
International Journal of Engineering Trends and Technology                                                 Volume 71 Issue 8, 421-427, August 2023 

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I8P236                                          © 2023 Seventh Sense Research Group®   
   

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article  

Diffraction of Acoustic Harmonic Waves in a 

Viscoelastic Cylinder   
 

N.U. Kuldashov1, B.Z. Nuriddinov1*, M. Choriev1, A. Sh.Ruzimov1, Sh. F. Xalilov1  
  

1Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan.  
 

*Corresponding Author : baxtiyor.12.27.1985@gmail.com 

 

Received: 13 January 2023                     Revised: 14 June 2023                     Accepted: 22 July 2023                       Published: 15 August 2023 

 

Abstract - The study is devoted to the study of the diffraction process of acoustic waves in a viscoelastic deformable cylinder. 

The study aims to study the diffraction of acoustic harmonic waves in a viscoelastic cylinder. The solution to the problem of 

diffraction of acoustic waves in a viscoelastic cylinder is obtained. This will allow us to determine the force factors in the form 

of the stress-strain state of the deformable cylinder. In the case of steady oscillations, the Helmholtz equation describes the 

propagation of small disturbances in an acoustic medium. And in a viscoelastic homogeneous isotropic cylinder - scalar and 

vector Helmholtz equations with complex coefficients. The stress and displacement of a point of a viscoelastic cylinder take on a 

maximum value in the region of long waves. The stresses and displacements of the points of the viscoelastic cylinder reach their 

maximum in the region of long waves. A method for solving and an algorithm for the problem of diffraction of acoustic waves in 

a viscoelastic cylinder have been developed. 

 

Keywords - Viscoelastic cylinder, Wave, Wave equation, Hereditary integral, Bessel equation. 

 

1. Introduction  
The problems of diffraction of plane harmonic acoustic 

waves in homogeneous isotropic elastic cylinders have been 

investigated [1,2,3,4]. When an acoustic wave interacts with 

an inhomogeneous medium, the wave field changes and it is 

necessary to consider the reflected waves that appear. Here the 

interaction of sound with bodies of finite dimensions or with 

bodies in which at least one of the characteristic dimensions is 

finite is considered. Drawing attention to the wide variety of 

such acoustic situations, it is noted that the interaction of the 

incident wave and obstacles, in general, affects the waveform, 

the direction of propagation and the distribution of amplitude 

along the front. The oblique incidence of incident waves is 

investigated in [5, 6]. The problems of acoustic wave 

scattering in inhomogeneous and anisotropic cylindrical 

bodies are investigated in [7, 8]. The incident acoustic wave is 

considered a plane; the wavefront is parallel to the 

longitudinal axis [9, 10]. From a mathematical point of view, 

problems of diffraction of acoustic waves in viscoelastic 

cylindrical bodies are much more complex than problems of 

diffraction in elastic cylindrical bodies [11,27]. The 

diffraction of elastic waves in inhomogeneous cylindrical 

elastic bodies placed in a deformable medium is discussed in 

[13,14]. In [15], the problem of elastic wave diffraction in a 

viscoelastic cylindrical body was considered. The problems of 

propagation of natural waves in extended viscoelastic plates 

of variable thickness are devoted to the works [16,17]. At the 

contact of the cylindrical body with the medium, the 

conditions of rigid contact are set. At infinity, the Sommerfeld 

radiation conditions are set.  

In addition to the problem of wave propagation in an 

infinite cylinder, the problems of wave propagation in a 

sphere, an ellipsoid and other bodies have exact solutions. 

This article considers the diffraction of acoustic waves in 

a viscoelastic cylinder. The methodology and algorithm of the 

solution were developed. Numerical results are obtained. 

 

2. Methods  

2.1. Problem Statement and Solution Technique  

Let a harmonic wave with frequency ω propagate in a 

homogeneous medium characterized by density ρ and sound 

speed c. This is called an incident wave, and its complex 

pressure amplitude is denoted by p. The problem of diffraction 

of acoustic waves in a viscoelastic cylinder is considered. The 

task is set in cylindrical coordinates. Suppose that a plane 

wave is incident on this body. A cylindrical body is 

represented by equations Lame in displacements [18]: 

 

𝜇̃𝛻2𝑢⃗ + (𝜆̃ + 𝜇̃)𝑔𝑟𝑎𝑑𝑑𝑖𝜗𝑢⃗ = 𝜌
𝜕2𝑢⃗⃗ 

𝜕𝑡2 ,                (1) 

 

where 𝑢⃗ (𝑢1, 𝑢2, 𝑢3) is the displacement vector of the 

medium,  is the density of the cylinder,  
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Fig. 1 An example of an incident plane wave on a cylinder 

𝜆̃𝑓(𝑡) = 𝜆0 [𝑓(𝑡) − ∫ 𝑅𝜆(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏
𝑡

−∞

] ; 

 

𝜇̃𝑓(𝑡) = 𝜇0 [𝑓(𝑡) − ∫ 𝑅𝜇(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏
𝑡

−∞
], 

 

𝑓(𝑡) is an arbitrary function of time, 𝑅𝜆(𝑡 − 𝜏) and 

𝑅𝜇(𝑡 − 𝜏) are the relaxation kernels, 𝜆0and 𝜇0  are the 

instantaneous moduli of elasticity. Calculations used the 

Koltunov-Rzhanitsyn three-parameter relaxation kernel [19]: 

𝑅𝑘(𝑡) = 𝐴𝑘𝑒
−𝛽𝑘𝑡/𝑡1−𝛼𝑘. The path that the plane wavefront 

takes is determined by the scalar product of the vectors nr, 

where n is the unit vector (|𝑛| = 1) of the normal to the 

surface of the wavefront, and r is the radius vector from the 

origin O to a point on the front surface. It is clear that 𝑛𝑟 =
 𝑟𝑐𝑜𝑠𝜓 (𝑟 =  |𝑟|, 𝜓 is the angle between n and r). 

