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Abstract - The application of 3D point cloud data has gained significant traction in the field of advanced building and 

manufacturing. This paper presents a comprehensive methodology for refining line frame construction from indoor 3D point 

clouds directly. The proposed methodology integrates edge detection methods and Alpha Shape computation to achieve an 

accurate representation of indoor structural geometry. Extensive analyses of several scenarios of indoor scene environments 

have demonstrated the usefulness and robustness of the methods. The study evaluates this methodology across three distinct 

datasets, denoted as Cases A, B, and C, each representing varying degrees of indoor room complexity. The edge identification 

approach uses PCA-based geometric descriptors in conjunction with DBSCAN clustering to accurately locate and segment 

edge points, resulting in the creation of full wireframe models. The utilization of the Rolling Ball Pivoting algorithm in the 

computation of the Alpha Shape facilitates the enhancement of the wireframe structure, hence enabling accurate 

representation. Our evaluation demonstrates exceptional adaptability and performance across scenarios, with Case C 

showcasing remarkable Precision (0.914) and Recall (0.941), leading to an impressive F1 score of 0.927. This research 

contributes to advancing indoor scene reconstruction, offering a robust methodology for precise structural representation 

within interior spaces. 

Keywords - 3D point cloud, PCA, Indoor modeling, Line frame construction, Alpha shape, Clustering. 

1. Introduction 
The rapid advancement of technology in recent years has 

revolutionized various industries, including civil engineering. 

One transformative method that has emerged is the 

utilization of point cloud data, which has become 

instrumental in capturing and modeling indoor environments 

due to the escalating demand for accuracy and efficiency in 

construction and interior design [1-5]. Point clouds, 

comprising dense collections of three-dimensional (3D) 

points acquired through laser scanning or photogrammetric 

techniques, have demonstrated their indispensability in 

generating precise representations of real-world spaces [6-8]. 

However, despite the potential of point cloud data, the 

precise extraction of edges and corners remains a critical 

challenge in the process of converting raw 3D point clouds 

into meaningful geometric models [9-12]. Traditionally, 

identifying edges and corners within indoor environments 

relied heavily on manual measurements, which are not only 

laborious and time-consuming but also susceptible to human 

error, especially in the case of complex structures. 

Consequently, there exists a pressing need to address these 

challenges by developing more efficient and accurate 

methods for extracting edges and corners from point cloud 

data. This study addresses this research gap by proposing a 

novel approach for extracting edges and corners from point 

cloud data, with a particular focus on its applicability to civil 

and interior construction projects. By leveraging techniques 

such as DBSCAN and Alpha shape, this approach aims to 

enhance the efficiency and accuracy of edge and corner 

extraction, thereby facilitating precise measurements and 

aiding in the planning and execution of building and interior 

design projects through the provision of detailed 3D models 

highlighting key structural features. The novelty of this work 

lies in its integration of DBSCAN and Alpha shape 

algorithms to refine line frame construction from 3D point 

clouds, offering a systematic and automated solution to the 

challenges associated with manual edge and corner 

extraction. By automating this process, the proposed 

approach not only reduces the reliance on labor-intensive 

manual methods but also improves the accuracy and 

reliability of the resulting geometric models, thus advancing 

the state-of-the-art in point cloud processing for civil and 

interior construction applications. The subsequent sections of 

this paper are organized as follows: Section 2 provides an 

overview of the relevant literature, highlighting existing 

approaches and their limitations. Section 3 presents a 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sujitha Kurup & Archana Bhise / IJETT, 72(10), 10-20, 2024 

 

11 

detailed explanation of the proposed method, including the 

implementation of DBSCAN and alpha shape algorithms. In 

Section 4, the effectiveness of the developed technique is 

evaluated using existing datasets, followed by a discussion of 

the experimental results. Finally, Section 5 concludes the 

paper with a comprehensive summary and outlines directions 

for future research. 

