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Abstract - Printed electronics is rapidly expanding in the industrial sector and attracting a lot of interest from a wide range of 

sectors due to its potential to fabricate components with intricate features. For the functionality of the products in printed 

electronics, the printing of conductive ink is crucial. Conductive inks are used to print flexible electronic circuits and make 

objects more communicative. Particularly based on consumer requirements, it is crucial to select ink for printing purposes. Ink 

selection has always relied on the experience of designers. Manual ink selection is a laborious and time-consuming process. 

Therefore, this paper intends to design an automatic ink selection system for printing applications using a novel Artificial Neural 

Network (ANN) framework. The literature and experimental data are used to construct the material feature dataset. The min-

max approach is used for preprocessing data to align all characteristics within a common range of 0 to 1. Lastly, to choose the 

ink according to the input characteristics, a Multilayer Perceptron Neural Network (MLPNN) is created. The performance of 

the proposed system is analyzed by varying the number of hidden layers, hidden neurons, and training samples. The experimental 

results showed that the MLPNN appropriately selects ink for printing applications when it has optimal topology.    

Keywords - Artificial Neural Network, Ink selection, Multilayer perceptron, Printed electronics, Screen printing.

1. Introduction  
Printed Electronics (PE) employs numerous advanced 

printing methods, such as screen printing, offset, spin-coating, 

and inkjet printing, to fabricate electronic circuits. Recently, 

there has been a lot of interest in employing ordinary printing 

techniques to create inexpensive, large-area, flexible electrical 

devices [1]. PE has numerous advantages over silicon-based 

technology, including lower resource usage, higher 

throughput, and far less complex fabrication processes [2]. It 

is projected that PE will capture a major part of the market 

over the next two decades due to its benefits of printing. PE 

has been significantly adopted to make Radio Frequency 

Identification (RFID) displays, sensors, and transistors using 

inkjet and screen printing methods [4, 5]. 

Screen Printing (SP) is a method of pressing a stencilled 

design onto a flat surface using a mesh, ink, and a squeegee. 

The primary methodology involves creating a stencil of high 

quality on a mesh screen, followed by the subsequent 

application of ink to transfer and imprint a designated pattern 

onto the surface. The SE generally consists of a screen, a 

frame, and a stencil with printed information [6]. The most 

popular screen-printed surfaces are paper and fabric, but only 

with specialized inks. Printing on wood, plastic, and metal is 

also possible.  

The frame is among the most significant factors in plate-

making. Aluminum, wood, and steel are used to make screen 

frames. The actual print image is determined by the cloth 

stencil. The ink is forced through the stencil created on the 

screen using a tool called a squeegee. Posters, plastic bottles, 

wood, textiles, Printed Circuit Boards (PCBs), and product 

displays are just a few examples of the materials that SP is 

used in. Ink plays a significant role in SP.  

A variety of inks are used for printing cards. The quality 

of inks varies depending on the application. This information 

has an impact on the final product. For successful printing, 

choosing the appropriate ink is a crucial step. By altering the 

material's qualities, one may control the product's quality. 

Here, this study will concentrate on the selection of conductive 

ink for printing, which is the crucial step in printing cards. The 

printed cards will have flaws if the ink is improperly selected. 

As a result, the quality and appearance of the printed cards 

may suffer. Therefore, it is essential to develop an automatic 

technique to choose appropriate ink printing uses. 

The PE technique has many process variables that can 

affect the quality of the final product and requires 

interdisciplinary knowledge of materials like material 

characteristics, substrates, solid-liquid interactions, etc.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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These parameters are typically done using physics-based 

methods, which are difficult, tedious, and error-prone as they 

necessitate the automated system. To deal with the problems 

of physics-based methods and to boost the quality of the final 

product, Machine Learning (ML) models have been utilized in 

the printing field. Regression and classification issues may be 

resolved with the use of ML, a potent approach. The advantage 

of machine learning algorithms is that, via training, they can 

capture the intricate relationships between variables used as 

inputs and outputs. Over the past years, pattern recognition, 

computer vision, medical image analysis, and printing 

applications are just a few of the sectors that have used 

machine learning methods.  

