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Abstract - Hyperspectral Images (HSIs) offer an extensive wealth of spectral-spatial information through their numerous 

contiguous narrow bands. However, selecting relevant spectral-spatial kernel features creates a challenge as it involves dealing 

with noise and band correlation. The classification of hyperspectral images plays a crucial role in remote sensing, and various 

methods have been proposed to tackle this challenge. This paper presents a compilation and comparative study of the recent 

state-of-the-art deep learning architectures for the HSI classification tasks: Attention-Based Adaptive Spectral-Spatial Kernel 

ResNet (A2S2K-ResNet), Residual Network (ResNet), Contextual CNN, Deep Pyramidal Residual Networks (DPyResNet), and 

SpectralSpatialRN (SSRN). These methods are evaluated on four datasets: Indian Pines, Salinas, Botswana, and Kennedy Space 

Center, which are commonly used for land cover classification in hyperspectral imaging. The performance evaluation of the 

classification methods is based on overall accuracy and computational time efficiency. The A2S2K-ResNet architecture 

demonstrates superior classification capabilities compared to the others followed by Contextual Net. 

Keywords - Deep Learning, Hyperspectral Image (HSI) Classification, Performance Analysis, Residual Network (ResNet), 

Spectral-Spatial Information.

1. Introduction  
Remote sensing relies heavily on Hyperspectral Image 

(HSI) classification, an important task that requires the 

identification of diverse materials and land covers from high-

dimensional hyperspectral data. Hyperspectral images are 

inherently complex due to the representation of each pixel as 

a spectrum of reflectance values across multiple wavelengths, 

resulting in a significant abundance of spectral bands. The 

challenging nature of hyperspectral image classification 

stems from the spectral variability observed among different 

classes, compounded by the presence of noise in the data.  

Deep learning-based techniques have significantly 

improved hyperspectral image classification in recent times. 

The noteworthy aspect of these approaches is their ability to 

extract meaningful high-level features from raw hyperspectral 

data automatically.  

This capability has a direct positive impact on enhancing 

the accuracy of classification outcomes. Various state-of-the-

art deep learning frameworks have been implemented to 

classify hyperspectral images, including A2S2K-ResNet [1], 

ResNet [2], Contextual CNN [3], DPyResNet [4], SSRN [5] 

and HybridSN [6].These models have demonstrated 

exceptional performance and have yielded promising results 

in HSI classification.  

He et al. [2] present a framework to simplify the training 

of networks with a large number of layers. ResNet is an 

acclaimed deep residual network renowned for its successful 

application in diverse computer vision tasks.  

Lee et al. [3] proposed a convolutional neural network 

called Contextual CNN, a deep learning model that leverages 

the contextual information of neighboring pixels to improve 

classification accuracy.  

Paoletti et al. [4] introduced an architecture exclusively 

for the HSI data called DPyResNet, which is a customized 

adaptation of ResNet that integrates spatial and spectral 

information through the utilization of 2D-3D convolutional 

layers. This modification enables DPyResNet to achieve 

improved performance for HSI classification.  

Zhong et al. [5] designed SSRN, which utilizes a stacked 

sparse autoencoder to extract informative spectral-spatial 

features. This methodology significantly enhances the 

accuracy of classification tasks. Recently, Roy et al. [1] 

presented a new architecture, A2S2K-ResNet, that combines 

the advantages of both spatial and spectral processing. The 

model utilizes a hybrid 2D-3D approach, combining a 2D 

CNN for spatial feature extraction and a 3D CNN for spectral 

feature extraction.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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This architecture has shown promising results in various 

HSI classification tasks, including crop classification, mineral 

detection, and urban land use mapping. Roy et al. proposed 

HybridSN [6], a hybrid architecture that combines 3D and 2D 

CNNs in a hierarchical manner, facilitating the incorporation 

of spatial and spectral information. 

Since the implementation of this model is not accessible 

to the public, it has been excluded from the comparative study 

despite being a recent approach. Lv and Wang’s 

comprehensive review [7] provides a broad comparison of 

various techniques in hyperspectral image classification. 

However, it fails to conduct an in-depth comparative analysis 

that specifically focuses on the latest deep learning models. 

This gap underscores the need to evaluate advanced deep 

learning architectures thoroughly. To address this issue, this 

paper presents a thorough comparative study of state-of-the-

art models by assessing their performance across multiple 

hyperspectral datasets. The objective is not only to fill this 

crucial gap but also to expand the knowledge base within the 

HSI classification field with insightful findings useful for 

future research and practical applications. The results will 

complement Lv and Wang’s work while offering valuable 

insights into HSI classification methods based on modern 

deep-learning approaches.The structure of the paper is laid 

out in the following manner: Section 2 discusses the 

challenges faced in HSI images for land cover classification. 

