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Abstract - This work investigates the enhanced capabilities of transfer learning in computer vision, specifically focusing on 

object detection. We employ Dense Convolutional Network (DenseNet) architectures, renowned for their efficacy in extracting 

and reusing features for the purpose of object identification in video frames. These advanced networks can circumvent the 

generally substantial requirements for computational resources and time-consuming training associated with deep learning tasks 

by utilizing transfer learning techniques. Our research aims to optimize the performance of DenseNet121, DenseNet169, and 

DenseNet201 models by making minor adjustments using a meticulously selected dataset. The objective is to assess their efficacy 

in identifying and categorizing items. The results indicate that DenseNet121 and DenseNet201 attain remarkable validation 

accuracies of 0.9605, while DenseNet169 closely matches with an accuracy of 0.9585. Results showcase the versatility of 

DenseNet models in tackling various object detection tasks and their comparable performance levels. This means that any of the 

three models might work for real-world picture recognition tasks. Moreover, our discoveries establish a basis for future 

investigations into enhancing the reliability of models for real-world use in monitoring and autonomous car systems, capitalizing 

on the models' proven accuracy. 
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1. Introduction 
Object detection in computer vision is a specialized 

technology that aims to accurately recognize and determine 

the precise location of things in digital images or videos, as 

shown in many research [1]–[4]. Computer vision is essential 

in various applications, such as surveillance systems, 

autonomous cars, picture retrieval, and machine inspection. 

Object detection goes beyond object recognition by 

classifying the entire image and identifying the specific 

location of each object inside the image. It categorizes various 

items inside an image and accurately identifies their precise 

positions, usually by employing bounding boxes. This feature 

enables systems to comprehend an image in detail by 

accurately identifying the present things and their exact 

locations. The method combines image categorization and 

object localization, making it a complicated operation that 

often depends on deep learning techniques, such as 

Convolutional Neural Networks (CNNs), to analyze visual 

input. Deep learning approaches have revolutionized object 

detection, surpassing standard image processing methods. 

Transfer learning has become an important technique that 

allows pre-trained models to be used on fresh datasets. This 

approach dramatically improves the efficiency and accuracy 

of object detection tasks. Our prior research has thoroughly 

investigated this method, analyzing multiple facets of video 

and object detection. In particular research [5], we examined 

the process of classifying video recordings, emphasizing the 

significance of carefully selected data in developing strong 

models for monitoring one or several objects. A separate 

investigation [6] examined the progression of deep learning 

models, assessing their efficacy in identifying objects within 

intricate visual environments.  

The survey [7] thoroughly examines real-time 

applications, explicitly addressing the difficulties and 

progress in multi-object tracking algorithms applied to video 

streams. Finally, in [8], we evaluated the intermediate 

components, often known as 'neck' models, of deep learning 

architectures, which gave us valuable information about how 

they affect the performance of object detection systems. 

Expanding upon the knowledge gained from earlier 

investigations, the current research seeks to enhance the 

comprehension of transfer learning as a fundamental aspect of 

effective object detection. This research aims to develop 

approaches that improve the accuracy and efficiency of object 

detection in diverse and changing contexts by investigating 

the transfer of knowledge from generalized models to 

specialized detection tasks.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Literature Review                             
Vehicle recognition inside video streams is a prominent 

area of research in the computer vision community. 

Researchers are tackling this topic from different angles and 

using diverse approaches. This literature review focuses on 

influential research that has made significant contributions 

to identifying vehicles, namely those that have applied 

transfer learning principles. Object detection models are often 

classified according to the number of phases in the detection 

process. Single-stage detectors [9]–[11] are highly regarded 

for their rapid processing speeds, which makes them well-

suited for real-time applications. On the other hand, two-stage 

detectors [12]–[14] are recognized for their high level of 

accuracy since they utilize a two-step procedure to enhance 

the precision of object recognition.  