2. Related Works 
2.1. Point Cloud Data 

Point cloud data is used in civil engineering and interior 

design to capture comprehensive 3D representations of 

indoor settings. Acquired via laser scanning or 

photogrammetry, point clouds consist of vast arrays of 3D 

points that, when combined, accurately depict the surfaces 

and features of real-world scenes. Researchers and experts 

may create realistic indoor settings using point clouds to 

reconstruct buildings, rooms, and architectural spaces [12-

14]. The technique entails extracting structural features from 

point cloud data, such as walls, floors, ceilings, doors, and 

windows, to construct accurate and parametric building 

models. These models are fundamental components of 

Building Information Modelling (BIM) applications, which 

are extensively used in the construction and design sectors 

[15]. The study conducted by [16] primarily centered on the 

automated reconstruction of parametric architectural models 

using indoor point clouds. The authors emphasized the 

significance of edge extraction in the process of recognizing 

and delineating structural components, such as walls and 

columns, within point cloud data. The approach employed by 

the researchers effectively extracted edges, so facilitating the 

production of parametric models. This, in turn, enabled 

efficient architectural design and refurbishment processes 

through the utilization of Building Information Modelling 

(BIM) technologies by introducing novel algorithms for the 

detection and reconstruction of 3D surface point cloud 

boundaries and edges. Utilizing advanced computational 

methods, their research sought to improve the precision and 

performance of edge extraction techniques. The increased 

accuracy of edge detection enabled more refined indoor 

scene reconstructions, resulting in high-quality BIM models 

that more accurately reflected the underlying architectural 

spaces. 

A thorough analysis of the most up-to-date methods for 

building reconstruction using point clouds is provided in 

references [17]. In the realm of research on building 

reconstruction techniques, it has been observed that there are 

significant limitations in how they are developed [18,19]. 

These limitations pertain to concerns regarding the efficiency 

and effectiveness of the techniques, their applicability to 

various scenarios, their robustness in the face of 

disturbances, and the constraints imposed by the methods 

used for data acquisition [20,21]. It is crucial to prioritize the 

resolution of these constraints and problems to make 

progress in the field of building reconstruction using point 

clouds. This will ultimately facilitate the advancement of 

methodologies that are more effective, adaptable, and robust, 

enabling their practical application in a wide range of real-

world situations. 

2.2. Edge Detection Techniques 

The research uses unsupervised learning to identify 

significant patterns and structures from raw point cloud data 

without labeled samples, making it more scalable and 

adaptable to varied real-world contexts. This minimizes the 

need for labor-intensive manual annotations and expands the 

applicability of the procedures to a wide range of building 

kinds and configurations, which could revolutionize building 

reconstruction. Edge extraction in point cloud data helps 

identify and delineate structural components like walls, 

floors, doors, and windows in interior and outdoor 

environments. These methods provide accurate and 

comprehensive 3D models for civil engineering, architecture, 

interior design, and robotics. Clustering-based unsupervised 

edge detection from point clouds is powerful and efficient. 

3D modelling, scene segmentation, and robotics use their 

capacity to distinguish clusters of points indicating edges and 

boundaries [22]. These approaches cluster close points in the 

point cloud by spatial proximity or other similarity metrics, 

recognizing scene edges and surfaces. A modified DBSCAN 

clustering technique to find boundaries and planes in 3D 

point clouds was introduced in [23], which uses 3D space to 

pick candidate samples and detect valid fitting planes. The 

suggested method improves the standard DBSCAN 

clustering algorithm to detect boundaries and segment planes 

in point clouds, making it viable for 3D modeling and scene 

reconstruction. In [24], new algorithms for edge and corner 

recognition in unorganized 3D point clouds evaluated 

symmetry in a small neighborhood and used an adaptive 

density-based threshold to discriminate 3D edge points. The 

new corner recognition algorithm clusters curvature vectors 

and leverages geometrical characteristics to identify corners. 

The algorithms are tested on RGB-D semantic segmentation, 

ShapeNet 3D washer models, and robotic welding weld seam 

identification. 