Let an infinitely long elastic cylinder with a radius, which 

is placed in an unlimited viscous medium, be affected by a 

plane harmonic wave of unit amplitude, the front of which is 

perpendicular to the z-axis of the cylinder [20]: 

𝜑
(𝑝)

= 𝑒𝑖𝑘01𝑡𝑒−𝑖𝜔𝑡 = 𝑒𝑖𝑘01𝑟 𝑐𝑜𝑠 𝜃𝑒−𝑖𝜔𝑡            (2) 

 

where 𝑟, 𝜃 are cylindrical coordinates; 𝜔 - circular 

frequency; 𝑡 - time. 

 

Full acoustic field velocity potential 

 

𝜑с
(1)

= 𝛷𝑐
(1)

𝑒−𝑖𝜔𝑡

.
 

In what follows, the exponential factor will be omitted. 

The propagation of waves in an acoustic (in an ideal fluid) 

medium, in the case of steady oscillations, is described by the 

equation. 

𝛥𝛷с
(1)

+ 𝑘01
2 𝛷с

(1)
= 0, 

 

where 𝛷с
(1)

= 𝛷𝑝
(1)

+ 𝛷𝑠
(1)

 is the velocity potential of the 

full acoustic field in the outer region,  𝛷𝑠
(1)

 is the velocity 

potential of the scattered wave. In this case, the particle 

velocity and acoustic pressure 𝑣  in the liquid are determined 

by the formulas. 

 

𝑣 = 𝑔𝑟𝑎𝑑𝛷с
(1)

, 𝑝 = 𝑖𝜌0𝜔𝛷с
(1)

 

 

where 𝜌0 − is the density of the material of the acoustic 

medium, 𝜔 is the frequency, and 𝜆01 are the elastic 

characteristics of the acoustic medium. The mixing of a 

cylindrical body is described using the Green-Lemb 

expansion. Then the longitudinal and transverse 

displacements satisfy the following relations. 

 

𝜑
(2)

= 𝛷
(2)

𝑒−𝑖𝜔𝑡 , 𝜓
(2)

= 𝛹
(2)

𝑒−𝑖𝜔𝑡. 

 

Vibrations of a viscoelastic homogeneous isotropic 

cylinder, in the case of harmonic motion, are described by the 

scalar and vector Helmholtz equations [28]: 

 

𝜕2𝛷0
(2)

𝜕𝑟2 +
1

𝑟

𝜕𝛷0
(2)

𝜕𝑟
+

1

𝑟2

𝜕2𝛷0
(2)

𝜕𝜃2 + 𝑘1
2𝛷 = 0 ,  

 

𝜕2𝛹0
(2)

𝜕𝑟2 +
1

𝑟

𝜕𝛹0
(2)

𝜕𝑟
+

1

𝑟2

𝜕2𝛹0
(2)

𝜕𝜃2 + 𝑘2
2𝛹0

(2)
= 0.                 (3) 

n 

r 

ψ 

a 
0 x 
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The problem of determining the diffraction pattern leads 

to the solution of the Helmholtz equations. 

 

𝑈𝑟 =
𝜕𝜑0

(2)

𝜕𝑟
+

1

𝑟

𝜕𝛹0
(2)

𝜕𝜃
 , 𝑈𝜃 =

1

𝑟

𝜕𝜑0
(2)

𝜕𝜃
−

𝜕𝛹0
(2)

𝜕𝑟
 ,        (4) 

 

Where к1
2 =

𝜔2

𝑐𝑝1
2 𝛤𝜆𝜇

, к2
2 =

𝜔2

𝑐𝑠1
2 𝛤𝜇

, 𝑐𝑝1
2 = (𝜆0 + 2𝜇0) /

𝜌1, 𝑐𝑠1
2 = 𝜇0/𝜌1is the propagation velocity of longitudinal and 

transverse waves; 

 

Г𝜆𝜇
• = 1 − 𝛤𝜆𝜇

С (𝜔𝑅) − 𝑖𝛤𝜆𝜇
𝑆 (𝜔𝑅), Г𝜇

• = 1 − 𝛤𝜇
С(𝜔𝑅) −

𝑖𝛤𝜇
𝑆(𝜔𝑅), 

𝛤𝜆
𝑐(𝜔𝑅) = ∫ 𝑅𝜆(𝜏) 𝑐𝑜𝑠 𝜔𝑅 𝜏𝑑𝜏,

∞

0

𝛤𝜇
𝑐(𝜔𝑅)

= ∫ 𝑅𝜇(𝜏) 𝑐𝑜𝑠 𝜔𝑅 𝜏𝑑𝜏
∞

0

, 

𝛤𝜆
𝑠(𝜔𝑅) = ∫ 𝑅𝜆(𝜏) 𝑠𝑖𝑛 𝜔𝑅 𝜏𝑑𝜏

∞

0

, 𝛤𝜇
𝑠(𝜔𝑅)

= ∫ 𝑅𝜇(𝜏) 𝑠𝑖𝑛 𝜔𝑅 𝜏𝑑𝜏
∞

0

, 

 

𝛤𝜆𝜇
С (𝜔𝑅),𝛤𝜆𝜇

𝑆 (𝜔𝑅),𝛤𝜇
С(𝜔𝑅),𝛤𝜇

𝑆(𝜔𝑅)  are the cosine and 

sine of the Fourier image of the relaxation kernels, 

respectively, are defined in a similar way, 𝜑 = 𝜑𝑖 + 𝜑𝑠 are the 

scalar potential of longitudinal waves in a liquid, which  is 

summed from the potential of 𝜑𝑖- longitudinal incident waves 

and the potential of 𝜑𝑠 - longitudinal reflected waves, 𝛷  is the 

scalar potential of longitudinal waves in a liquid, 𝛹and 𝜓 are, 

respectively, scalar potentials of transverse waves in a 

viscoelastic cylinder and liquid. 