The feature extraction layer is crucial in any object 

detection framework since it significantly influences the 

system's overall effectiveness. Architectures like AlexNet, 

ResNet18, GoogleNet, and the DenseNet family, including 

DenseNet121, DenseNet169, and DenseNet201 [15]–[19], 

are standard models for effective feature extraction. 

Frequently trained on extensive datasets, these structures 

excel in recognizing intricate patterns necessary for precisely 

determining the location and categorization of objects. 

Transfer learning uses knowledge acquired from one domain 

to improve performance on related tasks. Researchers in the 

automobile industry have shown a preference for 

DenseNet121, DenseNet169, and DenseNet201 due to their 

deep architecture and strong ability to extract features.  

The convolutional layers in these networks are highly 

proficient at extracting complex characteristics from images, 

which is crucial for accurately identifying automobiles in 

different situations. Our approach incorporates these 

sophisticated methods by utilizing transfer learning to 

leverage the capabilities of DenseNet121, DenseNet169, and 

DenseNet201 as the fundamental frameworks of our vehicle 

identification system. By combining classic and new methods, 

we aim to find the perfect equilibrium between precision and 

computational speed. This research makes a valuable 

contribution to improving object identification models, 

guaranteeing that they fulfil the challenging demands of real-

time operations in the fast-advancing field of computer vision.  

3. Methodology 
3.1. Dataset 

The dataset utilized in this study for car detection, as 

shown in Figure 1, is meticulously partitioned into training 

and testing subsets to facilitate a comprehensive assessment of 

the model's detection capabilities. The training set consists of 

1,001 carefully chosen photos encompassing various vehicle 

kinds displayed in different contexts, orientations, and 

lighting conditions. This intentional inclusion of diverse 

elements guarantees that the model is exposed to a wide range 

of characteristics essential for the robust identification and 

precise positioning of vehicles. Conversely, the testing set 

comprises 175 photos carefully selected to evaluate the 

model's capacity to apply its acquired features to unfamiliar 

data. This method offers a dependable standard for assessing 

the model's effectiveness in practical situations. The dataset 

comprises cars observed in diverse environments, including 

urban streets and rural locations, and throughout 

various weather conditions, encompassing rain and fog. 

Additionally, it encompasses several periods of the day, from 

sunrise to sunset, guaranteeing a thorough examination of the 

model's ability to adjust and its precision under a wide range 

of circumstances.  

3.2. Model Architecture Based DenseNet169 

The study introduces a complex convolutional neural 

network based on the DenseNet169 architecture, known for its 

effective feature propagation and reuse. This feature makes it 

especially well-suited for intricate jobs like object detection. 

The model's input layer is designed to handle images 

with 224x224 pixels and three-color channels (RGB) 

dimensions. These images are then passed via the 

DenseNet169 functional block for further processing. This 

block is distinguished by its high level of interconnectivity, 

which aids in retaining features over the entire network. 

Subsequently, a global average pooling layer is applied to 

decrease the dimension of the feature maps from 7x7x1664 to 

a single vector with a dimension of 1664. By implementing 

this step, the number of parameters is successfully reduced, 

decreasing the likelihood of overfitting. Next, a dropout layer 

is implemented, which stochastically deactivates a portion of 

the neurons throughout the training process. This reduces the 

possibility of overfitting and enhances the model's capacity to 

generalize to unfamiliar data. The architecture is finalized 

with a compact layer comprising a solitary neuron that 

employs a sigmoid activation function, enabling binary and 

multi-class classification. This architecture is beneficial for 

identifying individual items in various picture datasets, like 

cars, because it can learn intricate feature 

representations necessary for precise identification and 

localization.  

  

  
Fig. 1 An overview of car object detection 
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3.3. Model Architecture Based DenseNet121 

The model in Figure 3 is constructed using the 

DenseNet121 framework, a modified version of the Dense 

Convolutional Network known for its efficient computation 

and ability to capture intricate features with fewer parameters. 

