
International Journal of Engineering Trends and Technology Volume 71 Issue 8, 243-252, August 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I8P221 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Honeypot-Based Thread Detection using Machine

Learning Techniques

Diandra Amiruddin Firmansyah1, Amalia Zahra2

1,2Department of Computer Science, BINUS Graduate Program, Master of Computer Science, Bina Nusantara University,

Jakarta, Indonesia.

1Corresponding Author : diandra.firmansyah@binus.ac.id

Received: 23 May 2023 Revised: 28 June 2023 Accepted: 22 July 2023 Published: 15 August 2023

Abstract - This paper explores the application of machine learning techniques to honeypot-based thread detection in

cybersecurity. Honeypot is a decoy system designed to lure attackers and gather information about their methods and

objectives. Honeypot-based thread detection is a proactive approach to cybersecurity that can identify and prevent attacks

before they cause damage. However, the sheer volume of data generated by honeypots can be overwhelming for human

analysts. In this context, machine learning techniques can help automate the analysis of honeypot data and improve threat

detection accuracy. The performance is evaluated using real-world honeypot data. Based on the experiment results, the

Random Forest algorithm demonstrated superior performance compared to other algorithms, with an accuracy rate of

99.20% for detecting malware. The results show that machine learning can significantly enhance the effectiveness of

honeypot-based thread detection, enabling cybersecurity analysts to identify and respond to threats more quickly and

efficiently.

Keywords - Malware, Machine learning, Honeypot.

1. Introduction

Malicious software is now a significant risk to

computer systems. They have brought about casualties and

monetary losses. With the use of various methods, such as

obfuscation, malicious individuals enhance the amount of

malware[1].

Based on information published by Gdata, cyber

attackers unleashed nearly 135,000 fresh versions of their

harmful software, equivalent to more than 93 assault efforts

per minute. The attackers are relying on the incapacity of

antivirus programs to match the rapid pace and their

inability to recognize the newly created malware variants,

granting them unrestricted access to the network. Security

experts detected over 49 million distinct malware

applications in 2022, representing a surge of 107 percent,

more than double the number recorded in 2021[2].

Table 1. Latest malware trend

Malware Impact Increment

Mobile banking

Trojan

Fake updates, email,

smishing
60%

Cryptocurrency

Mining

Power drain,

Overheating, Excessive

Data Usage, Slow

80%

Ransomware
Encrypted data or pay

the ransom
60%

Cybersecurity threats are causing significant damage to

worldwide organizations and have increased

exponentially[3]. Cybercriminals use various tactics such as

malware, social engineering, and phishing to gain

unauthorized access to sensitive data shown in Table 1. To

minimize damage, such as in the data, initial prevention is

needed to anticipate damage, such as detect cyber-attacks.

Fig. 1 Exploiting sample vulnerabilities by file type

0

200

400

600

800

1000

2021 2022

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Diandra Amiruddin Firmansyah & Amalia Zahra / IJETT, 71(8), 243-252, 2023

244

According to statistics from VirusTotal, the PE file

format is the most submitted[4]. Based on the data obtained

from VirusTotal, the Portable Executable (PE) file format

has highest number of submissions, as shown in Figure 1.

There are many ways to detect cyber-attacks, such as

implementing security systems, log activity monitoring,

firewall, intrusion detection system, penetration testing,

honeypot, and machine learning. Overall, each technique of

detecting cyber-attacks has its own advantages and

disadvantages. Honeypots can be useful in detecting attacks

before they happen, while other techniques such as

firewalls, IDS, and machine learning can help detect attacks

that have already occurred or are in progress. The

appropriate detection technique depends on the system's

specific needs and characteristics that need to be protected.

Honeypots serve as fake systems designed to attract

threat actors, and they can be used to identify and evaluate

attacks while also gathering data on the techniques and tools

employed by the threat actor[5]. Machine learning is a

subfield of artificial intelligence that enables computers to

learn, adjust and adapt without explicit programming.

Combining a honeypot with machine learning[6] can help

identify and prevent cyber-attacks. Through the utilization

of data collected from honeypots, machine learning

algorithms can be trained to recognize patterns and

abnormalities in network traffic that may signify the

existence of an attack.