On the surface of the cylinder at r=a, the following 

boundary conditions must be met: 

𝑝𝑟𝑟 = −𝜎𝑟𝑟 , 𝑉𝑟 = −𝑖𝑤𝑈𝑟 , 
𝑝𝑟𝜃 = −𝜎𝑟𝜃 , 𝑉𝜃 = −𝑖𝑤𝑈𝜃 ,                   (5) 

 

where 𝑉𝑟 , 𝑉𝜃 are the normal and tangent to fluid particles; 

𝑈𝑟 , 𝑈𝜃- normal and circumferential mixing of an elastic 

medium; 𝑝𝑟𝑟 , 𝑝𝑟𝜃- normal and tangential components of the 

stress tensor in the fluid; 𝜎𝑟𝑟 , 𝜎𝑟𝜃 - normal and tangential 

components of the stress tensor in the cylinder. For a rigid 

cylinder, the radial velocity on its surface is zero. 

At infinity  must be  satisfied the conditions [22,23]: 

𝑟 (
𝜕𝜑с

𝜕𝑛
+ 𝑖𝑘1𝜑с)

𝑟→∞
= 0(

1

𝑟
) , (𝜑с)𝑟→∞ = 0(

1

𝑟
) .       (6) 

 

We are looking for a solution to the problem in the form 

of a series. To do this, we expand the function corresponding 

to the incident plane wave in a Fourier series: 

 

𝛷𝑠
(1)

= 𝑒𝑖𝑘01𝑟 𝑐𝑜𝑠 𝜃 = ∑ 𝐽𝑛(𝑘01𝑟)𝑒
𝑖𝑛𝜃∞

𝑛=−∞ . 

We represent the velocity potential of the reflected wave 

as a superposition of cylindrical waves emanating from points 

on the axis of the cylinder: 

𝛷𝑠
(1)

= ∑ 𝐴𝑛𝐻𝑛
1(𝑘1𝑟)𝑒

𝑖𝑛𝜃

∞

𝑛=−∞

 

   

The potential of the common field 

 

𝛷с
(1)

= 𝛷𝑝
(1)

+ 𝛷𝑠
(1)

= ∑ (𝐽𝑛(𝑘1𝑟) + 𝐴𝑛𝐻𝑛
1(𝑘1𝑟))𝑒

𝑖𝑛𝜃∞
𝑛=−∞

                     (7) 

 

And the potentials in a viscoelastic solid cylinder have the 

form 

𝛷0
(2)

= ∑ 𝐶𝑛𝐻𝑛
(1)

(𝑘1𝑟)𝑒
𝑖𝑛𝜃∞

𝑛=−∞ ,        (8) 

 

𝛹0
(2)

= ∑ 𝐷𝑛𝐻𝑛
(1)

(𝑘2𝑟)𝑒
𝑖𝑛𝜃∞

𝑛=−∞ .                     (9) 

 

The displacements of a viscoelastic cylinder are related to 

the scalar potential and the only nonzero component of the 

vector potential by the relations [24]: 
 

𝑈𝑟 =
𝜕𝜓

𝜕𝑟
+

1

𝑟

𝜕𝜓

𝜕𝜃
;      𝑈𝜃 =

1

𝑟

𝜕𝜓

𝜕𝜃
−

𝜕𝜓

𝜕𝑟
 

then 

𝑈𝑟 = −(𝑘1𝐶𝑛𝐻𝑛
(1)(𝑘1𝑟) +

𝑖𝑛

𝑟
𝐷𝑛𝐻𝑛

(1)(𝑘2𝑟)) 𝑒𝑖𝑛𝜃 ,   (10) 

 

𝑈𝜃 = −(
𝑖𝑛

𝑟
𝐶𝑛𝐻𝑛

(1)(𝑘1𝑟) − 𝑘2𝐷𝑛𝐻𝑛
(1)(𝑘2𝑟)) 𝑒𝑖𝑛𝜃 . 

 

The radial and tangential components of the stress tensor 

in a viscous fluid are determined by the relations: 

𝑝𝑟𝑟 = 𝑝0

𝜕𝜑

𝜕𝑡
− 2𝜇0 (

1

𝑟

𝜕𝜑

𝜕𝑟
+

1

𝑟2

𝜕2𝜑

𝜕𝜃2
+

1

𝑟2

𝜕ф

𝜕𝜃
−

1

𝑟

𝜕2ф

𝜕𝑟𝜕𝜃
), 

𝑝𝑟𝜃 = 2𝜇0 (
1

𝑟

𝜕2𝜑

𝜕𝑟𝜕𝜃
−

1

𝑟2

𝜕𝜑

𝜕𝜃
+

1

𝑟

𝜕ф

𝜕𝑟
+

1

𝑟2

𝜕2ф

𝜕𝜃2
−

1

2𝜈0

𝜕ф

𝜕𝑡
). 

then 

𝑝𝑟𝑟 = ∑

∞

𝑛=−∞

((𝑖𝜔𝜌0 − 𝜆0𝑘1
2 − 2𝜇0

𝑛2

𝑟2
) 𝐽𝑛(𝑘1𝑟)