The model starts with an input layer intended to handle images 

with dimensions of 224x224 pixels and three-color channels 

(RGB), which allows it to analyse standard colour images 

effectively. The images undergo processing by the 

DenseNet121 core as they go through the network, which is 

responsible for extracting features. The core consists of 

interconnected dense blocks that enable the smooth 

transmission of information and gradients, leading to a 

comprehensive set of features expressed as a 7x7x1024 tensor. 

To handle these features with many dimensions, the model 

utilizes a global average pooling layer, which compresses the 

features into a 1024-dimensional flat vector. This stage 

decreases the complexity of the model and improves its 

efficiency in learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 An overview of the proposed model architecture based DenseNet169 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 An overview of the proposed model architecture based DenseNet121  
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Fig. 4 An overview of the proposed model architecture based DenseNet201 

Following the pooling operation, a dropout layer 

enhances regularization by randomly excluding a subset of 

neurons throughout the training process. This aids in 

mitigating overfitting and guarantees the model's resilience. 

The architecture is finalized with a compact output layer of a 

solitary neuron, which functions as the unit responsible for 

making decisions. This layer most likely utilizes a sigmoid 

activation function specifically designed for binary 

classification tasks, ultimately generating the final prediction. 

This approach is especially suitable for complicated object 

identification scenarios where recognizing subtle aspects is 

essential for precise item classification.  

3.4. Model Architecture Based DenseNet201 

The model shown in Figure 4 is built on the DenseNet201 

architecture, a type of Densely Connected Convolutional 

Networks. DenseNet201 is noted for its deep structure and 

effective transmission of features between layers. The model 

commences with an input layer specifically engineered to 

handle images with a size of 224x224 pixels and three-color 

channels (RGB), enabling efficient processing of popular 

image formats. Subsequently, the input data is sent into the 

DenseNet201 block, which consists of a sequence of 

convolutional and pooling procedures.  

These methods process the input data to produce feature 

maps with dimensions of 7x7x1920. The feature maps 

undergo processing through a global average pooling 2D layer 

to decrease the computational burden and the number of 

parameters. The purpose of this layer is to condense the 

necessary information into a vector with 1920 dimensions. 

This allows for the extraction of global characteristics while 

still keeping the model straightforward. Subsequently, a 

dropout layer is implemented on this vector. The primary 

function of this layer is to mitigate overfitting by introducing 

random deactivation of a subset of neurons during the training 

process, hence improving the model's capacity to generalize to 

unseen data. The last element of the model consists of a highly 

coupled layer containing only one neuron, which functions as 

the output layer. Depending on the job at hand, this neuron can 

utilize a sigmoid activation function for binary classification 

or a softmax activation function for multi-class classification.  

The function provides the probability that the image 

includes a specific object of interest, such as an automobile. 

Due to its depth and resilient feature paths, the DenseNet201 

model is particularly effective for complicated object 

identification tasks. It offers great accuracy and reliability in 

recognizing and classifying objects in varied settings.  

4. Results 
The convergence trends of the DenseNet169 model 

during the training process over ten epochs are illustrated in 

Figure 5, highlighting four key metrics: training loss, 

validation loss, accuracy, and validation accuracy. 

4.1. Training Loss 

This line represents the model's training loss, which starts 

at a relatively high level and shows a sharp decline during the 

initial epochs, indicating a rapid learning phase. As training 

continues, the loss gradually levels off, suggesting that the 

model is nearing its learning capacity with the current dataset. 

4.1.1. Accuracy  

The accuracy metric, likely reflecting the model's 

performance on the training data, begins at a moderate level 

and increases steadily with each epoch. The rate of 

improvement slows down over time, which may indicate that 

the model is reaching its maximum potential for correctly 

classifying the training data. 
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Fig. 5 Convergence Trends of the first model based DenseNet169: Training and validation metrics across epochs 

 
Fig. 6 Convergence Trends of the first model based DenseNet121: Training and validation metrics across epochs

4.1.2. Validation Loss  

The validation loss starts slightly higher than the training 

loss but decreases steadily, eventually converging closely with 

the training loss as the epochs progress. This convergence is a 

positive indication of the model's generalisation capabilities, 

suggesting that it is learning patterns that are applicable not 

only to the training data but also to unseen validation data. 