In recent times, there has been considerable interest in

applying honeypots and machine learning for threat

detection[7]. This technique has shown promise in detecting

emerging threats that conventional signature-based

detection systems may overlook.

Moreover, it can furnish immediate notification to

security teams to react promptly and prevent the attacks

from causing significant damage. A system for detecting

malware using machine learning has been introduced. It

utilizes the header of Portable Executable (PE) files to

extract features and determine whether the file is clean or

malicious. Additionally, it can detect zero-day malware in

the file.

Previous studies have revealed that the average

accuracy can be achieved up to 90%, with the evaluation

results indicating the highest level of efficiency[8]. The task

that will be conducted in this research is building a model

for malware detection using machine learning.

Based on the state-of-the-art malware research,

Random Forest, Decision Tree, and Support Vector

Machine will be built to choose parameters from the dataset

to improve better performance. Then the model will be

constructed to classify the malware within the dataset.

Finally, a machine learning model will be applied. This

paper will utilize the strengths and advantages of the models

mentioned above to enhance the performance of the

malware detection model.

The proposed model employs a static analysis approach

that involves four layers: data acquisition, preprocessing,

performance evaluation, and prediction. This model can

identify malware without the need to execute the executable

file[23].

The approach is based on supervised machine learning

techniques with binary classification to categorize the

dataset into either malicious or benign classes. The

performance of the proposed system is evaluated using

various metrics, including accuracy, F1-score, precision,

and recall. Based on the experimental results, the Random

Forest algorithm demonstrated superior performance

compared to other algorithms, achieving a 99.20% accuracy

rate in detecting malware.

2. Related Works
Research related to malware classification has been

developed using various combinations of algorithms with

various datasets. The reason behind this is mainly because

malicious code can often be designed in a manner that tricks

detection tools. It is essential to employ effective protective

measures to safeguard devices from the yearly surge of new

malware. It is necessary to adopt more advanced security

measures to protect data from potential harm caused by

unfamiliar and dangerous ransomware threats[10].

A signature, like a fingerprint, is a distinctive

characteristic or set of characteristics that uniquely

distinguishes an executable. Typically, after installing an

executable file with the belief that it is secure but contrary

to expectations, it poses a significant threat. This is how

malware infiltrates the system. Once on the screen, it

spreads out and conceals itself within various files, making

it challenging to detect. The aim is to obtain personal or

valuable information; it can establish a direct connection to

the operating system and initiate encryption[11].

Malware is one of the evolving dangers to information

security, according to the study[12]. Malware detection is

regarded as being beyond the capabilities of security

solutions like antivirus, firewalls, and signature-based IDS.

Recognizing new attack strategies, viruses, or worms

outside of signature-based security systems is challenging.

Research conducted in [24] examined the exfiltration of

private information by malicious software, with the goal of

presenting a methodology for classifying and identifying

malicious software to protect private information from

malware threats. They employed data mining and machine

learning classification methods by examining features based

on signatures and anomalies. The research results show an

accuracy of 98.6%.

In a different study, executable file types are used as the

main input source for static malware detection[14]. This

study focuses on malware detection and categorization. To

detect behavior-based malware effectively, machine

learning approaches need a dataset of malware with a

variety of properties. The contribution of this study lies in

the utilization of a minimal feature set for malware

Diandra Amiruddin Firmansyah & Amalia Zahra / IJETT, 71(8), 243-252, 2023

245

identification. This approach involves using features

determined based on the significance of rough sets,

combined with Ant Colony Optimization (ACO) as a

heuristic search technique. Malware can be discovered by

analyzing portable executable (PE) files. A benchmark

dataset for this work is a malware dataset called

Classification of Malwares Portable Executable (ClaMP),

containing integrated and raw features with an accuracy

result of 95.02% for raw and 90.55% for integrated.

The study focused on static malware threats and used a

behavioral-based detection approach[15]. This approach

commonly uses frequency-based graph mining algorithms

to extract unique patterns from a collection of malware

graphs. It frequently uses graphs to describe system

activities or behaviors. This paper proposes a new approach

for malware detection, which involves utilizing

compression-based mining on quantitative data flow graphs

to generate a highly accurate detection model. This

approach exceeds frequency-based detection models in

terms of detection success according to a test that focused

on a sizable and varied group of malwares. Using a

machine-learning-enabled honeypot is one approach for

detecting malware.