Geometric shape-based methods provide a potent 

approach for unsupervised edge extraction from point clouds, 

yielding valuable insights into the structural elements of the 

scene and facilitating numerous applications in 3D 

modelling, scene understanding, and robotics [25]. These 

methods use geometric properties and characteristics of the 

point cloud, such as surface normals, curvatures, and local 

surface orientations, to detect abrupt surface changes 

indicative of edges or corners. [26] present a method to 

automatically detect contours in large-scale outdoor point 

clouds, which are crucial intermediary elements for 

organizing point clouds and creating high-quality surface or 

solid models. The method addresses contour extraction as a 

two-stage discriminative learning problem. It can process 

point clouds with more than 107 points in a matter of 
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minutes, vastly outperforming existing line detection 

algorithms. In [27,28], methods for processing point cloud 

data using voxel-based feature engineering that seek to 

improve the characterization of point clusters and provide 

substantial assistance in both supervised and unsupervised 

classification tasks were proposed. The strategy proposed by 

[29] offers a method for effectively segmenting point clouds 

of historical buildings, a task of significant relevance in the 

fields of engineering and construction. The methodology 

integrates the Hierarchical Watershed Transform and 

curvature analysis techniques to derive optimal seed points. 

The effectiveness of this approach was assessed using data 

collected from both aerial drones and terrestrial laser 

scanners. Geometric-based methodologies exhibit 

susceptibility to noise and changes in point density due to 

their dependence on local geometric attributes of the point 

cloud. Clustering-based methodologies demonstrate efficacy 

in the grouping of proximate points and identification of 

clusters. However, they may exhibit limitations in accurately 

segmenting intricate scenes with overlapping structures or 

variations in point density. To address the constraints above, 

the present study introduces a novel methodology that 

integrates DBSCAN clustering and geometric form-based 

methods. Subsequently, the alpha shape algorithm is 

employed to enhance the precision of edge and corner 

detection within indoor environments. The integration of 

DBSCAN clustering enhances the method's ability to 

accurately detect clusters that correspond to potential edges 

and boundaries inside the point cloud. The use of surface 

normals, curvatures, and local orientations in the geometric 

shape-based approach serves to enhance the accuracy and 

robustness of the edge extraction procedure for the 

discovered clusters. The alpha shape method, in conclusion, 

offers a concave hull surrounding the point cloud data, 

facilitating the creation of a precise and intricate depiction of 

the edges and corners within the indoor environment. 

3. Materials and Methods 
The objective of the proposed methodology is to derive 

the structural geometry of an indoor room scene using 

unstructured point cloud data. The input to the procedure 

consists of an unstructured point cloud that represents the 

indoor room scene. The methodology has three primary 

stages: Pre-processing, Edge Detection, and Edge refining, as 

seen in Figure 1. A comprehensive explanation of each stage 

is provided below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1 Flowchart of the proposed methodology 
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During the pre-processing stage, the point cloud data is 

subjected to an initial phase of data cleaning and 

simplification to enhance the quality of the data and decrease 

the computing complexity. The approach consists of two 

fundamental sub-steps: Denoising utilizing Statistical Outlier 

Removal and Voxel Down-sampling. The process of 

denoising serves to effectively remove unwanted noise and 

outliers present in the point cloud data, hence enhancing its 

quality. On the other hand, Voxel Down-sampling is 

employed to decrease the density of the point cloud while 

preserving its fundamental structural characteristics.The third 

stage is Edge Detection, which is concerned with the 

identification of the edges pertaining to the structural 

geometry of the indoor room. The process entails the 

computation of Principal Component Analysis (PCA)-based 

geometric descriptors [30] for the local neighborhood of each 

point, considering a set of 10 neighboring points. Surface 

curvature and anisotropy are two significant descriptors 

utilized at this stage. Locations that have surface curvature 

values that surpass a certain threshold and locations that have 

anisotropy values below a separate criterion are recognized 

as potential edge points. The potential edge points undergo 

DBSCAN clustering to extract the contour of the space's 

structural geometry. This technique effectively isolates the 

edges and improves the representation of the architectural 

aspects within the room. 