4.1.3. Validation Accuracy  

The validation accuracy starts high and remains relatively 

stable throughout the training process, with a slight upward 

trend. The fact that validation accuracy is consistently high 

and comparable to training accuracy indicates that the model 

performs well on data that it has not seen before, 

demonstrating strong generalisation. 

4.2. Convergence Trends of DenseNet121 

Figure 6 illustrates the convergence trends of the 

DenseNet121 model over ten training epochs, showing key 

metrics: loss, accuracy, validation loss, and validation 

accuracy. 
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This curve represents the training loss, which starts at a 

relatively high value but quickly decreases, indicating that the 

model is effectively learning from the training data.  
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suggests that the model is approaching the limit of what it can 

learn from the provided training set. 
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Fig. 7 Convergence Trends of the first model based DenseNet201: Training and validation metrics across epochs 

4.2.2. Accuracy 

The accuracy, likely reflecting the model's performance 

on the training data, begins at a lower level but improves as 

the number of epochs increases. The curve levels off as the 

model starts to converge, indicating that the predictions are 

becoming more accurate over time. 

4.2.3. Validation Loss 

The validation loss starts higher than the training loss but 

decreases significantly, demonstrating the model's 

performance on the validation set. Its trend towards a lower 

value is a positive indication that the model is not overfitting 

and is learning patterns that generalise well to unseen data. 

4.2.4. Validation Accuracy 

The validation accuracy starts at a relatively high level, 

indicating that the model performs well on the validation data 

from the very first epoch. The line remains stable throughout 

the training process, reflecting consistent performance when 

the model is exposed to new, unseen data. 

4.3. DenseNet201 Metrics 

Figure 7 illustrates the key metrics of the DenseNet201 

model throughout ten training epochs, including loss, 

accuracy, validation loss, and validation accuracy. 

4.3.1. Loss 

This line shows the loss on the training dataset, which 

begins at a higher value and rapidly decreases, followed by a 

more gradual decline. This pattern suggests that the model is 

effectively learning from the training data initially, but the 

slowing rate of loss reduction may indicate diminishing 

returns from further training.  

4.3.2. Accuracy 

The accuracy of the training set starts at a modest level 

but increases steadily throughout the epochs, indicating that 

the model is progressively improving its ability to classify the 

training data correctly. By the end of the ten epochs, the 

accuracy approaches a high value, reflecting a good fit to the 

training data. 
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The validation loss starts slightly higher than the training 

loss but decreases sharply before stabilising at a lower level. 

This flattening suggests that the model is not overfitting and 

is effectively generalising to new, unseen data. 

4.3.4. Validation Accuracy 

The validation accuracy begins at a high level and remains 

relatively flat across the epochs. Its stability near the upper 

boundary of the chart indicates that the model consistently 

maintains high performance on the validation set throughout 

the training process.The performance measures of the model 

demonstrate its effective learning and ability to generalize to 

new data (refer to Figure 8).  
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The convergence of both the training and validation loss 

curves towards the conclusion of the training indicates that 

further training on this dataset may not yield meaningful 

improvements to the model. The plateauing of the model 

suggests that it does not suffer from overfitting and effectively 

strikes a balance between learning from the training data and 

achieving good performance on the validation data.  