− 2𝜇0

𝑘1

𝑟
𝐽𝑛(𝑘1𝑟)) 𝑒𝑖𝑛𝜃 + 

+ ∑

𝑛=−∞
∞

((𝑖𝜔𝜌0 − 𝜆0𝑘1
2 − 2𝜇0𝑘1

2 + 2𝜇0

𝑛2

𝑟2
)𝐻𝑛

(1)(𝑘1𝑟)

− 2𝜇0

𝑘1

𝑟
𝐻𝑛

(1)(𝑘1𝑟)) 𝐴𝑛𝑒
𝑖𝑛𝜃 + 

+2𝜇0 ∑

𝑛=−∞
∞

(
𝑖𝑛

𝑟
𝑘2𝐻𝑛

(1)(𝑘2𝑟) −
𝑖𝑛

𝑟2 𝐻𝑛
(1)(𝑘2𝑟))𝐵

𝑛𝑒𝑖𝑛𝜃 ;    

(11) 

𝑝𝑟𝜃 = 2𝜇0 ∑

𝑛=−∞
∞

(
𝑛𝑖

𝑟
𝑘1𝐽𝑛(𝑘1𝑟) −

𝑛𝑖

𝑟2
𝐽𝑛(𝑘1𝑟)) 𝑒𝑖𝑛𝜃 + 
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+2𝜇0 ∑

𝑛=−∞
∞

(
𝑛𝑖

𝑟
𝑘1𝐻𝑛

(1)(𝑘1𝑟) −
𝑛𝑖

𝑟2
𝐻𝑛

(1)(𝑘1𝑟))𝐴𝑛𝑒
𝑖𝑛𝜃 + 

+2𝜇0 ∑

𝑛=−∞
∞

(
𝑘2

2

2
𝐻𝑛

(1)(𝑘1𝑟) −
𝑛2

𝑟2
𝐻𝑛

(1)(𝑘2𝑟)

+
𝑘2

𝑟
𝐻𝑛

(1)(𝑘2𝑟))𝐵𝑛𝑒
𝑖𝑛𝜃 . 

The radial and tangential components of the stress tensor 

in a viscoelastic cylinder are determined by the relations. 

 

−
𝜎𝑟𝑟

2𝜇01

=
𝜆̄ + 2𝜇̄

2𝜇01

𝑘1
2𝜐̸ +

1

𝑟

𝜕𝜐̸

𝜕𝜃
+

1

𝑟2

𝜕𝜐̸

𝜕𝜃2
−

1

𝑟

𝜕2𝜓

𝜕𝑟𝜕𝜃
+

1

𝑟2

𝜕𝜓

𝜕𝜃
; 

𝜎𝜃𝜃

2𝜇01

= −
𝜆̄

2𝜇01

𝑘1
2𝜐̸ +

1

𝑟2

𝜕𝜐̸

𝜕𝜃2
+

1

𝑟

𝜕𝜐̸

𝜕𝑟
+

1

𝑟2

𝜕𝜓

𝜕𝜃
−

1

𝑟

𝜕2𝜓

𝜕𝑟𝜕𝜃
, 

𝜎𝑟𝜃

2𝜇01

=
1

2
𝑘2

2𝛤𝜇 𝜓 +
1

𝑟

𝜕𝜓

𝜕𝑟
+

1

𝑟2

𝜕2𝜓

𝜕𝜃2
+

1

𝑟2

𝜕𝜐̸

𝜕𝜃
−

1

𝑟

𝜕2𝜐̸

𝜕𝑟𝜕𝜃
. 

then 

𝜎𝑟𝑟 = −2𝜇̄ ∑

−∞
+∞

(
𝜆 + 2𝜇

2𝜇
𝑘1

2𝐻𝑛
(1)(𝑘1𝑟) +

𝑘1

𝑟
𝐻𝑛

(1)(𝑘1𝑟)

−
𝑛2

𝑟2
𝐻𝑛

(1)(𝑘1𝑟)) 𝐶𝑛𝑒
𝑖𝑛𝜃 − 

−2𝜇̄∑

−∞
+∞

(
𝑖𝑛

𝑟
𝑘2𝐻𝑛

(1)(𝑘2𝑟) −
𝑖𝑛

𝑟2
𝐻𝑛

(1)(𝑘2𝑟))𝐷𝑛𝑒
𝑖𝑛𝜃 , 

𝜎𝑟𝜃 = 2𝜇 ∑

−∞
+∞

(
𝑘4

2 + 2𝜇

2
𝐻𝑛

(1)(𝑘4𝑟) +
𝑘4

𝑟
𝐻𝑛

(1)(𝑘4𝑟)

−
𝑛2

𝑟2
𝐻𝑛

(1)(𝑘4𝑟))𝐷𝑛𝑒
𝑖𝑛𝜃 − 

−2𝜇 ∑

−∞
+∞

(
𝑖𝑛

𝑟2 𝐻𝑛
(1)(𝑘3𝑟) −

𝑖𝑛

𝑟
𝑘3𝐻𝑛

(1)(𝑘3𝑟)) 𝐶𝑛𝑒
𝑖𝑛𝜃 . (12) 

 

Satisfying the boundary conditions on the surface of the 

cylinder (2), a system of equations for finding arbitrary 

constants is obtained 𝐴𝑛, 𝐵𝑛 , 𝐶𝑛, 𝐷𝑛 

 

𝑎𝑘1𝐴𝑛 + 𝑎𝑘2𝐵𝑛 + 𝑎𝑘3𝐶𝑛 + 𝑎𝑘4𝐷𝑛 = 𝑏𝑘          (13) 

then 

𝑎11 = 𝑘01𝑎𝐻𝑛
(1)