The process of edge refining plays a crucial role in the 

methodology by improving the accuracy of structural 

elements obtained from 3D point clouds. This ensures a more 

precise depiction of the physical surroundings. The last stage 

of Edge refining involves the utilization of the Alpha Shape 

generation process [31], notably Rolling Ball Pivoting, to 

acquire a more precise line frame model of the structural 

geometry within the interior room. The Rolling Ball Pivoting 

(RBP) algorithm [32] efficiently computes a point cloud's 

Alpha Shape by envisioning a rolling ball pivoting over its 

surface. From a seed triangle, the algorithm grows the ball's 

radius until it reaches another point, generating tetrahedra 

and testing the Delaunay circumsphere property.  

The Alpha Shape is filled with triangles until all points 

are included, representing the point cloud's shape, including 

convex and concave regions. This revised Alpha Shape is 

useful for line frame models for indoor room scene structural 

geometry [33]. The Alpha Shape algorithm can capture both 

convex and concave regions, so offering a thorough 

depiction of the structural edges and corners within the room. 

The line frame model obtained from the computed Alpha 

Shape provides a comprehensive and precise depiction of the 

structural geometry of the indoor room. The methodology 

presented demonstrates a high level of effectiveness in 

capturing the complex characteristics of the room, so 

facilitating more accurate measurements and providing 

valuable support for a range of civil engineering and interior 

works applications. 

4. Results and Discussion 
4.1. Dataset 

To evaluate the efficacy of the suggested methodology, 

experiments were conducted utilizing point cloud data, a 

dataset of colored point clouds with high spatial resolution, 

which represents interior situations well. The input dataset 

for this study comprises a colored point cloud captured using 

a NavVis Laser scanner. This point cloud represents an entire 

floor of a building and is stored in the last format.  

With a total of 4,244,416 points, this dataset provides a 

detailed and comprehensive representation of the entire floor, 

including multiple rooms with varying interior geometries. 

These rooms may differ in size, shape, and layout, making 

the dataset particularly valuable for various analyses and 

applications within the study. The methodology's capabilities 

and restrictions are better assessed using colored point clouds 

in real-world circumstances. Within the NavVis dataset, three 

specific use case scenarios, labelled as Cases A, B, and C, 

were created.  

These scenarios were designed to assess and confirm the 

effectiveness of the algorithm's methodology, as shown in 

Figure 2. The number of points present in each point cloud 

scenario is detailed in Table 1. These cases serve as 

representative testbeds for evaluating the algorithm's efficacy 

and dependability in various architectural settings. Case A 

displays a point cloud depicting a wall with two distinct 

doorways. The presence of numerous doorways within a 

single structural element poses a challenge to the algorithm's 

ability to capture and analyze architectural features precisely.  

In Case B, the point cloud represents a wall 

configuration characterized by the presence of three 

windows. The varying window sizes and positions introduce 

complexities that enable us to evaluate the algorithm's ability 

to distinguish and delineate architectural components 

accurately. Case C presents us with a wall containing two 

distinct doors, with beams serving as architectural elements 

separating them. This scenario tests the algorithm's ability to 

recognize and differentiate structural elements despite the 

spatial complexities introduced by beams. The analysis of 

these three use cases not only demonstrates the adaptability 

of our proposed methodology but also offers valuable 

insights into its applicability in a variety of architectural 

contexts. 