Researchers have used ML techniques for design feature 

recommendation [7], ejection of drops [8], and process 

optimization [9].  Based on their expertise, a professional 

designer can be able to choose the right ink [23, 24]. However, 

with so many cards available, it can be difficult to select the 

right ink to produce the intended card. Until now, the process 

of choosing conductive ink for printing purposes has relied on 

manual intervention. This manual selection has been 

associated with many challenges, including its tediousness, 

time-consuming nature, and dependence on the experience of 

designers. Identifying these issues and the potential for 

improvement, this research is devoted to solving these 

problems by introducing an automated system. The principal 

target of this study is to build an automated system to select 

the most suitable conductive ink for printing cards based on 

consumer requirements. By automating the ink selection 

process, the study intends to address the problems associated 

with manual selection. The following are this work's primary, 

distinctive contributions: 

• A review of recent studies on PE using different methods 

has been provided. 

• An automated system is designed to select ink for printing 

applications using Artificial Neural Network (ANN). 

This is the very first attempt made to use ANN for ink 

selection. 

• To choose the best network architecture for printing 

applications, the efficacy of the generated system is 

examined by changing the number of training samples, 

hidden layers, and hidden neurons. 

• The generated system's performance is evaluated using 

the real-world dataset, and comprehensive testing is done. 

Empirical findings imply that the ANN can select the 

correct ink for printing applications. 

Here is a summary of the remainder of the paper. Section 

2 provides a comprehensive summary of related studies. 

Section 3 explains the characteristics of the suggested system. 

Section 4 presents the findings from the performance analysis. 

In Section 5, the study is concluded, and some suggestions for 

further research are made.  

2. Review of Existing Methods  
Numerous research studies have tried to enhance the 

quality and reproducibility of PEs. The application of ML 

approaches to the different PE issues is briefly summarized in 

this section. Yao et al. [7] presented Hierarchical Clustering 

(HC) with Support Vector Machines (SVM) to create a hybrid 

approach for design feature selection. The SVM is used to 

enhance the HC result in the search for the suggested design 

elements, while the HC is utilized to classify design features. 

This technique helped new designers to find suitable design 

features for car components.  

Brishty et al. [8] focused on exploring the influence of  

ML algorithms in the categorization of ink and printer 

parameters via jetting management.  

The authors employed three ML algorithms for this 

purpose, namely K Nearest Neighbor (KNN), Decision Tree 

(DT), and Neural Network (NN). Their research findings 

demonstrated that the NN showed superior performance to the  

KNN and DT in light of accuracy.  Brunton et al. [10] used the 

error-diffusion halftone method to allow smooth tonal 

representation in printing. This method enables the 

representation of colors, which is limited to inks and materials.  

Nagasawa et al. [11] proposed a novel technique using 

NN and the line spread function to simulate color and 

translucency. This method required creating color patches 

with many layers that resembled human skin. The line spread 

function was initially calculated by the authors, and then they 

utilized NN to predict the skin color arrangement. The 

outcomes of their research achieved promising results, 

indicating that the color and translucency achieved through 

this approach closely approximated the target. 

An intriguing technique for selecting inks for spectrum 

reproduction was shown by Ansari et al. [12]. This approach 

took a painting and found out the optimal inks for spectral 

reproduction using mixed integer programming. NN was 

designed and trained to select appropriate ink for spectral 

reproduction. Wu and Xu [14] employed NN to predict the 

amount of ink and the drop speed.  

Three input characteristics, including voltage, rising time, 

and pulse length, were used to train the NN model to make a 

prediction. Huang et al. [15] adopted an unsupervised ML 

model for jetting prediction and attained better results. 

