exhibits that 

the EIDS-OSOAEL methodology attains enhanced precision 

and recall across all classes, confirming its improved 

capabilities in detecting and recognizing diverse classes 

effectually. 

 
Fig. 8 𝑨𝒄𝒄𝒖𝒚 curve of EIDS-OSOAEL method sunder 70:30 of 

TRAPH/TESPH 

 
Fig. 9 Loss curve of EIDS-OSOAEL model under 70:30 of 

TRAPH/TESPH 
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Fig. 10 PR curve of EIDS-OSOAEL model under 70:30 of 

TRAPH/TESPH 

 
Fig. 11 ROC curve of EIDS-OSOAEL model under 70:30 of 

TRAPH/TESPH 

In Figure 11, ROC curves from the EIDS-OSOAEL 

approach with a 70:30 TRAPH/TESPH ratio excelled in 

classifying various classes. It presents an elaborated depiction 

of the TPR/FRP trade-offs over diverse threshold values and 

epochs. The figure illustrates that the EIDS-OSOAEL model 

outperformed across all classes, underscoring its efficiency. A 

detailed relational study of the EIDS-OSOAEL approach is 

performed with existing methods on IDS in Table 4 and Figure 

12 [31]. The investigational value implies that the NB and 

KNN techniques exhibited worse performance with 𝑎𝑐𝑐𝑢𝑦 of 

89.57% and 94.22%. In addition, the LR and SVM models 

have somewhat higher outcomes, with 𝑎𝑛 𝑎𝑐𝑐𝑢𝑦 of 94.73% 

and 96.03%. Meanwhile, the IntruDTree and FSHDBN-CID 

approaches reached closer outcomes with 𝑎𝑐𝑐𝑢𝑦 of 97.60% 

and 99.36%. Nevertheless, the EIDS-OSOAEL technique 

gains maximal performance with an 𝑎𝑐𝑐𝑢𝑦 of 99.76%. At last, 

a comprehensive Computational Time (CT) output of the 

EIDS-OSOAEL methodology is performed with existing 

methods on IDS in Table 5 and Figure 13. The value indicates 

that the SVM and IntruDTree methodologies have resulted in 

poor accomplishment with CT of 11.38s and 11.05s. The NB 

and KNN approaches have reasonable outcomes, with CTs of 

10.31s and 9.68s. In the meantime, the LR and FSHDBN-CID 

methodologies reached closer performances with CT of 9.30s 

and 8.89s. Nevertheless, the EIDS-OSOAEL technique gains 

a lesser solution with a CT of 5.04s. 

Table 4. 𝑨𝒄𝒄𝒖𝒚 outcome of EIDS-OSOAEL technique with existing 

methods 

Methods Accuracy (%) 

EIDS-OSOAEL 99.76 

FSHDBN-CID 99.36 

NB 89.57 

LR 94.73 

KNN 94.22 

SVM 96.03 

IntruDTree 97.60 

 

 
Fig. 12 𝑨𝒄𝒄𝒖𝒚 outcome of EIDS-OSOAEL technique with existing 

methods 

 
Fig. 13 CT outcome of EIDS-OSOAEL technique with existing methods 

Table 5. CT output of EIDS-OSOAEL technique with existing models 

Techniques CT (sec) 

EIDS-OSOAEL 5.04 

FSHDBN-CID 8.89 

NB 10.31 

LR 9.30 

KNN 9.68 

SVM 11.38 

IntruDTree 11.05 
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5. Conclusion 
This paper proposes a novel EIDS-OSOAEL 

methodology. The EIDS-OSOAEL technique mainly focuses 

on the design of an ensemble classifier that integrates the 

output from multiple classes. It involves four stages of 

processes, namely Min-Max normalization, TT-MBFOA-

based FS, ensemble learning, and OS-OA-based tuning. 

Primarily, the EIDS-OSOAEL technique consists of a min-

max scalar for scaling the input data into a uniform format.  

Besides, the TT‐MBFOA approach is exploited for the 

optimum choice of features. For intrusion detection, the EIDS-

OSOAEL technique undergoes an ensemble of three 

classifiers, namely AE, FFNN, and ENN. The OS-OA 

approach is utilized to adjust the hyperparameter values of 

these models. The experimental results of the EIDS-OSOAEL 

approach are evaluated under a standard dataset. The 

performance validation of the EIDS-OSOAEL model 

portrayed a superior 99.76% over recent approaches. The 

limitations of the EIDS-OSOAEL model encompass potential 

threats in computational effectualness due to the complexity 

of training multiple NNs concurrently. The model may also 

face difficulty with scalability when applied to very massive 

datasets, resulting in enhanced training times and resource 

demands. Furthermore, dependence on specific architectures 

could limit adaptability to growing attack patterns, as the 

model may need retraining to maintain performance. Future 

work may concentrate on optimizing the model for faster 

execution, exploring lightweight architectures, and integrating 

more adaptive learning methods. Moreover, improving the 

capability of the technique to generalize across diverse 

network environments and incorporating real-time data 

streams could additionally enhance its effectualness in 

intrusion detection. Finally, investigating hybrid models that 

integrate ensemble learning with other optimization methods 

may yield even improved outcomes. 
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