4.2. Pre-processing 

In this section, the pre-processing stage of the proposed 

methodology is elaborated, including two essential sub-steps 

for improving the quality of point cloud data. Initial 

denoising exploiting the Statistical Outlier Removal (SOR) 

algorithm is utilized to enhance the precision and 

dependability of subsequent analyses by reducing noise and 

outliers. Denoising point cloud data increases structural 

information extraction, making the process more robust. 
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Table 1. Indoor scenarios used as the use case for the proposed methodology 

Dataset 
No of 

points 
Scenario 

No of 

points 
Description 

NavVis Scanner 

indoor dataset 

4 244 416 

 

Case A 224 423 Room wall with one open and one closed door 

Case B 297 172 Room wall with three windows and a beam across them. 

Case C 193 267 
Room wall with one open door and one closed door with a 

pillar separating the doors. 

 
Fig. 2 NavVis Dataset - Three distinctive architectural cases (A, B, and C) 

The point cloud is voxel downsampled using grid sizes 

of 0.1, 0.03, and 0.05 after denoising. A smaller voxel grid 

size preserves fine-grained properties, while a larger size 

simplifies point cloud representation. After conducting a 

series of trials and evaluations, it was determined that a voxel 

grid size of 0.03 is the optimal choice for extracting indoor 

structural data in the context of modelling and 

reconstruction. This grid size was found to minimize data 

loss while still achieving satisfactory results. These rigorous 

pre-processing methods prepare point clouds to extract 

accurate and complete interior structural elements. 

4.3. Edge Detection 

This section presents the edge detection algorithm used 

to extract structural edges from the pre-processed point cloud 

data. The approach uses Principal Component Analysis 

(PCA) to compute eigenvalues and extract geometric 

descriptors, including verticality, anisotropy, and surface 

curvature, inside a localized region consisting of 10 points 

closest to one another.PCA is applied to each point in the 

pre-processed point cloud to determine eigenvalues, which 

represent the local curvature direction and magnitude. 

Among the derived descriptors, anisotropy and surface 

curvature are determined to be the most important 

characteristics for edge detection. The method determines 

threshold values by utilizing the mean values of anisotropy 

and surface curvature descriptors. The results of edge 

detection on Cases A, B and C are shown in Figures 3(b), 

4(b) and 5(b). Points that have anisotropic values below a 

certain threshold are categorized as anisotropic points, which 

suggests the existence of edge features. On the other hand, 

sites with surface curvature values that are beyond the 

threshold are identified as curvature points, highlighting 

possible edge positions. After the detection of edge points, 

the algorithm proceeds to utilize the Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) technique 

for the purpose of clustering the discovered edge points [24-

25]. The DBSCAN algorithm is utilized to aggregate 

adjacent edge points into clusters, considering a predefined 

distance threshold. The choice of an epsilon value in the 

DBSCAN algorithm is determined through a thoughtful 

analysis of the desired spatial resolution and the density of 

edge points in the specific context. The objective is to 

accurately identify significant clusters while minimizing the 

impact of noise and appropriately grouping edge points. The 

clusters that are obtained from the edge framework serve to 

define the structural edges of the indoor scene environment 

accurately. 

4.4. Edge Refinement 

The method of refining the wireframe for the indoor 

scene involves the computation of the Alpha Shape using the 

Rolling Ball Pivoting (RBP) algorithm [19]. Alpha Shape is a 

comprehensive representation of the interior scene's 

structural geometry, capturing both convex and concave 

regions and refining the wireframe model with enhanced 



Sujitha Kurup & Archana Bhise / IJETT, 72(10), 10-20, 2024 

 

15 

details. The alpha radius determines the Alpha Shape 

algorithm's detail and sensitivity. The alpha radius defines 

the size of the ball used to probe point cloud data. A small 

alpha radius decreases the probing ball. The alpha form will 

capture finer point cloud features and geometric aspects in 

this case, resulting in a more sophisticated data 

representation. Using a larger alpha radius will result in a 

larger probing orb. Larger alpha forms smooth out smaller 

point cloud details. Data that is more significant and in 

coarser forms is recorded.  