Section 3 elaborates on the important concepts and 

components of deep learning models that are useful for 

learning and enabling the automatic extraction of 

discriminative features to classify. Section 4 provides a 

concise overview of the state of art methods specifically 

developed for land cover classification. Section 5 provides 

insights into how A2S2K-Resnet achieves better results and 

suggests potential applications. Section 6 reports the 

comparative study of five methods on four benchmark 

datasets related to HSI classification. The paper concludes by 

outlining prospective areas for future research in Section 7. 

2. Problem Definition 
The high dimensionality and complexity of hyperspectral 

data pose significant challenges in land cover classification 

using hyperspectral imagery. Hyperspectral images are 

composed of numerous spectral bands that gather data on the 

reflectance characteristics across varying wavelengths.  

This results in a high-dimensional feature space, which 

can make classification challenging due to the curse of 

dimensionality. Moreover, hyperspectral data can exhibit 

complex spectral variability and spatial variability due to 

factors such as atmospheric interference, sensor noise, and 

variability in illumination and viewing geometry. Another 

challenge is the presence of spectral variability within land 

cover types, which can lead to misclassification.  

For example, vegetation can exhibit different spectral 

signatures depending on factors such as species, age, and 

health status. Similarly, soil can vary in its reflectance 

properties depending on factors such as moisture content and 

mineral composition. Therefore, effective classification 

algorithms need to be able to handle spectral variability within 

land cover types while still maintaining discrimination 

between different land cover classes.Furthermore, the choice 

of classification algorithm and its parameterization can 

greatly affect the accuracy of classification results. Some 

algorithms may perform better on certain types of land cover 

or under certain conditions, while others may be more robust 

to noise and variability. Therefore, it is important to carefully 

evaluate the performance of different classification 

algorithms and their parameter settings to select the best 

approach for a given application. Hyperspectral imaging 

technology captures information about objects and materials 

at a very fine spectral resolution, enabling the detection of 

subtle differences in the reflectance properties of different 

land cover types. The utilization of machine learning 

algorithms on hyperspectral data enables automated 

classification of diverse land cover types, encompassing 

vegetation, water, soil, and urban areas. This automated 

classification process serves as a valuable tool for numerous 

applications, including environmental monitoring, land 

management, and urban planning. The goal is to achieve high 

accuracy in land cover classification, which requires the 

development of robust layers to learn hierarchical 

representations of data. 

3. Related Work 
Deep learning learns hierarchical representations of data 

using artificial neural networks and has gained significant 

attention and achieved remarkable success in the HSI 

classification domain. These methods harness the power of 

neural networks to learn discriminative features 

automatically from the vast amount of spectral information 

available in HSIs. Deep learning models for HSI 

classification typically consist of several key components 

like convolutional layers, pooling layers, residual 

connections, normalization layers, attention mechanisms, 

etc. The methods under consideration for performance 

evaluation leverage the following components and concepts 

to learn complex patterns from the HSI image datasets. 

3.1. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) [8] are applied 

to HSI classification. These networks automatically learn 

spatial and spectral features from input hyperspectral images. 

The CNN architecture consists of various components such as 

convolutional, dropout layer, batch normalization, pooling 

and fully connected layers. Convolutional layers utilize filters 

to perform localized feature extraction across the input image, 

enabling the detection of intricate patterns and spatial 

relationships.  
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Pooling layers are used for downsampling, reducing the 

spatial dimensionality, and extracting essential features. Fully 

connected layers connect these extracted features to the final 

classification layer.  

3.2. Residual Connections 

Residual connections [2], also known as skip 

connections, are an integral part of deep learning models, 

particularly in architectures like Residual Network (ResNet). 

Residual connections are designed to tackle the degradation 

issue that arises with the addition of more layers to a neural 

network. They are achieved by introducing shortcut 

connections that directly transmit the input from one layer to 

a deeper layer. In certain works, like [12, 13], a small number 

of intermediary layers were directly linked to auxiliary 

classifiers to mitigate issues related to vanishing or exploding 

gradients. Within [12], an “inception” layer was introduced, 

comprising a shortcut branch along with several deeper 

branches.  

These connections facilitate the network’s ability to learn 

residual mappings, capturing the disparity between the desired 

output and the input. By doing so, they facilitate the training 

of deeper networks by allowing the gradient to flow more 

directly, mitigating the challenge of vanishing gradients. 