(𝑘01𝑎), 𝑎12 = 𝑖𝑛𝐻𝑛
(1)

(𝑘02𝑎), 𝑎13 =

𝑖𝑤𝑎𝑘1𝐻𝑛
(1)

(𝑘1𝑎), 𝑎14 = −𝜔𝑛𝐻𝑛
(1)

(𝑘2𝑎), 𝑎21 =

𝑖𝑛𝐻𝑛
(1)

(𝑘01𝑎), 𝑎22 = −𝑘02𝑎𝐻𝑛
(1)

(𝑘02𝑎), 

𝑎23 = −𝜔𝑛𝐻𝑛
(1)

(𝑘1𝑎), 𝑎24 = −𝑖𝜔𝑎𝑘2𝐻𝑛
(1)

(𝑘2𝑎),  

(14) 

 

𝑎31 = (𝑖𝜔𝜌0𝑎
2 + 2𝜇0𝑛

2)𝐻𝑛
(1)

(𝑘01𝑎) −

2𝜇0𝑘01𝑎𝐻𝑛
(1)

(𝑘01𝑎),  

𝑎32 = 2𝜇0(𝑖𝑛𝑘02𝑎𝐻𝑛
(1)

(𝑘02𝑎) − 𝑖𝑛𝐻𝑛
(1)

(𝑘02𝑎)

= 2𝜇0𝑖𝑛(𝑘02𝑎𝐻𝑛
(1)

(𝑘02𝑎) − 𝐻𝑛
(1)

(𝑘02𝑎), 

 

𝑎33 = 2𝜇̄ (
𝜆̄+2𝜇̄

2𝜇̄
𝑘1

2𝑎2𝐻𝑛
(1)

(𝑘1𝑎) + 𝑘1𝑎𝐻𝑛
(1)

(𝑘1𝑎) −

𝑛2𝐻𝑛
(1)

(𝑘1𝑎)) , 

 

𝑎34 = −2𝜇̄𝑖𝑛(𝑘2𝑎𝐻𝑛
(1)

(𝑘2𝑎) − 𝐻𝑛
(1)

(𝑘2𝑎)) , 
(1) (1) (1) (1)

41 0 01 01 01 0 01 01 012 ( ( ) ( )) 2 ( ( ) ( )),n n n na ink aH k a inH k a ni k aH k a H k a = − = −  

 

𝑎42 = 2𝜇0 (
𝑘02

2 𝑎2

2
𝐻𝑛

(1)
(𝑘02𝑎) + 𝑘02𝑎𝐻𝑛

(1)
(𝑘02𝑎) −

𝑛2𝐻𝑛
(1)

(𝑘02𝑎)), 

 

𝑎43 = 2𝜇𝑖𝑛(𝐻𝑛
(1)

(𝑘1𝑎) − 𝑘1𝑎𝐻𝑛
(1)

(𝑘1𝑎)), 

𝑎44 = −𝜇0 (
𝑘2

2𝑎2

2
𝐻𝑛

(1)
(𝑘2𝑎) + 𝑘2𝑎𝐻𝑛

(1)
(𝑘2𝑎) −

𝑛2𝐻𝑛
(1)

(𝑘2𝑎)), 

 

𝑏1 = −𝑘01𝑎𝐽𝑛(𝑘01𝑎), 𝑏2 = −𝑖𝑛𝐽𝑛(𝑘01𝑎), 
𝑏3 = (𝑖𝜔𝜌0𝑎

2 − 2𝜇0𝑛
2)𝐽𝑛(𝑘01𝑎) + 2𝜇0𝑘01𝑎𝐽𝑛(𝑘01𝑎), 

𝑏4 = 2𝜇0(𝐽𝑛(𝑘01𝑎) − 𝑘01𝑎𝐽𝑛(𝑘01𝑎)).  

 

The pressure in a viscous medium consists of the sum of 

the pressures of incident 𝑝𝑖  and reflected 𝑝𝑠 waves [23]: 

 

𝑝 = 𝑝𝑖 + 𝑝𝑠  ,                 (15) 

 

where in accordance with the formula 

𝑝 = (𝑖𝜔𝜌0 − (𝜆0 + 2𝜇0)𝑘01
2 )𝜑 

    

and solutions (4) and (5) 

 

𝑝𝑖 = (𝑖𝑤𝜌0 − (𝜆0 + 2𝜇0)𝑘01
2 ) ∑ 𝐽𝑛(𝑘01

∞
𝑛=−∞ 𝑟)𝑒𝑖𝑛𝜃 ,  

(16) 

 

𝑝𝑠 = (𝑖𝑤𝜌0 − (𝜆0 + 2𝜇0)𝑘01
2 ) ∑ 𝐴𝑛𝐻𝑛(𝑘01

∞
𝑛=−∞ 𝑟)𝑒𝑖𝑛𝜃 .         

(17) 

 

3. Results and Analysis  
  Numerical results were obtained using the Matlab 

software package. On Figure 2 shows the positional scattering 

cross-section for the corresponding values of the cylinder 

wave radius ka.  

 

The scattering of sound by a cylinder at low frequencies 

is considered, i.e. at ka < 1. In calculations, this corresponds 

to ka ≤ 0.3. On the one hand, attention should be paid to the 

character of the curve and, on the other hand, to the magnitude 

of the positional scattering cross-section.
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Fig. 2 Dependences σ(ψ)/πа for different values of the wave radius of a rigid cylinder:  

𝟏. 𝒌𝒂 = 𝟎. 𝟗; 𝟐. 𝒌𝒂 = 𝟎. 𝟑; 𝟑. 𝒌𝒂 = 𝟐. 𝟗; 𝟒. 𝒌𝒂 = 𝟎. 𝟏; 𝟓. 𝒌𝒂 = 𝟒. 𝟓. 