Extensive experimentation revealed that in the context of 

our use cases A, B, and C, an alpha radius value of 0.08 

proved to be a highly effective parameter for modulating the 

level of detail and sensitivity in the alpha shape computation 

process. This specific alpha radius value was empirically 

determined to strike the optimal balance, enabling us to 

capture the most important architectural features present in 

the point cloud data while effectively filtering out noise and 

preserving computational efficiency. The selection of alpha 

radius was consistent across all three use cases, 

demonstrating its robustness and applicability across a 

variety of architectural scenarios. This parameter selection 

was crucial to improving the precision and interpretability of 

our alpha shape-based analysis. From the dataset, Case A is a 

wall with two door openings, as shown in Figure 3(a). The 

algorithm demonstrates its efficacy in accurately representing 

the structural limits of the space, including the door 

openings, as illustrated in Figures 3(b) and (c). Nevertheless, 

it is apparent that the detection of the door frame was not 

fully comprehensive. The constraint might be ascribed to the 

comparatively diminished quantity of data points that depict 

the door frame inside the input point cloud. The limited 

availability of data points pertaining to the door frame poses 

a challenge for the algorithm in accurately discerning and 

reconstructing the entirety of the door frame structure. 

Resolving this matter necessitates the implementation of 

approaches aimed at improving the process of acquiring 

point cloud data. 

The present study assessed the efficacy of the proposed 

methodology through the examination of Case B, which 

serves as a representative subset of an interior room scene 

featuring three windows, as shown in Figure 4(a). The 

wireframe successfully depicted the structural elements of 

the room, such as the windows, thus indicating the efficacy 

of the proposed methodology in precisely representing the 

room's structural characteristics. However, the representation 

of the beam between the windows and floor remained 

incomplete, as depicted in Figures 4(b) and (c). 

  
a) Original Point cloud b) Edges Detected 

 
c) Generated Line frame 

Fig. 3 Results obtained for Case (A) 
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(a) Original Point cloud (b) Edges Detected 

 
(c) Generated Line frame 

Fig. 4 Results obtained for Case (B) 

  
(a) Original point cloud (b) Edges Detected 

 
(c) Generated Line frame 

Fig. 5 Results obtained for Case (C) 
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Table 2. Quantitative analysis of processing time and point cloud metrics across methodology stages 

Dataset Pre-Processing Edge Detection Edge Refinement 

Scene No of Points 

Processing 

Time 

(sec) 

No of points 
Epsilon 

Value 

Processing 

Time 

(sec) 

No of points Alpha radius 

Processing 

Time 

(sec) 

No of points 

Case A 224 423 0.08 90 652 0.06 63.44 21 794 0.8 177.55 18 238 

Case B 297 172 0.11 123 556 0.05 80.77 20 622 0.8 356.29 18 837 

Case C 193 267 0.11 77 659 0.06 45.20 11 204 0.8 93.24 10 482 

 
Within the dataset, Case C presents a complex scenario 

characterized by the presence of a wall with two distinct 

doors that are divided by a central pillar. Notwithstanding the 

intricacy of this arrangement, our proposed approach 

exhibited exceptional abilities in reconstructing the structural 

geometry of the space. The depiction successfully 

encompasses the fundamental components of the scenario, 

encompassing both the doors and the pillar, as shown in 

Figure 5(a). Nevertheless, it is important to acknowledge that 

although our methodology demonstrated exceptional 

proficiency in reconstructing the intended structural 

characteristics, it also inadvertently restored several 

undesired components.  

The discoveries provide essential perspectives for the 

continued improvement and enhancement of our 

methodology, guaranteeing its resilience and precision in 

complex situations, as shown in Figures 5(b) and (c). Case C 

serves as a demonstration of the efficacy of our methodology 

in addressing intricate real-world problems, hence facilitating 

advancements in spatial reconstruction techniques across 

diverse applications.  

The proposed methodology is thoroughly evaluated by 

providing a complete analysis of the processing time and the 

number of points in the point cloud at different crucial stages 

of the reconstruction process. This analysis, summarized in 

Table 2, provides valuable insights into the efficiency and 

performance of our approach. The table displays the duration 

of each step in the methodology, encompassing pre-

processing, epsilon, edge detection, processing, and edge 

refinement. It additionally displays the total points before 

and after each phase.  