Residual connections have demonstrated the ability to 

enhance the optimization process, improve network 

convergence, and enable the construction of deep neural 

networks with numerous layers while preserving or even 

enhancing their performance.  

3.3. Attention Mechanisms 

Attention mechanisms [1], [9] have become a powerful 

tool in deep learning models. Attention mechanisms enhance 

the capability of models to emphasize relevant components of 

the input data while disregarding irrelevant or noisy 

information. This selective focus enables the model to 

allocate its attention resources more effectively, improving its 

ability to process and extract meaningful features. This is 

achieved by assigning weights to different components of the 

input, depending on their significance. 

 These weights are acquired during training and can 

dynamically change for each input. By prioritizing 

informative features while disregarding less relevant ones, 

attention mechanisms enhance the model’s capacity to 

capture significant patterns and achieve accurate predictions.  

This selective attention enhances the model’s 

interpretability and robustness, enabling it to handle complex 

and high-dimensional hyperspectral data effectively. 

Attention mechanisms have been successfully employed in 

various deep learning architectures, contributing to significant 

improvements in hyperspectral image classification 

performance. 

 

3.4. Pyramidal Structures  

Pyramidal structures [4] in deep learning refer to 

architectures that involve hierarchical or multi-scale 

representations of data. These structures are particularly 

useful in HSI classification, where capturing both local and 

global context is essential. Pyramidal structures typically 

involve multiple levels or layers, with each level capturing 

information at a different scale or level of abstraction.  

This can be achieved through various mechanisms such 

as pooling, convolutional operations, or feature aggregation. 

By incorporating pyramidal structures into the network 

architecture, models can effectively capture fine-grained 

details at lower levels while simultaneously learning high-

level semantic representations at higher levels. This 

hierarchical approach enables the network to capture both 

local and global context, improving its ability to discriminate 

between different land cover classes in hyperspectral images. 

3.5. Adaptive Pooling 

In the realm of HSI classification, adaptive pooling [10] 

serves as a prevalent technique within deep learning models. 

Its purpose is to effectively manage input data that exhibits 

diverse spatial dimensions, ensuring optimal processing and 

analysis. Adaptive pooling, unlike traditional pooling layers, 

dynamically adjusts pooling window sizes based on input 

data.  

This enables flexible feature extraction and captures 

spatial information regardless of image size. By dynamically 

adjusting the pooling windows, it enables the model to 

maintain spatial information at different scales, ensuring that 

relevant features are preserved while reducing the 

dimensionality of the input data. Adaptive pooling can be 

implemented using various methods, such as average pooling 

or max pooling. This technique plays a crucial role in 

capturing meaningful spatial features from hyperspectral 

images and contributes to improved classification accuracy. 

4. Deep Learning Models/Architectures 
This section presents a compilation of recent state-of-

the-art deep learning architectures designed specifically for 

HSI land cover classification. 

4.1. Attention-Based Adaptive Spectral–Spatial Kernel 

ResNet (A2S2K-ResNet) 

Hyperspectral images offer a wealth of spectral-spatial 

information, presenting hundreds of consecutive narrow 

bands. However, the challenge lies in selecting informative 

spectral-spatial kernel features amid noise and band 

correlations. Convolutional neural networks (CNNs) with 

fixed-size receptive fields (RFs) [17] are used to overcome 

this. Roy et al. [1] proposed A2S2K-ResNet to overcome the 

above limitations. The architecture is organized as follows: 
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4.1.1. Attention-Based Adaptive Spectral–Spatial Kernel 

Module 

This module enables the network’s neurons to effectively 

learn spectral-spatial features dynamically. This adjustment 

allows for the incorporation of convolutional kernels from 

various RF sizes, thereby capturing multi-scale information.  

Operations within the Module: 

● Kernel Split: In this operation, the input feature maps are 

split into multiple branches, each of which focuses on a 

different RF size. Essentially, this involves applying 

convolutional kernels of varying sizes to the input data. 

These branches process the input data with different 

receptive fields, capturing diverse spatial patterns. 

● Fusion: The kernel branches, each having processed the 

input with a specific RF size, are then fused together. This 

fusion mechanism combines multi-scale information 

captured by different RF sizes.  

● Selection: After the fusion of multi-scale information, the 

module performs an automatic selection process. This 

selection involves identifying discriminative spectral-

spatial kernel feature maps that contribute significantly to 

the classification task. The selection captures the most 

relevant information with adaptive RF sizes. Essentially, 

this step focuses on retaining the most informative 

channels for further processing. 