The displayed metrics indicate that the model is 

effectively learning, as both the validation loss and accuracy 

demonstrate strong generalizability. The plateauing of both the 

training and validation loss curves indicates that additional 

epochs are unlikely to result in substantial enhancements, and 

the model is approaching an optimal state for its existing 

architecture and dataset. The model's ability to continually 

achieve high validation accuracy throughout the training 

process indicates its strong performance on unknown data 

(refer to Figure 9). As depicted in Figure 10, the 

model exhibits exceptional performance from the beginning of 

training, with minimal fluctuations in loss and accuracy 

metrics. This may indicate a highly efficient first learning 

stage or that the model is well-initialized and approaching 

early convergence. The consistent validation loss and accuracy 

suggest that the model effectively generalizes to unseen data, 

and further training is unlikely to yield substantial 

performance enhancements. 

DenseNet121 steadily increases accuracy, beginning at 

0.7847 and reaching 0.9327. Nevertheless, DenseNet169 

surpasses it somewhat, starting with a higher initial accuracy 

of 0.8199 and achieving a final accuracy of 0.9364. 

DenseNet201 exhibits comparable starting accuracy to 

DenseNet121 and performs closely, ultimately reaching an 

accuracy of 0.9327. These trends indicate that although all 

variations train well, DenseNet169 may capture the subtleties 

of the dataset more effectively. The validation loss for all 

architectures begins at a low level and remains consistently 

low. However, DenseNet169 exhibits the most notable drop, 

reaching a value of 0.1318.  

This suggests that DenseNet169 may have a higher 

generalization ability, as evidenced by its validation accuracy, 

which reaches a maximum of 0.9648. DenseNet201 closely 

follows with a peak validation accuracy of 0.9642, while 

DenseNet121 likewise achieves a peak validation accuracy of 

0.9642. These results emphasize the significance of 

DenseNet's feature propagation in controlling overfitting and 

improving generalization, which are critical factors in model 

performance, particularly in object detection tasks. 

DenseNet169 can strike an ideal equilibrium between depth 

and parameter efficiency, as it exhibits marginally superior 

generalization regarding validation accuracy.  

Nevertheless, the variations among the models are 

minimal, indicating that each version can be appropriate based 

on the application's individual needs, such as processing 

resources and required level of precision. Although all models 

exhibit exceptional performance, the decision between them 

may hinge on finding a balance between computational 

expense and marginal improvements in accuracy. Subsequent 

investigations could further examine these structures by 

integrating supplementary regularization methods or data 

augmentation tactics to improve performance and stability. 
Furthermore, augmenting the datasets to incorporate a broader 

range of diverse and demanding situations could offer a more 

comprehensive evaluation of the models' resilience and 

flexibility. Figure 10 demonstrates that DenseNet structures 

are highly efficient for tasks requiring precise feature 

differentiation, such as detecting vehicles in intricate 

surroundings. This showcases their substantial promise for 

practical object identification applications, as shown in Figure 

11.  

 