 
Fig. 3 Dependences σ(ψ)/πа for different values of the wave radius of the soft cylinder: 

𝟏. 𝒌𝒂 = 𝟐. 𝟗; 𝟐. 𝒌𝒂 = 𝟑. 𝟎; 𝟑. 𝒌𝒂 = 𝟏. 𝟎; 𝟒. 𝒌𝒂 = 𝟎. 𝟑; 𝟓. 𝒌𝒂 = 𝟎. 𝟏. 
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Fig. 4 Dependence of the total scattering cross-section of an ideal cylinder and ideal sphere on the wave radius ka: 

 1 - rigid cylinder; 2 - soft cylinder; 3 - hard-sphere; 4 - soft sphere 

As you can see, in the case of a soft cylinder (Fig. 3, ka ≤ 

0.3), the scattering diagram is similar to a circular diagram, 

which is typical for monopole scattering. A rigid cylinder (Fig. 

2, a, ka ≤ 0.3) is similar to a cardioid diagram, formed as a 

superposition of monopole and dipole scattering.  

 

Monopole scattering by a small obstacle, as already 

noted, is due only to the difference in the compressibility of 

the obstacle and the medium.  

 

For a rigid cylinder, the compressibility is zero. Dipole 

scattering is associated with such an obstacle, which differs 

from the medium only in density.  

 

The following physical considerations can comment on 

this result. In a sound wave, the processes of compression and 

displacement of particles of the medium occur.  

 

A small obstacle in the sound field, in fact, a small particle 

in the form of a rigid cylinder, changes the nature of the 

compression and displacement of the particles of the medium 

near the cylinder. This causes the appearance of a scattered 

wave such that the boundary conditions must be satisfied on 

the surface of the cylinder: the radial velocity is zero. 

 

Thus, a change in the nature of compression leads to 

monopole scattering, and a change in the nature of the motion 

of the particles of the medium leads to dipole scattering, and 

the contribution of both types of scattering turns out to be 

approximately the same, which is easy to verify. 

Fig 4 shows numerical calculations of the value σs /2a 

using the exact formula (12). As can be seen, if ka >> 1, then 

for both cylinders, the value σs /2a → 2; if ka << 1, then the 

value σs /2a tends to zero for a rigid cylinder and increases for 

a soft cylinder. Once again, we note that an unlimited increase 

in the value of σs at ka → 0 is related to the infinite length of 

the cylinder. For a cylinder of finite length, there is no such 

result. 

 

The results obtained were compared with the results 

obtained in [18].  The results differ by up to 9% with the same 

medium and cylinder data. 

4. Conclusion 
1. A method for solving and an algorithm for the problems 

of diffraction of acoustic waves in a viscoelastic cylinder has 

been developed. 

2. It is established that if ka >> 1, then for both cylinders, 

the value σs/2a→2; if ka << 1, then the quantity σs/2a tends to 

zero for a rigid cylinder and increases for a soft cylinder. We 

also note that an unlimited increase in the value of σs at ka → 

0 is related to the infinite length of the cylinder. For a cylinder 

of finite length, there is no such result.  

References  
 

[1] A.N. Guz, V.D. Kubenko, and M.A. Cherevko “Diffraction of Elastic Waves,” Soviet Applied Mechanics, vol. 14, pp. 789-798, 1978. 

[CrossRef] [Google Scholar] [Publisher Link] 

[2] S. Yu. Babich, A. N. Guz', and A. P. Zhuk, “Elastic Waves in Bodies with Initial Stresses,” Soviet Applied Mechanics, vol. 15, pp. 277-

291, 1979. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1007/BF00883678
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Diffraction+of+elastic+waves&btnG=
https://link.springer.com/article/10.1007/BF00883678
https://doi.org/10.1007/BF00884760
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Elastic+Waves+in+Bodies+with+Initial+Stresses&btnG=
https://link.springer.com/article/10.1007/BF00884760


B.Z. Nuriddinov et al. / IJETT, 71(8), 421-427, 2023 

 

427 

[3] M.A. Isakovich, General Acoustics, Nauka, Moscow, 1973. 

[4] Ismoil Safarov et al., “Vibrations of Cylindrical Shell Structures Filled with Layered Viscoelastic Material,” E3S Web of Conferences, vol. 

264, p. 01027, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Konstantin A. Naugolnykh, and Lev A. Ostrovsky, “Nonlinear Wave Processes in Acoustics,” Acoustical Society of America, vol. 108, 

no. 1, 2000. [Google Scholar] [Publisher Link] 

[6] Ismoil Safarov et al., “Manometric Tubular Springs Oscillatory Processes Modeling with Consideration of its Viscoelastic Properties,” 

E3S Web of Conferences, vol. 264, p. 01010, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[7] S.N. Rzhevkin, “A Course of Lectures on the Theory of Sound,” Moscow University, Moscow, 1960. [Google Scholar] 

[8] V. P. Maiboroda et al., “Wave Attenuation in an Elastic Medium,” Journal of Soviet Mathematics, vol. 60, no. 2, pр. 1379–1382, 1992. 