4.1.2. Efficient Feature Recalibration Module 

Capturing long-range nonlinear cross-channel 

dependencies in feature maps is crucial for improving 

classification performance. An Efficient Feature Recalibration 

(EFR) is introduced in [17]. It is used to recalibrate features 

across channels, allowing the network to adaptively weigh the 

importance of different features during the classification 

process. 

4.1.3. Modified Spectral–Spatial Residual Network 

The core building blocks of ResNet referred to as 

ResBlocks, are stacked together depth-wise to facilitate 

bidirectional information flow within the network. Following 

the sequence of ResBlocks, a Global Average Pooling (GAP) 

layer is introduced. Finally, the feature maps are fed into a 

fully connected layer and further by a softmax activation 

function. This step assigns a probability distribution across 

different classes to each pixel in the hyperspectral image. The 

pixel is assigned the class with the highest probability. 

4.2. Residual Network (ResNet) 
ResNet [2] tackles the issue of training deep neural 

networks by incorporating residual connections. In traditional 

deep networks, each layer learns to approximate the 

underlying mapping of the input to the output. However, as 

the network becomes deeper, it becomes increasingly difficult 

for the network to learn this mapping accurately. This issue is 

referred to as the degradation problem. ResNet tackles this 

challenge by including residual connections, which allow the 

network to learn residual mappings effectively.  

Rather than directly learning the desired mapping, ResNet 

specifically aims to capture the discrepancy between the input 

and output, known as the residual. By adding this residual to 

the original input, the network can effectively adjust the output 

to achieve accurate results. ResNet variants [18] - [23] are 

good to deal with the vanishing gradient problem. 

The ResNet framework is composed of multiple residual 

blocks, each containing a series of convolutional layers, which 

are succeeded by batch normalization and then activated by 

ReLU functions. The skip connection allows the residual to 

bypass the convolutional layers, enabling the network to learn 

residual mappings efficiently. He et al. [2] experimented with 

different depths of ResNet, ranging from a few layers to over 

a hundred layers, and demonstrated that deeper networks 

achieve better performance. The models underwent training 

on the ImageNet dataset, surpassing previous approaches. It 

effectively tackles the degradation problem in deep networks 

by introducing residual connections, leading to easier training 

of very deep networks without accuracy degradation.  

ResNet architecture allows for scalability, with deeper 

networks consistently showing improved performance. 

However, ResNet has some limitations, including increased 

computational complexity, sensitivity to hyperparameters, 

limited interpretability due to its deep architecture, and 

reliance on quality training data. 

4.3. Contextual CNN 

The Contextual CNN [3] architecture proposed by Lee et 

al. is a deep learning architecture designed specifically for 

processing hyperspectral images. The focus of this model is to 

incorporate contextual information from neighboring pixels to 

increase the accuracy of categorization results. By collectively 

combining local spatial and spectral information, the model 

captures intricate contextual relationships within neighboring 

pixel vectors. This enables the network to build a joint spatio-

spectral feature map that amalgamates spectral and spatial 

attributes. The subsequent integration into a fully 

convolutional network allows for accurate pixel-level 

predictions, effectively addressing tasks like pixel-wise image 

labeling. 

This network distinguishes itself by its increased depth 

and breadth compared to existing models. Contextual CNN 

excels in discovering local contextual relationships by 

effectively harnessing the intricate connections between 

neighboring individual pixel vectors. Lee et al. [3] introduce 

an original Fully Convolutional Network (FCN) [15] for 

hyperspectral image (HSI) classification. The network 

comprises multiple convolutional layers and is structured as 

follows: multi-scale filter bank, succeeded by two blocks of 

convolutional layers and three convolution layers. The first 

component is a multi-scale filter bank. The model exploits 

local interactions between spatial and spectral aspects by 

introducing them at the initial network stage.  
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The filter block is followed by convolutional layers that 

involve residual learning. AlexNet[16] comprises five 

convolutional layers with three fully connected layers. The 

last three layers are adept at recognizing local features, like 

AlexNet. 

During training, specific convolutional layers integrate 

dropout techniques and ReLU activation is applied to 

convolutional layers, as well as residual learning modules. 

Local Response Normalization is applied to normalize the 

outputs from the initial two convolutional layers. The 

dimensions of all data units within the architecture remain 

consistent in height and width, with changes only in depth.     