 
Fig. 9 Validation accuracy and validation loss of the model based 

DenseNet121 

 
Fig. 10 Validation accuracy and validation loss of the model based 

DenseNet201 
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DenseNet121 

Training Loss Accuracy 
Validation 

Loss 

Validation 

Accuracy 

0.6222 0.7847 0.1949 0.9422 

0.276 0.9015 0.1586 0.9548 

0.2345 0.9144 0.143 0.9605 

0.2175 0.9245 0.1387 0.9625 

0.2047 0.9268 0.1386 0.9599 

0.1978 0.9321 0.1308 0.9628 

0.1917 0.9343 0.1297 0.9625 

0.1934 0.9312 0.132 0.9616 

0.1904 0.9326 0.1258 0.9642 

0.1929 0.9327 0.1396 0.9605 
 

DenseNet169 

Training Loss Accuracy 
Validation 

Loss 

Validation 

Accuracy 

0.5267 0.8199 0.195 0.9381 

0.2649 0.9116 0.1808 0.9361 

0.2319 0.9211 0.1724 0.9416 

0.2114 0.9255 0.1405 0.9565 

0.1968 0.9293 0.1328 0.9599 

0.184 0.9372 0.1287 0.9608 

0.2006 0.93 0.1385 0.9559 

0.1896 0.9344 0.1332 0.959 

0.185 0.9381 0.1254 0.9648 

0.1885 0.9364 0.1318 0.9585 
 

DenseNet201 

Training 

Loss 
Accuracy 

Validation 

Loss 

Validation 

Accuracy 

0.6222 0.7847 0.1949 0.9422 

0.276 0.9015 0.1586 0.9548 

0.2345 0.9144 0.143 0.9605 

0.2175 0.9245 0.1387 0.9625 

0.2047 0.9268 0.1386 0.9599 

0.1978 0.9321 0.1308 0.9628 
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0.1929 0.9327 0.1396 0.9605 
 

 

Fig. 11 Training accuracy and training loss, validation accuracy and validation loss of the model based DenseNet121, DenseNet201, DenseNet169 

 

5. Discussion 
When comparing accuracy, DenseNet121 shows steady 

progress, increasing from 0.7847 to 0.9327. However, 

DenseNet169 slightly outperforms it, starting with a higher 

accuracy of 0.8199 and reaching 0.9364. DenseNet201 

performs similarly to DenseNet121, starting at the same initial 

accuracy and concluding with a final accuracy of 0.9327. 

These trends indicate that while all variants are effective 

learners, DenseNet169 may capture the dataset's intricacies 

more effectively. The validation loss remains relatively low 

across all architectures, with DenseNet169 experiencing the 

most significant drop to 0.1318. This suggests that 

DenseNet169 may generalize better, as indicated by its peak 

validation accuracy of 0.9648. DenseNet201 follows closely 

with a peak of 0.9642, while DenseNet121 also achieves a 

peak validation accuracy of 0.9642. These findings highlight 

DenseNet's ability to manage overfitting and enhance 

generalization, which is crucial for model performance, 

especially in object detection tasks. DenseNet169 appears to 

strike an optimal balance between depth and parameter 

efficiency, as it slightly outperforms the others in validation 

accuracy. However, the differences among the models are 

minimal, suggesting that any of these variants could be 

appropriate, depending on the application's computational 

resources and accuracy requirements. While all models 

perform exceptionally well, the choice between them may 

hinge on balancing computational cost with marginal accuracy 

improvements. Future research could explore these 

architectures with additional regularization techniques or data 

augmentation strategies to further improve performance and 

stability.  

Additionally, using more diverse and challenging datasets 

could offer a more rigorous evaluation of the model's 

robustness. Figure 7 illustrates that the DenseNet architectures 

excel in tasks requiring fine feature discrimination, such as 

vehicle detection in complex environments, indicating 

significant potential for real-world object detection 

applications. 

6. Conclusion 
This study demonstrates the effectiveness of DenseNet 

architectures in vehicle detection within video frames, 

highlighting the capabilities of deep convolutional networks 

in this domain. DenseNet121, DenseNet169, and 

DenseNet201 each show strong potential in learning detailed 

features necessary for accurate object recognition, as 

evidenced by the consistent reduction in training loss and the 

increase in both training and validation accuracy throughout 

the training process. DenseNet169, in particular, showed 

slightly better generalization than DenseNet121 and 

DenseNet201. However, the performance differences were 
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minimal, suggesting that all architectures are competitive 

options, with the final decision likely dependent on 

computational efficiency and specific use-case needs. 

Looking ahead, several areas for future research are evident. 

Investigating the integration of these models into real-time 

detection systems could optimize both speed and accuracy. 

Exploring the impact of using more extensive datasets, 

especially those with a broader range of environmental 

conditions and vehicle types, could enhance the models' 

robustness and applicability. Additionally, combining 

DenseNet architectures with other models in an ensemble 

approach may improve detection performance and address 

potential weaknesses of individual models.  

In conclusion, this investigation into DenseNet-based 

models for vehicle detection underscores the significant 

potential of deep learning in computer vision. The findings 

support the ongoing development and refinement of such 

models, reinforcing their role as vital tools in the growing field 

of automated detection and surveillance technologies.
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