While machine learning can identify malware by

classifying samples, honeypots can be employed to catch

suspicious packets. The classification techniques employed

include Decision Tree and Support Vector Machine (SVM).

3. Research Methodology
The topic of this research is to classify malicious

software from the model that will be built with the dataset.

This research proposed machine learning models to classify

malware datasets. This research will be done in supervised

learning as Random Forest, Decision Tree, and Support

Vector Machine has already been labeled to train machine

learning models.

 This research begins by selecting the research topic and

conducting a comprehensive review of relevant literature.

Subsequently, the appropriate methodology and machine

learning model are chosen. The dataset is then prepared,

followed by data preprocessing and feature extraction. In the

subsequent phase of the research, the model is fine-tuned and

trained. Finally, after training all the models, they are

evaluated using various metrics, including confusion matrix

and F1-score. The experimental results are analyzed, and the

conclusions are presented in the paper, as shown in Figure 2.

Fig. 2 Research process stages

Diandra Amiruddin Firmansyah & Amalia Zahra / IJETT, 71(8), 243-252, 2023

246

Fig. 3 Data distribution

3.1. Preparing Dataset

In this research, the Classification of Malwares

Portable Executable (ClaMP) dataset will be utilized for

training and building the model. ClaMP [16] contains 7574

malware and 4989 benign. The model's training involved

using the Classification of Malware with PE headers

(ClaMP) dataset, sourced from the Github repository.

The dataset was split into two groups—the first group

comprised raw features [17], which consisted of 55 distinct

characteristics. The second group was made up of integrated

features, which included both derived and expanded

features. However, in this research, the dataset used will be

combined with malware data obtained from a Dionaea

honeypot [18] that has been gathered from January until

February 2023. The honeypot is installed in one of the

government institutions in Indonesia.

The distribution of the malware in the dataset is shown

the Figure 3. In this work, the data was obtained from a

honeypot installed in one of the ministries in Indonesia and

combined with an online data repository. The dataset

contains header features of Portable Executable (PE) files

and is categorized into benign and malicious classes. In the

legitimate attribute of the dataset, the benign class is

assigned a value of 0, while the malicious class is assigned

a value of 1[25]. The header features used are 33 PE header

features from a combination of data from an online

repository and data recorded on the honeypot. Table 2

provides a description of the PE header, such as key features

from PE header files and their corresponding descriptions.

Table 2. Portable executable header

Feature Name Description

CheckSum Only used for kernel driver/DLL mode and can be set to 0 for user executable/DLL mode.

Subsystem The subsystem used by the file, with follower values specified in the file.

ImageBase The first-bit address of the image file.

MajorimageVersion The major/ primary version number of the image.

MinorImageVersion Image minor version number.

SizeOfStackCommit Amount of memory used on the stack.

AddressOfEntryPoint RVA on entry point.

SectionAlignment The sequence of loading the section into memory.

FileAlignment The sequence of raw data sections in the image file.

SizeOfCode Size of the code section.

SizeOfInitializedData The size of the initialized data section.

NumberOfSections Size of section table.

BaseOfData Pointer when starting the data section.

BaseOfCode Pointer when starting the code section.

SizeOfUninitializedData Size of the uninitialized data section.

MajorOperatingSystemVersion Referring to the major version number of the operating system.

MinorOperatingSystemVersion Operating system minor version number.

SizeOfStackReserve The value of the space allocated for the stack.

SizeOfImage Image value.

MajorLinkerVersion Number version Major Linker.

MinorLinkerVersion Number version Minor Linker.

SizeOfHeapCommit The number of bytes required for the input heap.

SizeOfHeaders Header Size.

LoaderFlags Reserved.

MajorSubsystemVersion Major number version subsystem.

MinorSubsystemVersion Minor number version subsystem.

SizeOfHeapReserve Bytes received number by the heap.

e_cblp Bytes on the last page of the file.

e_cp Total number of pages that a file had.

e_cparhdr Size of the header in paragraphs.

e_maxalloc The maximum amount of additional allocation required.

e_sp Value from sp register.

e_lfanew Contain file address from exe header.