4.4. Deep Pyramidal Residual Networks (DPyResNet) 

The Deep Pyramidal Residual Networks (DPyResNet) [4] 

model addresses the challenges of effectively managing and 

classifying extensive hyperspectral data cubes. This novel 

architecture progressively refines feature extraction through a 

multi-layered framework. Unlike conventional CNNs, where 

feature maps maintain a consistent size across layers, 

DPyResNet progressively widens the feature map dimensions 

as the network depth increases. The model employs pyramidal 

bottleneck residual blocks, each consisting of three 

convolutional layers that facilitate the gradual inclusion of a 

diverse array of feature map locations.  

This structure helps gain an understanding of spectral-

spatial patterns across multiple scales. The pyramidal 

bottleneck residual blocks act as knowledge amplifiers, 

progressively integrating spatial and spectral information 

while ensuring a manageable computational complexity. The 

resulting feature maps contain a complex blend of multi-scale 

patterns, thus enabling the network to discriminate between 

diverse classes within hyperspectral data. 

As hyperspectral data comprises multiple bands of 

spectral information and their corresponding spatial 

arrangement, the model exploits this synergy by processing 

data through successive layers of convolutional operations. 

These operations extract increasingly abstract features, 

Capturing details at different levels of detail. By maintaining 

this hierarchical perspective, the model develops an acute 

understanding of the specific spectral characteristics and their 

spatial context. The model’s ability also extends to its 

adaptability to different spatial sizes.  

The pyramid-like architecture accommodates varying 

scales, making it suitable for real-world applications where 

input sizes can differ significantly. Moreover, the model’s 

resilience to different percentages of training data is 

noteworthy. Deep learning techniques often necessitate 

substantial labelled samples for training; however, 

DPyResNet consistently demonstrates improved performance 

regardless of the amount of training data available, indicating 

ts potential for effective deployment in data-limited scenarios. 

4.5. Spectral–Spatial Residual Network (SSRN) 
The Spectral-Spatial Residual Network (SSRN) [5] 

addresses the challenge of declining accuracy while 

demonstrating adaptability to diverse datasets. Through an 

innovative 3-D deep learning framework, SSRN facilitates the 

automatic extraction of spectral-spatial representations 

necessary for accurate image classification. 

 The design of SSRN involves consecutive spectral and 

spatial residual blocks, which serve as their fundamental 

building blocks. This sequential arrangement allows SSRN to 

effectively capture intricate spectral signatures and spatial 

contexts in hyperspectral images.  

SSRN makes use of residual learning, which mitigates the 

accuracy drop phenomenon. By incorporating residual 

connections, SSRN ensures that each layer learns and 

contributes incremental information, thus promoting deeper, 

more meaningful representations. This mechanism proves 

especially effective in hyperspectral image analysis, where 

subtle spectral variations and spatial patterns are of great 

importance. 

Further contributing to SSRN’s capability is the strategic 

application of batch normalization (BN). The fundamental 

idea behind BN is to normalize the activations of each layer 

within the network based on a batch of input data.  

This normalization process serves to stabilize and 

standardize the distribution of the data flowing through the 

network during training. By ensuring that the inputs to each 

layer have similar statistical properties, BN addresses the 

common issue of internal covariate shift. 

 This phenomenon occurs as the distributions of 

intermediate activations change during training, often leading 

to slower convergence and requiring careful tuning of learning 

rates. BN reduces this challenge by normalizing the inputs, 

effectively moderating the adverse impact of covariate shift, 

and enabling more stable and efficient training.  

The BN operation at each convolution layer also reduces 

the number of iterations for training from hundreds of 

thousands in [14] to only a few hundred.  

SSRN performs consistently well across different 

datasets, making it an appealing choice for a wide range of 

remote applications. It offers reliable classification sensing 

performance even when limited labelled data is available. 

5. Comparative Analysis 
This section delves into the reasons behind the 

exceptional performance of A2S2K-ResNet and explores the 

potential applications for each of the mentioned models from 

the previous section. 
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5.1. Integration of Attention Mechanisms 

Attention mechanisms enable the network to enhance 

feature representation adaptively. This results in more 

accurate classification, particularly in complex scenes which 

have a mixture of various land cover types. The attention 

mechanisms enable the network’s learning to focus on the 

most relevant spectral and spatial features of the hyperspectral 

images as it dynamically allocates more computational 

resources to important features while ignoring less relevant 

features. 

5.2. Adaptive Spectral-Spatial Kernels 

        A2S2K-ResNet uses adaptive kernels that can adjust 

their size and shape according to the spectral and spatial 

characteristics of the input data. These adaptive kernels allow 

the network to capture both coarse and fine features 

effectively. This improves the classification accuracy of 

heterogeneous data across diverse regions. 