In Case A, the pre-processing time is 0.08 seconds, 

resulting in a reduction of the number of points from 224,423 

to 63,444. This indicates that the pre-processing stage can 

substantially decrease the number of points in the point cloud 

without incurring a lengthy duration. Similar trends are 

observed in Cases B and C, with varying numbers of points 

and processing times at each stage. The approach showcases 

efficiency through its accelerated processing speeds at 

different phases. This attribute highlights its capacity for 

prompt implementation in real-world contexts. Furthermore, 

the methodology maintains the intrinsic three-dimensional 

characteristics of the data during the reconstruction process. 

This technology preserves geographical information without 

requiring the conversion of point cloud data into two-

dimensional representations. The high level of accuracy to 

the original data structure is especially beneficial for 

applications that heavily rely on precise three-dimensional 

representation, such as object recognition or segmentation. 

This feature improves the methodology's suitability and 

significance in situations when accurate spatial 

comprehension is crucial. In summary, the data shown in the 

table indicates that the methodology under evaluation is a 

highly efficient technique for handling 3D point cloud data. 

It possesses high speed and effectiveness and maintains the 

integrity of the 3D data. These improvements are significant 

when compared to an approach that involves converting 3D 

point cloud data into 2D, conducting edge detection, and then 

converting it back to 3D. 

The evaluation procedure generated the following key 

performance indicators: 

4.4.1. True Positives (TP) 

The number of correctly identified and matched 

structural elements as line segments in the reconstructed 

framework. 

4.4.2. False Positives (FP) 

The number of line segments in the reconstructed 

framework that are not supported by structural elements in 

the point cloud data. 

4.4.3. False Negatives (FN) 

The number of structural elements in the point cloud 

data that are not correctly designated as line segments in the 

reconstructed framework. For each case, the evaluation 

metrics Precision, Recall, and F1 score were calculated using 

True Positives (TP), False Positives (FP), and False 

Negatives (FN), as shown in Table 3. Precision is determined 

by calculating the proportion of correctly identified line 

segments among the total number of identified line segments. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

Recall quantifies the completeness of the reconstruction 

by evaluating the proportion of correctly identified line 

segments among all actual structural elements in the point 

cloud dataset. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 
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Table 3. Evaluation metrics of the proposed methodology 

Dataset 

Evaluation Metrics 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝐹1 𝑠𝑐𝑜𝑟𝑒 =

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Case A 0.81 0.772 0.791 

Case B 0.875 0.724 0.792 

Case C 0.914 0.941 0.927 

 

The F1 score harmonizes precision and recall into a 

single metric, providing a balanced evaluation of the 

reconstruction's accuracy and completeness. It is calculated 

as 2 * (Precision * Recall) / (Precision + Recall). 

           𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (3) 

  
The evaluation of the proposed methodology for 3D 

reconstruction from indoor point cloud data encompassed 

three distinct structural geometry cases. Case A, representing 

a single wall with a door opening, achieved a commendable 

balance between Precision (0.81) and Recall (0.772), 

resulting in an F1 score of 0.791. In Case B, a complex 

indoor scene featuring three windows on a wall and a beam 

was considered, yielding a higher Precision of 0.875 but with 

a slightly lower Recall of 0.724, resulting in an F1 score of 

0.7923. Case C, depicting a single wall with two doors and a 

pillar, showcased exceptional performance, with a Precision 

of 0.914 and a Recall of 0.941, resulting in an impressive F1 

score of 0.927. These results emphasize the methodology's 

adaptability to varying structural geometries, with Case C 

emerging as particularly promising for reconstructing 

complex indoor scenes.  