Kamyshny et al. [16] presented a thorough analysis of the uses 

of PE-specific metal-based inkjet inks. The authors covered 

several sintering techniques used to prepare inks and create 

conductive patterns. Also, applications of metal-based inkjet 

inks were given. Rama et al. [17] discussed the development 

of conductive inks and how to use them with flexible 

electronics and PE. It was determined that the optimum way 

to create Ag-ink is by chemical processes.  
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Jansson et al. [18] analyzed the flexography and SE used 

to examine the performance and printability of several paper-

based substrates with metal conductor layers. Additionally, 

they assessed the employed paper-based substrates' capability 

for re-pulpability.  

Kwon et al. [19] presented a possible way for creating 

biosensors and wearable electronics that are made of 

recyclable and disposable PE. Lall et al. [20] proposed an 

inkjet platform's deep learning model for correlating print 

parameters with electrical performance and geometry 

estimates. Wang et al. [21] constructed a new model to analyze 

droplet behaviors and enhance the stability of the printing 

process. They extracted various features and characteristics 

from the image and employed a neural network to determine 

the necessary adjustments in drive voltage for achieving stable 

printing. 

Leng et al. [22] built a two-layer feed-forward network 

for the selection of screen-printed graphite nanoplate 

conductive ink in radio frequency identification sensors. The 

network was trained with a scaled conjugate gradient 

algorithm. Experimental results showed that the network had 

satisfactory performance. He et al. [25] utilized Support 

Vector Regression (SVR) to quantify the primary color ink 

content of PE. Median and wavelet filtering techniques were 

used to remove the noise from the image. A successive 

projection algorithm was used to extract wavelengths from the 

filtered image. Finally, SVR was used to predict the primary 

color ink content of PE. Saba et al. [26] conducted 

experiments to print silver nanoparticles on the top of a glass 

substrate by electrohydrodynamic jet printing. The study 

focused on three parameters, namely voltage, duty ratio, and 

frequency, in order to successfully achieve the desired print 

outcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 1 The overall operational stages of the proposed system 
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Shi et al. [3] designed a fully-connected neural network 

to select ink in drop-on-demand printing applications. The 

network design consists of an output layer, three hidden 

layers, and an input layer. The output layer used rectified 

linear unit activation, while the hidden layers used a sigmoidal 

activation function. The findings demonstrated enhanced 

performance in comparison to the conventional approaches. 

3. Proposed Methodology  
The primary target of this present study is to design an 

automated system for ink selection using a Multilayer 

Perceptron Neural Network (MLPNN). The organized 

system's pipeline is shown in Figure 1. The following phases 

are involved in the designed system: (i) Data collection, (ii) 

Data normalization, (iii) Modelling ANN for ink selection, 

and (iv) Validation.  

3.1. Data Collection 

Data collection is the process of collecting essential input 

features and targets for the ANN model. It is the fundamental 

step for modeling an ANN model for printing applications. 

Data collection was done in two ways: material properties and 

conductive inks. As a function of material characteristics, the 

MLPNN selects the suitable ink for printing. Three types of 

conductive inks are considered such as carbon, copper, and 

silver inks. The critical material characteristics that are 

considered for successful printing are product life, quality, 

usage, and handling, Grams per square meter (GSM), caliper, 

brightness, tear resistance, and moisture content, as listed in 

Table 1.  

3.2. Data Normalization  

Since ANNs are sensitive to input data, to lie between 0 

and 1, the target and input characteristics are normalized. 

Utilizing the min-max approach, data is normalized [13]. This 

could be mathematically expressed as, 

𝑧𝑛𝑜𝑟𝑚 =
𝑧−𝑚𝑖𝑛(𝑧)

𝑚𝑎𝑥(𝑧)−𝑚𝑖𝑛(𝑧)
    (1) 

Where Z and Znorm are the normalized values and the input 

values, in that order. Moreover, min and max denote the 

corresponding minimum and maximum values. 