5.3. Residual Learning Framework 

        Building on the standard ResNet framework, A2S2K-

ResNet incorporates residual learning, which can train deeper 

networks efficiently without the problem of vanishing 

gradients. These residual connections support the 

development of deeper, more complex networks without the 

risk of overfitting. With the inclusion of shortcut connections, 

learning residual functions, and better feature representation, 

this framework enhances the model’s performance and 

generalization ability. 

5.4. Comprehensive Feature Learning 

        By combining spectral and spatial information along with 

attention and adaptive kernel mechanisms, the model learns a 

more extensive set of features compared to traditional 

methods. This approach ensures that the model does not 

completely depend on only spectral information, but it also 

utilizes spatial context effectively, leading to more accurate 

classifications. 

Complex models such as A2S2K-ResNet and DPyResNet 

are capable of extracting detailed features. However, they 

come with the risk of increased resource requirements and 

training difficulties. On the other hand, simpler models like 

ResNet provide a balance between depth and efficiency, 

which makes them suitable for diverse applications.   A2S2K-

ResNet has high complexity due to the integration of attention 

mechanisms and spectral-spatial kernels in the architecture, 

which adds more parameters and computational depth, 

enhancing the model’s ability to focus on relevant features but 

also adding to the training complexity.  

Due to these features, A2S2K-ResNet is suited for 

applications where detailed feature extraction is crucial, like 

in precision agriculture or mineralogy. The complexity of 

ResNet varies depending on the number of layers used in the 

architecture, but it is simpler than most other models.  

As the residual connections are fairly straightforward, it 

is easier to interpret. ResNet is broadly applicable across 

various tasks due to its balance of depth and efficiency, 

particularly for general image classification tasks like facial 

recognition, object detection in autonomous vehicles, and 

medical imaging. DPyResNet is more complex than standard 

ResNet because of the pyramidal structure that increases the 

depth and number of parameters. The depth and scale variation 

of the network makes it difficult to interpret in certain 

situations. This model is useful for applications that require 

high levels of feature accuracy, like military surveillance or 

geological exploration. Contextual CNN is a moderately 

complex model that extracts contextual information by 

making use of more layers but not as many parameters as 

attention mechanisms.  

This model is good for applications where context plays 

an important role in image classification, such as disaster 

assessment or urban planning. SSRN incorporates both 

spectral and spatial features, increasing the number of layers 

and parameters, but it uses residual connections to train the 

deep network efficiently. It is ideal for applications that 

require analysis of both spectral and spatial data, like in 

vegetation mapping or geological studies.  

        Each of these models possesses unique strengths that 

make them suitable for a variety of applications. A suitable 

model can be chosen based on the requirements of the 

application, computational resources available and the ideal 

balance between the interpretability and complexity of the 

model. 

6. Results and Discussion  
 A comparative evaluation of five state-of-the-art methods 

with all four benchmark datasets is provided in this section. 

The related works used for comparison do not report the model 

performance for all four datasets. The experiments reveal 

which deep learning architecture, in general, is best suited for 

HSI classification. 

6.1. Datasets 

The experiments have been performed on four benchmark 

datasets for land cover classification, namely Salinas, 

Botswana, Indian Pines, and Kennedy Space Center. All four 

datasets are summarized in Table 1.  

Table 1. Overview of the dataset’s characteristics 

Description SA BW IP KSC 

Sensor AVIRIS Hyperion AVIRIS AVIRIS 

Spatial 

Dimension 
512x217 1476x256 145x145 512x614 

Spectral 

Bands 
224 145 224 176 

Landcover 16 14 16 13 

Total size 54129 3248 10249 5202 
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        The Salinas (SA) dataset is obtained over the Salinas 

Valley in California using the Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) [11] sensor with a fine 

spatial resolution of 3.7 meters and 224 spectral bands and 20 

water absorption bands are discarded. It has a spatial 

dimension of 512x217 pixels and labels for 16 classes 

representing vegetables, bare soils, and vineyard fields.  

        The Botswana (BW) dataset is acquired by NASA’s EO-

1 satellite of the Okavango Delta in Botswana, Africa. The 

Hyperion sensor on EO-1 captures data with a pixel resolution 

of 30 meters, operating in 242 bands with a spectral resolution 

of 10 nm per window. The dataset has a spatial dimension of 

145x145 pixels and labels for 16 classes of land cover types. 

        The AVIRIS collects the Indian Pines (IP) dataset [11] 

sensor over the Indian Pines test site in North-western Indiana, 

USA, consisting of 224 spectral bands having a spatial 

dimension of 145x145 pixels and has labels for 16 vegetation 

classes. 