[CrossRef] [Google Scholar] [Publisher Link] 

[9] V.P. Maiboroda, I.I. Safarov, and I.E. Troyanovskii, “Free and Forced Oscillations of a System of Rigid Bodies on Inhomogeneous 

Viscoelastic Snobbery,” Soviet Machine Science, vol. 3, pp. 25–31, 1983. [Google Scholar] 

[10] Muhsin Kh. Teshaev, Ismail I. Safarov, and Mirziyod Mirsaidov, “Oscillations of Multilayer Viscoelastic Composite Toroidal Pipes,” 

Journal of the Serbian Society for Computational Mechanics, vol. 13, no. 2, pp. 104-115, 2019. [CrossRef] [Google Scholar] [Publisher 

Link]  

[11] Deepak Ranjan Biswal, Alok Ranjan Biswal, and Rashmi Ranjan Senapati, "Finite Element Based Vibration Analysis of an Axially 

Functionally Graded Nonprismatic Beam," SSRG International Journal of Mechanical Engineering, vol. 5, no. 1, pp. 8-13, 

2018. [CrossRef] [Google Scholar] [Publisher Link]  

[12] Mirziyod Mirsaidov et al., “Spread Waves in a Viscoelastic Cylindrical Body of a Sector Cross Section with Cutouts,” IOP Conference 

Series: Materials Science and Engineering, vol. 869, no. 4, p. 042011, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[13] M.M. Mirsaidov et al., “Dynamics of Structural - Inhomogeneous Coaxial-Multi-Layered Systems Cylinder-Shells,” Journal of Physics: 

Conference Series, vol. 1706, no. 1, p. 012033, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[14] V.T. Grinchenko, and V.V. Meleshko, Harmonic Oscillations and Waves in Elastic Bodies, Nauk, Dumka, Kiev, 1981. [Google Scholar] 

[15] I.I. Safarov et al., “Torsional Vibrations of a Cylindrical Shell in a Linear Viscoelastic Medium,” IOP Conference Series: Materials 

Science and Engineering, vol. 883, no. 1, p. 012190, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Muhsin Khudoyberdiyevich Teshaev et al., “On the Distribution of Free Waves on the Surface of a Viscoelastic Cylindrical Cavity,” 

Journal of Vibrational Engineering and Technologies, vol. 8, no. 4, pp. 579-585, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[17] I. I. Safarov et al., “Propagation of Proper Waves in a Viscoelastic Timoshenko Plate of Variable Thickness,” International Journal of 

Engineering Trends and Technology, vol. 71, no. 1, pp. 25–30, 2023. [CrossRef] [Publisher Link] 

[18] Muhsin Teshaev et al., “Propagation of Natural Waves in Extended Viscoelastic Plates of Variable Thickness," AIP Conference 

Proceedings, vol. 2647, p. 030002, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[19] I.A. Viktorov, Physical Basis for the Use of Ultrasonic Rayleigh and Lamb Waves in Technology, Nauka, Moscow, 1966. 

[20] I.I. Safarov et al., “Seismic Vibrations of Complex Relief of the Surface of the Naryn Canyon (On the Norin River in Kyrgyzstan) during 

Large-Scale Underground Explosions,” Journal of Physics: Conference Series, vol. 1706, no. 1, p. 012125, 2020. [CrossRef] [Google 

Scholar] [Publisher Link] 

[21] Hassan Amin Osseily, Hussein El Husseiny, Hilal Sweidan, "Design and Implementation of Frequency Generator of a Portable Sound 

Wave Fire Extinguisher," SSRG International Journal of Electronics and Communication Engineering, vol. 7, no. 12, pp. 11-21, 

2020. [CrossRef] [Publisher Link]   

[22] L.F. Lependin, Acoustics, Higher School, Moscow, 1978. 

[23] I.I. Safarov, Z. Boltaev, and T. Razokov, “Natural Vibrations of Spherical Inhomogeneity in a Viscoelastic Medium,” International 

Journal of Scientific and Technology Research, vol. 9, no. 1, pp. 3674-3680, 2020. [Google Scholar] [Publisher Link] 

[24] I.I. Safarov et al., “Propagation of Own Non Axisymmetric Waves in Viscoelastic Three-Layered Cylindrical Shells,” Engineering 

Journal, vol. 25, no. 7, pp. 97-107. 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[25] L.A Alexeyeva, "Biquaternionic Representation of Harmonic Elementary Particles, Periodic System of Atoms," SSRG International 

Journal of Applied Physics, vol. 6, no. 3, pp. 74-80, 2019. [CrossRef] [Google Scholar] [Publisher Link]  

[26] V.V. Krylov, Fundamentals of the Theory of Radiation and Scattering of Sound, Moscow State University, Moscow, 1989. 

[27] Mirziyod Mirsaidov, Ismoil Safarov, and Mukhsin Teshaev, “Dynamic Instability of Vibrations of Thin-Wall Composite Curvorine 

Viscoelastic Tubes Under the Influence of Pulse Pressure,” E3S Web of Conferences, vol. 164, p. 14013, pp. 1-12, 2020. [CrossRef] 

[Google Scholar] [Publisher Link] 

[28] I.I. Safarov, M. Teshaev, and Z. Boltaev, “Propagation of Linear Waves in Multilayered Structural – In Homogeneous Cylindrical Shells,” 