7574

4989

0

1000

2000

3000

4000

5000

6000

7000

8000

Malware Benign

F
re

q
u

en
cy

Class

Diandra Amiruddin Firmansyah & Amalia Zahra / IJETT, 71(8), 243-252, 2023

247

Preprocessing involves cleaning and filtering the data

or files used as a dataset so that only the relevant data is

processed further. The preprocessing is implemented by

extracting signatures from each malware sample. Each

malware sample will be identified by its MD5 hash [20] and

recorded in a .csv file. The signatures are necessary for

labeling in the next stage.

3.2. Feature Selection

The feature selection process involves choosing the

variables, attributes, or subsets of variables pertinent to

developing a model. To create sub-datasets, the method of

data splitting is employed, where the data is divided into two

or more parts. The dataset used for learning is known as data

training. The modeling of the machine learning algorithm is

done by applying supervised learning classification

methods, as shown in Figure 4.

Fig. 4 Data gathering mechanism

3.3. Classifier

Data training assists machine learning modeling based

on classification algorithms using separated data for training

purposes. At the initial stage, the dataset is split into testing

and training data, where X_train and y_train are variables

used to implement the data training. X_train contains the

Portable Executable (PE) features, while y_train is the class

label that will be utilized for training the model. The result

of the data training is saved in (.pkl) format and exported

into a model format. The model file is then saved in the

/model directory.

After completing the model training process using the

training data, the separated testing data will be saved and

used only for performance testing of the model. The testing

data is part of the dataset that has been separated in the data-

splitting phase and is used for evaluation after the model has

been constructed. Implementation of the testing data is

carried out by dividing the data into variables X_test and

y_test. The variable X_test contains Portable Executable

(PE) features, while y_test contains class labels.

3.4. Model

Only a portion of the data is used for training to build

a model, and this data is also used to evaluate the model's

performance. The dataset is split into two components:

training data and testing data. The variation value of the data

split is determined by the size of 90:10. Data splitting is

implemented by separating the feature class into the

variable y and other features into X. Then, each X and y is

divided into 4 variables, namely X_train, X_test, y_train,

and y_test.

3.5. Evaluation

The built model is tested to measure its performance.

The evaluation was carried out on cross-validation,

percentage split, and hyperparameters. In cross-validation,

the data used is based on the training data, while in

percentage split, the data used for evaluation is the testing

data. Four classification metrics are used to evaluate

accuracy, precision, recall, and f1-score[21]. In this study,

the Primary dataset contains malware samples from the

honeypot, and the Secondary data is the ClaMP dataset.

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

F1-Score = 2 x
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑇𝑃𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑇𝑃𝑅
 (4)

The accuracy is calculated by summing the number of

true positives (TP) and true negatives (TN) and then

dividing it by the total number. Equation 1 is utilized to

compute the accuracy. Equation 2 is employed to compute

precision. Precision represents the ratio of correctly

predicted results to the total predicted results. It measures

the relevance of the predicted results among all the

predicted instances.

Recall, also known as sensitivity, represents the

proportion of correctly predicted results to the actual results,

indicating the accuracy of predicting the actual results. The

formula in Equation 3 is utilized to calculate the recall. The

F-measure, also referred to as the F1-score, is the harmonic

means of precision and recall, as depicted in Equation 4. A

high F-measure value close to 1 indicates an ML model with

both high precision and recall, indicating its effectiveness

and accuracy.

Honeypot
Dionaea

Binaries

Sample
Malware

Pre-
process

Data
Preparation

Labeling

Feature
Extraction

Diandra Amiruddin Firmansyah & Amalia Zahra / IJETT, 71(8), 243-252, 2023

248

4. Result and Discussion
4.1. Preparing Dataset

The pefile library is used to read the header of the

portable executable file so that feature extraction can be

performed on malware samples[22]. The scikit-learn library

splits the percentage of training and validation samples. The

panda's library is used for data analysis and manipulation.

From the malware obtained through the Dionaea Honeypot,

there are at least 2169 file samples consisting of portable.

The malware samples used in this study are portable

executable types, including file extensions such as .exe,

infected files in the .dll library extension, and .sys drivers.

The dataset is examined for any unavailable values.

Malware samples will be labeled by extracting signatures

from each malware sample. MD5 hash identification is

performed from the malware samples, as shown in Figure 5,

and will be saved in .csv format. After obtaining the MD5

hash, the next process is to scan the hash using VirusTotal

to ensure that the hash is malware or not.