3.3. Modelling MLPNN    

MLPNN is a type of ANN, supervised learning network. 

It has three layers: an input layer, which is responsible for 

receiving input features from an external source; multiple 

hidden layers, which are processing layers; and output layers, 

which indicate the network output. The structure of the 

MLPNN developed is depicted in Figure 2.  

As shown in Figure 2, the MLPNN has m input neurons 

representing input features and each input, xi, is connected to 

the hidden layer by weight. The activation function is applied 

to the input features after they have been multiplied by starting 

weights in a weighted sum, and they are then propagated to 

the next layer. The net input at jth hidden neuron can be 

expressed as, 

𝑛𝑒𝑡𝑖𝑛𝑗 = ∑ 𝑥𝑖𝑤𝑖𝑗
𝑚
𝑖=1 + 𝑏𝑗                   (2)

Table 1. The work's input characteristics and target 
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Fig. 2 The overall operational stages of the proposed system

To generate output at the jth hidden neuron, the net must 

be activated using the activation function, g.  

hj = g(netinj) = ∑ xiwij
m
i=1 + bj          (3) 

The sigmoidal activation function is used by the hidden 

layer. The activation of the hidden layer, g represented as,  

g(x) =
1

1+e-x
     (4) 

It is possible to calculate the kth neuron's output at the 

output layer as, 

yink = ∑ hjvjk
p
j=1 + bk = ∑ vjk

p
j=1 g(∑ xiwij + bj

m
i=1 ) + bk   

(5) 

The output value is produced at the output layer using just 

pure linear activation. The pure linear activation function, f 

can be expressed as, 

f(x) = x   (6) 

Equation (5) can be rewritten as, 

y(k) = f(yink) = f(∑ hjvjk
p
j=1 + bk =

∑ vjk
p
j=1 g(∑ xiwij + bj

m
i=1 ) + bk)                         (7)   

The weights between the hidden and output layers are 

updated by computing an error using the following equations, 

Error,  δk =
1

r
∑ (ak-yk)
r
r=1

2
      (8) 

wnew = wold + Δw    (9) 

Δw = ηyδk   (10) 

The developed MLPNN is trained with the Levenberg-

Marquart Back Propagation Algorithm (LMBPA). The 

LMBPA algorithm uses gradient descent and Gauss neutron 

to minimize the error. The Hessian approximation can be 

computed as,    

   H = JTJ    (11) 

   Gradient,   g = JTe                 (12) 

   Δw = wold-[J
TJ + μI]-1JTδ             (13) 

3.4. Validation   

In the training phase, the MLPNN receives inputs and is 

trained using LMBPA to understand the connection between 

input features and output classes.  

 Test data that was not used in the training phase is used 

to evaluate the trained MLPNN's performance during the 

validation phase.  

4. Results and Discussions 
4.1. Evaluation Criteria 

The MATLAB 2022a platform is used to build the 

suggested automated system. The created model's 

performance is assessed using computing metrics, namely 

accuracy, recall, precision, and F1-score.  
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Table 2. Evaluation metrics 

Metrics Equation 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-score 2 ×
𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒 𝑐 𝑎𝑙𝑙

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒 𝑐 𝑎𝑙𝑙
 

Table 3. Parameters for simulation 

Parameters Value 

Input neurons number 8 

The number of layers is hidden 1 to 4 

Number of hidden neurons 10 to 15 

Number of output neurons 3 

Hidden layer transfer function Sigmoidal 

Output layer transfer function Linear 

Epoch 1000 

Momentum 0.01 

Training algorithm LMBPA 

The confusion matrix, which contains four values: True 

Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN), is used to examine the performance of 

the produced system. This study focuses on multiclass 

classification, where the TP class represents the specific label 

being analyzed, while the negative class refers to all other 

labels. Table 2 lists the performance metrics used for 

evaluation. 