Journal of Critical Reviews, vol. 7, no. 12, pp. 893-904, 2020. [Google Scholar] [Publisher Link] 

https://doi.org/10.1051/e3sconf/202126401027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vibrations+of+Cylindrical+Shell+Structures+Filled+with+Layered+Viscoelastic+Material&btnG=
https://www.e3s-conferences.org/articles/e3sconf/abs/2021/40/e3sconf_conmechydro2021_01027/e3sconf_conmechydro2021_01027.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nonlinear+wave+processes+in+acoustics&btnG=
https://watermark.silverchair.com/14_1_online.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAABVMwggVPBgkqhkiG9w0BBwagggVAMIIFPAIBADCCBTUGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMgjhRZS124Jr2vyzRAgEQgIIFBrJmK_HO0GwVuqb8BEYQlBGzNv0hyJjpwb26ae_RyZ7Y
https://doi.org/10.1051/e3sconf/202126401010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Manometric+Tubular+Springs+Oscillatory+Processes+Modeling+with+Consideration+of+its+Viscoelastic+Properties&btnG=
https://www.e3s-conferences.org/articles/e3sconf/abs/2021/40/e3sconf_conmechydro2021_01010/e3sconf_conmechydro2021_01010.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+course+of+lectures+on+the+theory+of+sound&btnG=
https://doi.org/10.1007/BF01679642
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wave+attenuation+in+an+elastic+medium&btnG=
https://link.springer.com/article/10.1007/BF01679642
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Free+and+forced+Oscillations+of+a+System+of+Rigid+bodies+on+Inhomogeneous+Viscoelastic+snobbery&btnG=
https://doi.org/10.24874/jsscm.2019.13.02.08
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Oscillations+of+multilayer+viscoelastic+composite+toroidal+pipes&btnG=
http://www.sscm.kg.ac.rs/jsscm/index.php/volume-13-number-2-2019/237-paper-08-2019-2
http://www.sscm.kg.ac.rs/jsscm/index.php/volume-13-number-2-2019/237-paper-08-2019-2
https://doi.org/10.14445/23488360/IJME-V5I1P102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Finite+Element+Based+Vibration+Analysis+of+an+Axially+Functionally+Graded+Nonprismatic+Beam&btnG=
https://www.internationaljournalssrg.org/IJME/2018/Volume5-Issue1/IJME-V5I1P102.pdf
https://doi.org/10.1088/1757-899X/869/4/042011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spread+waves+in+a+viscoelastic+cylindrical+body+of+a+sector+cross+section+with+cutouts&btnG=
https://iopscience.iop.org/article/10.1088/1757-899X/869/4/042011/meta
https://doi.org/10.1088/1742-6596/1706/1/012033
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamics+of+Structural+-+Inhomogeneous+Coaxial-Multi-Layered+Systems+Cylinder-Shells&btnG=
https://iopscience.iop.org/article/10.1088/1742-6596/1706/1/012033/meta
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Harmonic+oscillations+and+waves+in+elastic+bodies&btnG=
https://doi.org/10.1088/1757-899X/883/1/012190
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Torsional+vibrations+of+a+cylindrical+shell+in+a+linear+viscoelastic+medium&btnG=
https://iopscience.iop.org/article/10.1088/1757-899X/883/1/012190/meta
https://doi.org/10.1007/s42417-019-00160-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Distribution+of+Free+Waves+on+the+Surface+of+a+Viscoelastic+Cylindrical&btnG=
https://link.springer.com/article/10.1007/s42417-019-00160-x
https://www.scopus.com/authid/detail.uri?authorId=37041609500#disabled
https://www.scopus.com/authid/detail.uri?authorId=37041609500#disabled
https://doi.org/10.14445/22315381/IJETT-V71I1P203
https://ijettjournal.org/archive/ijett-v71i1p203
https://www.scopus.com/authid/detail.uri?authorId=37041609500#disabled
https://www.scopus.com/authid/detail.uri?authorId=37041609500#disabled
https://doi.org/10.1063/5.0104170
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Propagation+of+Natural+Waves+in+Extended+Viscoelastic+Plates+of+Variable+Thickness&btnG=
https://pubs.aip.org/aip/acp/article-abstract/2647/1/030002/2831262/Propagation-of-natural-waves-in-extended
https://doi.org/10.1088/1742-6596/1706/1/012125
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Seismic+Vibrations+of+Complex+Relief+of+the+Surface+of+the+Naryn+Canyon+%28On+the+Norin+River+in+Kyrgyzstan%29+during+Large-Scale+Underground+Explosions&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Seismic+Vibrations+of+Complex+Relief+of+the+Surface+of+the+Naryn+Canyon+%28On+the+Norin+River+in+Kyrgyzstan%29+during+Large-Scale+Underground+Explosions&btnG=
https://iopscience.iop.org/article/10.1088/1742-6596/1706/1/012125/meta
https://doi.org/10.14445/23488549/IJECE-V7I12P103
http://www.internationaljournalssrg.org/IJECE/paper-details?Id=369
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Natural+vibrations+of+spherical+inhomogeneity+in+a+viscoelastic+ous+cylindrical+medium&btnG=
https://www.elibrary.ru/item.asp?id=43243223
https://doi.org/10.4186/ej.2021.25.7.97
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Propagation+of+own+non+axisymmetric+waves+in+viscoelastic+three-layered+cylindrical+shells&btnG=
https://engj.org/index.php/ej/article/view/4358
https://doi.org/10.14445/23500301/IJAP-V6I3P112
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Biquaternionic+representation+of+harmonic+elementary+particles.+Periodic+system+of+atoms&btnG=
https://www.internationaljournalssrg.org/IJAP/paper-details?Id=96
https://doi.org/10.1051/e3sconf/202016414013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+instability+of+vibrations+of+thin-wall+composite+curvorine+viscoelastic+tubes+under+the+influence+of+pulse+pressure&btnG=
https://www.e3s-conferences.org/articles/e3sconf/abs/2020/24/e3sconf_tpacee2020_14013/e3sconf_tpacee2020_14013.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Propagation+of+Linear+Waves+in+Multilayered+Structural+%E2%80%93+In+Homogeneous+Cylindrical+Shells&btnG=
https://www.elibrary.ru/item.asp?id=45492827