4.2. Feature Selection

The feature selection phase involves the selection of

relevant features for machine learning. In this stage, less

relevant features are eliminated from the dataset to enhance

the prediction performance and increase the efficiency of

the proposed model. In this stage, the method used for

feature selection is by using a tool called a wrapper. In each

feature, an evaluation is performed using the Random Forest

and Decision Tree algorithm to indicate which features

impact accuracy most. The result from feature selection will

apply to the model and improve the accuracy, as shown the

Figure 6.

Fig. 5. MD5 hash from portable executable file

(a) Measuring feature importance using random forest

(b) Measuring feature importance using decision tree

Fig. 6 Feature importance from the dataset

0

0.01

0.02

0.03

0.04

0.05

Im
p

o
rt

a
n

ce

Mean Score Decrease

0

0.005

0.01

0.015

0.02

Im
p

o
rt

a
n

ce

Mean Score Decrease

Diandra Amiruddin Firmansyah & Amalia Zahra / IJETT, 71(8), 243-252, 2023

249

Table 3. Importance measure from each parameter

(Decision Tree) (Random Forest)

Feature Importance Stdev Feature Importance Stdev)

CheckSum 0.2285 0.0035 MajorImageVersion 0.0499 0.0034

AddressOfEntryPoint 0.2080 0.0042 e_lfanew 0.0215 0.0009

SizeOfInitializedData 0.0993 0.0016 CheckSum 0.0187 0.0003

MinorLinkerVersion 0.0963 0.0013 SizeOfInitializedData 0.0100 0.0016

e_lfanew 0.0811 0.0021 MinorLinkerVersion 0.0077 0.0006

MajorLinkerVersion 0.0750 0.0022 AddressOfEntryPoint 0.0069 0.0012

SizeOfCode 0.0462 0.0014 NumberOfSections 0.0043 0.0002

MajorImageVersion 0.0399 0.0018 MinorSubsystemVersion 0.0042 0.0004

SizeOfStackReserve 0.0392 0.0008 MajorLinkerVersion 0.0017 0.0004

MajorSubsystemVersion 0.0368 0.0025 MajorSubsystemVersion 0.0012 0.0004

BaseOfData 0.0285 0.0012 SizeOfCode 0.0010 0.0002

NumberOfSections 0.0273 0.0027 BaseOfData 0.0009 0.0003

MinorSubsystemVersion 0.0195 0.0015 LoaderFlags 0.0006 0.0003

BaseOfCode 0.0172 0.0013 MajorOperatingSystemVersion 0.0004 0.0001

SizeOfHeapReserve 0.0118 0.0015 MinorOperatingSystemVersion 0.0003 0.0002

MinorOperatingSystemVersion 0.0111 0.00047 MinorImageVersion 0.0002 0.0000

MajorOperatingSystemVersion 0.0051 0.0005 SizeOfStackCommit 0.0002 0

SizeOfStackCommit 0.0013 0.0001 BaseOfCode 0.0001 0.00015

MinorImageVersion 0.0012 0.0001 SizeOfStackReserve 0.0001 0.00015

SizeOfUninitializedData 0.0009 0.0002 SizeOfHeapReserve 0.0000 0.00020

e_sp 0.0002 0 SizeOfUninitializedData 0.0000 0.00008

The measurement in feature selection is used to know

how parameters affect the performance, as shown in Table

3. From the measurement, classification will be performed

using only the intersection at the top 5 influential parameters

algorithm used for feature selection. Feature importance

techniques allow us to focus on the data's most relevant and

informative aspects, improve model interpretability,

address noise and collinearity issues, and enhance

computational efficiency, ultimately leading to better model

performance.

4.3. Classifier

Results from the classifier indicate a comparison of

classifiers using the combined ClaMP + Honeypot dataset

and the ClaMP dataset with Decision Tree; both datasets

show similar performance, with an accuracy of around

97.9% and an F1-score of 98.2%. The precision, recall, and

F1-score are consistent across the two datasets.