        The Kennedy Space Center (KSC) dataset is captured by 

the AVIRIS [11] sensor with a spatial resolution of 18m over 

the Kennedy Space Center in Florida. It includes 224 spectral 

bands, which are narrowed down to 176 after removal of low 

signal-to-noise (SNR) ratio bands. The dataset consists of 

5202 samples in total, covering the wavelength range from 

400nm to 2500nm and labels for 13 wetland classes. 

6.2. Performance Metrics  
Overall accuracy, kappa coefficient, and time efficiency 

were used as metrics for the comparative study.  

6.2.1. Overall Accuracy 

The performance of the classification task is 

quantitatively measured using overall accuracy. It is the ratio 

of correctly classified samples to the total number of input 

samples. It is calculated using the following formula: 

𝑃OA =
∑  𝑐

𝑖=1 𝑥𝑖𝑖

∑  𝑐
𝑖=1 ∑  𝑐

𝑗=1 𝑥𝑖𝑗

 

6.2.2. Kappa Coefficient 

The Kappa coefficient is a statistical metric used to 

measure the accuracy of a classification model by considering 

the possibility of random chance agreement. It ranges from -1 

to 1, where 1 implies perfect agreement, 0 implies agreement 

equivalent to chance, and negative values suggest less-than-

chance agreement. This metric is particularly valuable in 

scenarios with imbalanced class distributions, providing a 

more balanced assessment of classifier performance than mere 

accuracy.  

It has been calculated using a confusion matrix, which 

outlines the actual versus predicted classifications and is 

essential for comparing classifiers and assessing rater 

reliability in various fields. It is calculated using the following 

formula: 

𝑃KC =
𝑛 ∑  𝑐

𝑖=1 𝑥𝑖𝑖 − 𝑛 ∑  𝑐
𝑖=1 (𝑥𝑖+ ∗ 𝑥+𝑖)

𝑛2 − ∑  𝑐
𝑖=1 (𝑥𝑖+ ∗ 𝑥+𝑖)

 

Where n is the total number of observations, xii is 

diagonal, xi+ is the sum of elements of each row, and x+i is the 

sum of elements of each column.  

6.2.3. Time Efficiency  

        Time efficiency refers to the speed and computational 

efficiency of deep learning architectures when applied to 

hyperspectral image (HSI) classification tasks. It measures 

how quickly the models can process and analyze HSI data, 

including both training and testing phases. 

6.3. Comparative Results 

        The analysis parameters are already described in section 

5.2. The implementation code of all five methods is publicly 

available [1]. All experiments are performed on Google Colab 

with the NVIDIA Tesla T4 GPU, which has 2,560 CUDA 

Cores, 320 Tensor Cores, 16 GB of GDDR6 GPU memory, 

and a memory bandwidth of 300 GB/s. Python version 3.10.12 

has been used. The maximum number of epochs specified for 

training is 200. Some models converge and achieve 

satisfactory performance well before the maximum number of 

epochs. 

Table 2. Comparative analysis of methods based on overall accuracy (in %) 

Method SA BW IP KSC 

A2S2K-ResNet 99.509 ± 0.003 99.439 ± 0.003 98.599 ± 0.003 99.617 ± 0.002 

ResNet 98.611 ± 0.002 96.213 ± 0.009 92.707 ± 0.005 86.909 ± 0.043 

Contextual CNN 96.071 ± 0.023 97.348 ± 0.013 91.436 ± 0.028 96.492 ± 0.004 

DPyResNet 98.529 ± 0.003 95.052 ± 0.010 94.979 ± 0.016 93.917 ± 0.023 

SSRN 97.136 ± 0.005 99.107 ± 0.003 98.251 ± 0.002 99.426 ± 0.002 
 

Table 3. Analysis of methods in terms of Kappa Coefficient 

Method SA BW IP KSC 

A2S2K-ResNet 0.9945 ± 0.0036 0.9939 ± 0.0029 0.9840 ± 0.0038 0.9957 ± 0.0026 

ResNet 0.9845 ± 0.0026 0.9589 ± 0.0102 0.9166 ± 0.0061 0.8536 ± 0.0483 

Contextual CNN 0.9549 ± 0.0198 0.9712 ± 0.0139 0.9428 ± 0.0179 0.9609 ± 0.0041 

DPyResNet 0.9836 ± 0.0034 0.9464 ± 0.0111 0.9021 ± 0.0318 0.9322 ± 0.0253 

SSRN 0.9878 ± 0.0025 0.9903 ± 0.0028 0.9801 ± 0.0023 0.9936 ± 0.0017 
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Table 4. Analysis of methods based on time efficiency in terms of average training time (in sec) 

Table 5. Analysis of methods based on time efficiency in terms of average testing time (in sec) 

Method SA BW IP KSC 

A2S2K-ResNet 60.843 5.177 22.119 10.412 

ResNet 147.302 9.605 28.675 11.546 

Contextual CNN 41.729 3.947 16.705 8.796 

DPyResNet 153.921 9.945 29.999 12.849 

SSRN 85.077 5.445 17.457 8.002 

Table 2 shows the overall accuracy-based analysis results. 