4.2. Experimental Details 

The key parameters to develop the reliable and accurate 

MLPNN were fixed by experimentation. Several experiments 

were conducted to finalize the MLPNN’s parameters. Table 3 

provides the desired simulation parameters.Three scenarios 

were used to evaluate the effectiveness of the created 

MLPNN:  

Scenario 1:  Modify the quantity of hidden neurons to 

evaluate the system's efficacy.  

Scenario 2:  Modify the amount of hidden layers in the 

built system to assess its performance; 

Scenario 3:  Adjust the amount of training samples to 

examine the performance of the introduced network. 

Initially, an input layer, a hidden layer, and an output 

layer made up the architecture used to construct the MLPNN. 

The output layer used a linear transfer function, whereas the 

hidden layer utilized a sigmoidal function. The training phase 

involves the application of the LMBPA to iteratively adjust 

the MLPNN’s weights to improve its ability to generalize 

patterns from the input vectors.  

Subsequently, in the testing process, the efficacy of the 

trained MLPNN was assessed with a set of samples that were 

different from those utilized during the training process. This 

step ensured that the designed network showed robust 

performance and could generalize its learned patterns to 

unseen samples. 

4.2.1. Scenario 1  

In the first experiment, the normalized data were split into 

training and testing samples: 80% of the samples were utilized 

as training data, with the remaining 20% being used as testing 

data. The hidden neurons are varied from 10 to 15. During the 

training phase, MLPNN finds the relation between input and 

output variables by analyzing training data repeatedly. The 

process of updating weight based on the data is being 

performed.  

The performance plot is utilized to identify the cross 

entropy within the network to select ink for printing 

applications. An example training graph of the MLPNN is 

displayed in Figure 3. The MLPNN achieved its best 

validation score of 0.020 at epoch 50.  

The training process is represented by the blue line, while 

the green line indicates the validation error. The fault in testing 

is shown by the red line. One achieves a decreased error on 

the training data as the number of training epochs expands. 

Once the validation error stops decreasing, the training 

process also stops. 

Figure 4 shows the training state of the MLPNN at each 

iteration. At epoch 56, the gradient value of the MLPNN is 

0.00036, and the Marquart adjustment parameter value is 

1x10-6 at epoch 56. The performance validation at epoch 6 is 

presented. The trained network was used to select the ink 

based on the test data. 

 
Fig. 3 Performance of the training phase  
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Fig. 4 Training state of the MLPNN  
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10 70.01 82.50 75.01 78.57 

11 73.33 82.50 78.57 80.49 

12 86.67 95.00 86.36 90.48 

13 81.67 90.00 83.72 86.75 

14 85.00 87.50 89.74 88.61 

15 80.00 85.00 85.00 85.00 

Table 4 provides a summary of the results of the first 

experiment. Table 4 shows that the constructed MLPNN with 

a single hidden layer and 10 hidden neurons had the lowest 

accuracy (70.01%), recall (82.50%), precision (75.01%), and 

F1-score (78.57%).  

For 12 hidden neurons, the developed system provided 

excellent performance by reaching accuracy, recall, precision, 

and F1-score values of 86.67%, 95%, 86.36%, and 90.48%, 

respectively. The system produced an F1-score of 85%, recall 

of 85%, accuracy of 80%, and precision of 85% for 15 hidden 

neurons. This finding shows that the developed system with 

12 hidden neurons provided better performance.  

Therefore, the hidden neuron is set to 12. The developed 

system achieved the lowest accuracy for 10 and 11 hidden 

neurons. The system's performance would not be steady if the 

number of hidden neurons increased above 12. Hence, hidden 

neurons were fixed to 12 to get better results. 

4.2.2. Scenario 2 

In the second case of the experiment, hidden layers were 

increased from 1 to 4. The number of hidden neurons was 

fixed as 12. The performance of the developed system for 

varying numbers of hidden layers is illustrated in Figure 5. As 

seen in Figure 5, the system gave an accuracy of 86.67%, 

91.67%, 80%, and 73.33% for 1, 2, 3, and 4 hidden layers, 

respectively.  