Random Forest shows ClaMP + Honeypot dataset

yields a slightly higher accuracy of 97.7% compared to

98.3% for the ClaMP dataset only. The ClaMP dataset

exhibits slightly higher precision, recall, and F1-score

values. The Support Vector Machine classifier is lower

compared to the other two classifiers. Both datasets show

similar results, with an accuracy of around 83.7% - 84.3%

and an F1-score of 86.1% - 87.9%. The precision and recall

scores are also lower than the other classifiers, as shown in

Table 4.

In conclusion, the Decision Tree and Random Forest

classifiers demonstrate consistent and high performance

across both datasets. The Support Vector Machine classifier

performs relatively lower accuracy, precision, recall, and

F1-score. Therefore, the Decision Tree and Random Forest

classifiers are recommended for malware detection using

the given datasets.

4.4. Model

The Scikit-learn library from Python is used to

conduct the analysis based on the experiment. Machine

learning is used to detect malware on the Portable

Executable (PE) dataset. Models' performance is assessed

on preprocessed data, divided into testing and training

subsets. Various metrics such as model accuracy, recall,

precision, and F1-score are computed for each classifier.

Diandra Amiruddin Firmansyah & Amalia Zahra / IJETT, 71(8), 243-252, 2023

250

Table 4. Comparison machine learning technique

Algorithm Matrix
ClaMP +

Honeypot
ClaMP

Decision

Tree

Accuracy 97.9% 98.2%

Precision 98.6% 98.3%

Recall 97.9% 98.2%

F1-score 98.2% 98.3%

Random

Forest

Accuracy 97.7% 98.3%

Precision 97.9% 98.2%

Recall 98.4% 98.6%

F1-score 98.1% 98.4%

Support Vector

Machine

Accuracy 87.1% 90.3%

Precision 90.1% 91.1%

Recall 95.2% 96%

F1-score 85.6% 86.7%

Table 5. Experiment result using parameters reduction

Algorithm Matrix
ClaMP +

Honeypot
ClaMP

Decision Tree

Accuracy 98.9% 99.2%

Precision 99.2% 98.8%

Recall 99.1% 99.6%

F1-score 99.1% 99.2%

Random Forest

Accuracy 99.2% 99.4%

Precision 99.1% 99.2%

Recall 99.6% 99.6%

F1-score 99.36% 99.4%

Support Vector

Machine

Accuracy 87.1% 90.3%

Precision 90.1% 91.1%

Recall 95.2% 96%

F1-score 85.6% 86.7%

Table 6. Gap result from parameters reduction

Algorithm Matrix
ClaMP +

Honeypot
ClaMP

Decision Tree

Accuracy 0.1% 0.1%

Precision 0.6% -0.5%

Recall 1.2% 1.4%

F1-score 1.1% 0.9%

Random Forest

Accuracy 1.5% 1.1%

Precision 0.2% 0%

Recall 0.8% 0.8%

F1-score 1.26% 1%

Support Vector

Machine

Accuracy 0% 0%

Precision 0% 0%

Recall 0% 0%

F1-score 0% 0%

The experimental results for all classifiers are presented

in Table 5. The decision tree classifier achieves an accuracy

of 97.9%, recall of 98.6%, precision of 97.9%, and an F1-

score of 98.2%. In comparison, the Random Forest classifier

achieves an accuracy of 97.7%, recall of 98.4%, precision

of 97.9%, and an F1-score of 98.1%. The Support Vector

Machine (SVM) classifier achieves an accuracy of 83.7%,

precision of 81.4%, recall of 95.5%, and an F1-score of

87.9%.

4.5. Evaluation

Results from the experiment and comparison with other

machine learning techniques are provided in Table 4, which

presents the model's performance. Given that the dataset has

already been split into training and testing datasets, the

model is constructed using the training data. The validation

dataset is created by randomly selecting 10% of the training

dataset to monitor the learning progress. Based on the

evaluation results presented in Table 4, the Decision Tree

and Random Forest algorithms performed better compared

to the Support Vector Machine algorithm.

Both Decision Tree and Random Forest achieved high

accuracy, precision, recall, and F1-score values, indicating

their effectiveness in the classification task. On the other

hand, the Support Vector Machine algorithm had lower

accuracy, precision, and F1-score values, suggesting that it

may not be as suitable for this specific classification

problem.