For the SA dataset, A2S2K-ResNet outperformed the other 

models with a score of 99.50%. ResNet and DPyResNet 

demonstrate competitive performance, with overall accuracies 

of 98.61% and 98.53%, respectively.             

 A2S2K-ResNet again achieved the highest overall 

accuracy of 99.439% for the BW dataset. SSRN and 

Contextual CNN delivered comparable results of 99.107% 

and 97.348%, respectively. A2S2K-ResNet achieved the 

highest overall accuracy for the Indian Pines dataset with a 

score of 98.59%, closely followed by SSRN with 98.25%. 

A2S2K-ResNet and SSRN also showed competitive 

performance with an accuracy of 99.61% and 99.42%, 

respectively, for the KSC dataset. 

Table 3 shows the analysis of the methods based on the 

kappa coefficient. In this assessment, A2S2K-ResNet 

emerged as the top performer across multiple datasets, 

showcasing robust performance.  

Notably, for the Salinas dataset, A2S2K-ResNet attained 

a Kappa coefficient of 0.9945 with a minimal deviation of 

±0.0036, outperforming other methods such as ResNet, 

DPyResNet, and SSRN. Similarly, in the Botswana dataset, 

A2S2K-ResNet maintained its superiority with a Kappa 

coefficient of 0.9939 ± 0.0029, closely followed by ResNet 

and DPyResNet. 

While Contextual CNN exhibited commendable 

performance with a Kappa coefficient of 0.9712 ± 0.0139 for 

the Indian Pines dataset, A2S2K-ResNet and SSRN 

dominated the KSC dataset with coefficients of 0.9957 ± 

0.0026 and 0.9936 ± 0.0017 respectively, demonstrating their 

robustness in classification accuracy when evaluated using 

Kappa analysis. 

 Table 4 shows the time efficiency-based analysis results 

in terms of average training time, and Table 5 shows the 

average testing time. It is observed that A2S2K-ResNet 

performs the best in the SA dataset, with an average training 

time of 1863.801 seconds and an average testing time of 

60.843 seconds. A2S2K-ResNet also achieves the best 

performance in the BW dataset, with an average training time 

of 207.322 seconds and an average testing time of 5.177 

seconds. However, for the Indian Pines dataset, SSRN 

achieves the best performance with an average training time 

of 192.421 seconds and an average testing time of 17.457 

seconds. For the KSC dataset, Contextual CNN performs with 

an average training time of 250.374 seconds and an average 

testing time of 11.546 seconds. 

7. Conclusion  
 In this study, a comprehensive performance analysis of 

several state-of-the-art HSI Classification methods: A2S2K-

ResNet, ResNet, Contextual CNN, DPyResNet and SSRN on 

the four land cover benchmark datasets, namely Salinas, 

Botswana, Indian Pines, and Kennedy Space Center has been 

conducted. Our findings highlight the varying performance of 

these methods across different datasets. A2S2K-ResNet 

consistently performed well in terms of overall accuracy and 

time efficiency, showcasing its effectiveness in achieving high 

classification accuracy. Contextual CNN and SSRN also 

demonstrated competitive performance, but SSRN was 

comparatively slower. ResNet and DPyResNet offered unique 

advantages in terms of interpretability and contextual 

information utilization. These results provide valuable 

insights into the strengths and limitations of these methods and 

offer guidance for selecting the most suitable approach for 

diverse hyperspectral image classification tasks. In the future, 

the authors will explore ensemble learning strategies further 

to improve the classification performance of hyperspectral 

image analysis methods. 

Method SA BW IP KSC 

A2S2K-ResNet 1863.801 207.322 619.1 510.882 

ResNet 3313.729 153.097 744.755 250.374 

Contextual CNN 3041.426 148.521 449.24 283.771 

DPyResNet 2622.924 134.112 398.038 304.703 

SSRN 3192.853 58.043 192.421 394.093 
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