Concerning recall, the system achieved the same level of 

95% with both 1 and 2 hidden layers. However, the precision, 

F1-score, and accuracy of a single hidden layer are lower than 

that of MLPNN with two hidden layers. If the hidden layers 

were increased to 3 or 4, the system's performance declined. 

Therefore, the optimal number of hidden layers for printing 

applications is 2.  

 
Fig. 5 Performance of the introduced method for varying hidden layers 

4.2.3. Scenario 3  

Based on the first and second experiments' outcomes, the 

parameters of the created MLPNN were set to 12 hidden 

neurons and 2 hidden layers, respectively. In the third 

scenario, changing the quantity of training samples is used to 

assess how successful the system that was constructed is. The 

training sample range in this instance was 50% to 90%. Table 

5 displays the system performance that has been created for 

different training data.  

Table 5. Effectiveness of the MLPNN by varying the training data 
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50 85.23 88.89 88.89 88.89 

60 86.67 91.67 88.71 90.16 

70 88.24 91.14 91.14 91.14 

80 91.67 95.00 92.68 93.83 

90 90.00 95.00 90.48 92.68 
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Fig. 6 The best MLPNN structure for printing applications  

It can be apparently seen from Table 5 that the designed 

system’s performance gets improved if from 50% to 80% 

more training examples are available. The system achieved 

85.23% accuracy, 88.89% recall, 88.89% precision, and 

88.89% F1-score for 50% of the training data. The system 

achieved 90% accuracy, 95%, 90.48%, and 92.68% for 90% 

of the training data, respectively, in terms of recall, precision, 

and accuracy. For 80% of the training data, the system 

provided outstanding results by achieving a higher accuracy 

of 91.67%, recall of 95.01%, precision of 92.68%, and F1-

score of 93.83%. The developed system with the topology of 

8-12-12-3 worked better than the system with other 

topologies, such as 8-12-3, 8-12-12-12-3, and 8-12-12-12-12-

3, according to the empirical data. The best MLPNN structure 

for ink selection is shown in Figure 6. 

4.3. Discussions 

In this study, an MLPNN was designed to choose 

conductive ink for printing applications. As stated in the 

innovative aspects of the study, the exploration of several 

configurations exposed insightful recommendations. Through 

experimentation, it was found that MLPNN with 12 hidden 

neurons stands out as an optimal model for the selection of 

conductive ink for printing applications.  

The investigation extended to the examination of the 

impact of hidden layers on the performance of the MLPNN. 

The findings suggested that utilizing two hidden layers 

improves the efficacy of the MLPNN as a classification model 

for selecting conducting ink. In addition to this, the research 

examined the impact of different amounts of training data on 

the performance of the MLPNN.  

The outcomes indicated that using 80% of the training 

samples optimally positions the MLPNN as a reliable 

classification model for the selection of conductive ink for 

printing applications. The findings of this study also 

demonstrated the effectiveness of the MLPNN in precisely 

choosing conductive ink for printing applications based on 

consumer requirements. The design and exploration of 

parameters show the MLNN’s capabilities to improve the 

decision-making process in the field of conductive ink 

selection for printing applications. 

5. Conclusion and Future Works  
This paper proposes a unique framework for selecting ink 

for printing applications. The system was developed using 

ANN. Primarily, input data were collected and then 

normalized into a common range of [0,1]. The normalized data 

were divided into training and test samples. Finally, a 

multilayer perceptron was designed and trained with training 

data. The potential of the trained MLPNN was validated using 

test data. We varied the number of training data, hidden 

neurons, and hidden layers to examine the system's 

performance. Experimental results demonstrated that the 

designed system with a structure of 8-12-12-3 provided better 

results. In future research, more samples will be considered to 

analyze the effectiveness of the developed system. 

Furthermore, other networks will be explored to choose ink 

for printing applications.  
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