The metrics presented in Table 5 provide a

comprehensive analysis of the predictions made by the

proposed model on the test dataset, considering five different

parameters. These metrics offer insights into the

performance and accuracy of the model in predicting each

label accurately, and metrics, as shown in Table 6, perform

gap results between models that use parameter reduction and

models without parameter reduction. Decision Tree updated

metrics show an improvement in accuracy, precision, recall,

and F1-score compared to the previous data, indicating better

performance. Random Forest updated metrics for Random

Forest also demonstrate improvement across all performance

measures. The utilization of these five parameters leads to a

higher accuracy percentage compared to previous studies.

These parameters are obtained through feature selection

techniques, enabling the measurement of the dataset's feature

importance.

5. Conclusion
The proposed model in this study presents a static

analysis approach for malware detection, utilizing four

layers: data acquisition, preprocessing, prediction, and

performance evaluation.

The model demonstrates the ability to detect malware

without executing the executable file, which enhances

security and reduces potential risks. By employing a

supervised machine learning approach with binary

classification, the model effectively categorizes the dataset

into either malicious or benign classes.

Diandra Amiruddin Firmansyah & Amalia Zahra / IJETT, 71(8), 243-252, 2023

251

Various metrics such as F1-score, precision, recall, and

accuracy are utilized to evaluate the proposed system's

performance. The experimental results indicate that the

Random Forest algorithm performs exceptionally well,

outperforming other algorithms in terms of accuracy. The

Random Forest algorithm achieves an impressive 99.20%

accuracy rate in detecting malware, showcasing its

effectiveness in identifying malicious samples. These

findings suggest that the proposed model can serve as a

reliable solution for malware detection, providing high

accuracy and robust performance. It offers a non-execution-

based approach, making it suitable for real-time detection

and ensuring the security of systems and networks.

Acknowledgement
This research paper was conducted as part of the thesis

research for the graduate program at Bina Nusantara

University. The authors would like to express their sincere

gratitude and appreciation to all those who have contributed

to the completion of this paper. They hope this work will

serve as a foundation for future research and projects,

aiming to achieve further advancements and discoveries.

References
[1] Hassan Naderi et al., “Malware Signature Generation Using Locality Sensitive Hashing,” Communications in Computer and

Information Science, pp. 115–124, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[2] Attacks Every Few Seconds: Around 100 Malware Variants Per Minute Threaten IT Security, 2023. [Online]. Available:

https://presse.gdata.de/news--attacks-every-few-seconds-around-100-malware-variants-per-minute-threaten-it-

security?id=174381&menueid=28982&l=english

[3] Vasileios Kouliaridis et al., “A Survey on Mobile Malware Detection Techniques,” IEICE Transactions on Information and Systems,

vol. E103.D, no. 2, pp. 204–211, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[4] Gerardo Fernandez, Lesson Learned from 2022, 2023. [Online]. Available: https://blog.virustotal.com/2023/01/lessons-learned-from-

2022.html

[5] Leyi Shi et al., “Dynamic Distributed Honeypot Based on Blockchain,” IEEE Access, vol. 7, pp. 72234–72246, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[6] Seungjin Lee et al., “Classification of Botnet Attacks in IoT Smart Factory using Honeypot Combined with Machine Learning,”

PeerJ Computer Science, vol. 7, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Cheng Huang et al., “Automatic Identification of Honeypot Server Using Machine Learning Techniques,” Security and

Communication Networks, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[8] Rejwana Islam et al., “Android Malware Classification using Optimum Feature Selection and Ensemble Machine Learning,” Internet

of Things and Cyber-Physical Systems, vol. 3, pp. 100–111, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[9] Hemashu Kamboj, and Gurpreet Singh, “Fake Access Point Detection and Prevention Techniques,” International Journal of P2P

Network Trends and Technology, vol. 3, no. 2, pp. 34-36, 2013. [Google Scholar] [Publisher Link]

[10] Md. Haris Uddin Sharif et al., “Comparative Study of Prognosis of Malware with PE Headers Based Machine Leaning Techniques,”

2023 International Conference on Smart Computing and Application, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Muhammad Shairoze Malik, “The Machine Learning in Malware Detection,” International Journal for Electronic Crime

Investigation, vol. 5, no. 3, 2021. [CrossRef] [Publisher Link]

[12] Iik Muhamad Malik Matin, and Budi Rahardjo, “Malware Detection Using Honeypot and Machine Learning,” 2019 7th International

Conference on Cyber and IT Service Management, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[13] Sonali Tidke, and Pravin Karde, “Design Methodology of Botnet Attack for Smartphone,” SSRG International Journal of Computer

Science and Engineering, vol. 2, no. 5, pp. 11-15, 2015. [CrossRef] [Publisher Link]

[14] Ravi Kiran Varma Penmatsa, Akhila Kalidindi, and S. Kumar Reddy Mallidi, “Feature Reduction and Optimization of Malware

Detection System Using Ant Colony Optimization and Rough Sets,” International Journal of Information Security and Privacy, vol.