However, the choice among cases may still hinge on 

specific application requirements, carefully considering the 

precision-recall trade-off. The assessment of the proposed 

strategy for 3D reconstruction using indoor point cloud data 

provides vital insights into its effectiveness in bridging the 

research gap and overcoming the inherent difficulties 

involved with accurate geometric modelling. The 

methodology demonstrated remarkable performance metrics 

across three different structural geometry examples, 

suggesting its capacity to adapt to different complexities 

inside indoor situations. In Case A, which is defined by a 

simple arrangement consisting of only one wall with a door 

opening, the technique exhibited a harmonious equilibrium 

between Precision and Recall, leading to a favorable F1 

score. This result indicates that the methodology has the 

potential to effectively identify and define essential structural 

elements with a high level of dependability. In Case B, which 

had a complex indoor environment with many windows and 

a beam, the methodology showed improved Precision but 

slightly lower Recall. However, the F1 score obtained was 

still competitive, which suggests that the methodology is 

effective in dealing with complex structural geometries. Case 

C, which depicted a scenario featuring only one wall, two 

doors, and a pillar, presented convincing proof of the 

methodology's improved performance. The approach 

demonstrated its high level of proficiency in successfully 

reconstructing complex indoor scenes with excellent fidelity, 

as both Precision and Recall exceeded 0.9. In summary, our 

findings highlight the importance of the methodology in 

filling the research gap by providing a systematic and 

automated approach to 3D reconstruction using point cloud 

data. The methodology overcomes the constraints of standard 

manual reconstruction methods by obtaining strong 

performance in a wide range of structural difficulties, 

especially in scenarios with many pieces and sophisticated 

geometries. However, carefully choosing the appropriate 

circumstances requires a thorough evaluation of the 

individual requirements of the application to properly 

balance precision and recall and meet the needs of various 

use cases. 

5. Conclusion and Future Scope 
Using 3D point cloud data directly, the study introduces 

a novel technique for the refinement of line frame 

constructions within interior room environments. Three 

distinct datasets, denoted as Cases A, B, and C, were used to 

conduct a comprehensive evaluation of the proposed 

methodology. These datasets were carefully chosen to 

represent a variety of indoor room scenarios with differing 

degrees of complexity. Utilising a series of pre-processing 

techniques, edge recognition algorithms, and Alpha Shape 

calculations, the method generates accurate and detailed 

representations of interior structural geometry. Pre-

processing procedures, including Statistical Outlier Removal 

(SOR) denoising and Voxel downsampling, significantly 

improved the quality of point cloud data, enabling more 

precise structural information extraction. Utilising PCA-

based geometric descriptors and DBSCAN clustering, the 

edge detection method effectively detected and segmented 

edge points, resulting in highly accurate edge extraction. By 

combining the Alpha Shape and Rolling Ball Pivoting 

techniques, the methodology produced enhanced line frame 

models capable of accurately depicting convex and concave 

interior features. Importantly, the proposed method excelled 

at accurately representing interior room environments' 

structural boundaries, door apertures, and windows. Despite 

the positive results, some shortcomings were found during 

the review process, particularly in the detection of missing 

portions in wireframe representations. These constraints 

highlight the need for additional research and optimization to 

resolve these challenges effectively. Nonetheless, the 
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proposed method has numerous advantages, such as the 

provision of accurate structural geometry representations, 

support for interior civil engineering applications, and 

facilitation of precise measurements. In conclusion, this 

study establishes a solid foundation for advancing the 

refinement of line frame constructions in interior room 

environments, with potential applications in a variety of 

disciplines. Continued research is encouraged to resolve 

identified limitations and further improve the robustness and 

accuracy of the methodology. Potential future research might 

prioritize the enhancement of door frame detection and the 

investigation of automated line frame refining methods for 

intricate indoor environments. The inclusion of semantic 

information and the improvement of the algorithm's 

performance have the potential to expand the versatility and 

practical usability of the methodology. In general, the 

suggested technique presents novel opportunities for interior 

civil works, architectural planning, and interior design 

applications, providing useful insights for data-informed 

decision-making within the field of civil engineering. 
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