14, no. 3, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Tobias Wuchner et al., “Leveraging Compression-Based Graph Mining for Behavior-Based Malware Detection,” IEEE Transactions

Dependable Secure Computing, vol. 16, no. 1, pp. 99–112, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[16] Abrar Hussain et al., “Malware Detection Using Machine Learning Algorithms for Windows Platform,” Lecture Notes in Networks

and Systems, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[17] Ajit Kumar, K.S. Kuppusamy, and G. Aghila, “A Learning Model to Detect Maliciousness of Portable Executable using Integrated

Feature Set,” Journal of King Saud University - Computer and Information Sciences, vol. 31, no. 2, pp. 252–265, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[18] Ryandy Djap et al., “XB-Pot: Revealing Honeypot-based Attacker’s Behaviors,” 2021 9th International Conference on Information

and Communication Technology, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[19] K. Iswarya, “Security Issues Associated With Big Data in Cloud Computing,” SSRG International Journal of Computer Science and

Engineering, vol. 1, no. 8, pp. 1-5, 2014. [CrossRef] [Publisher Link]

[20] Daniel Gibert, Carles Mateu, and Jordi Planes, “The Rise of Machine Learning for Detection and Classification of Malware: Research

Developments, Trends and Challenges,” Journal of Network and Computer Applications, vol. 153, p. 102526, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1007/978-981-13-7561-3_9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+Signature+Generation+Using+Locality+Sensitive+Hashing&btnG=
https://link.springer.com/chapter/10.1007/978-981-13-7561-3_9#citeas
https://presse.gdata.de/news--attacks-every-few-seconds-around-100-malware-variants-per-minute-threaten-it-security?id=174381&menueid=28982&l=english
https://presse.gdata.de/news--attacks-every-few-seconds-around-100-malware-variants-per-minute-threaten-it-security?id=174381&menueid=28982&l=english
https://doi.org/10.1587/transinf.2019INI0003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Mobile+Malware+Detection+Techniques&btnG=
https://www.jstage.jst.go.jp/article/transinf/E103.D/2/E103.D_2019INI0003/_article
https://blog.virustotal.com/2023/01/lessons-learned-from-2022.html
https://blog.virustotal.com/2023/01/lessons-learned-from-2022.html
https://doi.org/10.1109/ACCESS.2019.2920239
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+Distributed+Honeypot+Based+on+Blockchain&btnG=
https://ieeexplore.ieee.org/abstract/document/8727529
http://dx.doi.org/10.7717/peerj-cs.350
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+of+botnet+attacks+in+IoT+smart+factory+using+honeypot+combined+with+machine+learning&btnG=
https://peerj.com/articles/cs-350.pdf
https://doi.org/10.1155/2019/2627608
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+Identification+of+Honeypot+Server+Using+Machine+Learning+Techniques&btnG=
https://www.hindawi.com/journals/scn/2019/2627608/
https://doi.org/10.1016/j.iotcps.2023.03.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+malware+classification+using+optimum+feature+selection+and+ensemble+machine+learning&btnG=
https://www.sciencedirect.com/science/article/pii/S2667345223000202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fake+Access+Point+Detection+and+Prevention+Techniques&btnG=
https://ijpttjournal.org/archives/ijptt-v3i3p407
https://doi.org/10.1109/ICSCA57840.2023.10087532
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+Study+of+Prognosis+of+Malware+with+PE+Headers+Based+Machine+Leaning+Techniques&btnG=
https://ieeexplore.ieee.org/abstract/document/10087532
https://doi.org/10.54692/ijeci.2022.050387
http://ijeci.lgu.edu.pk/index.php/ijeci/article/view/87
https://doi.org/10.1109/CITSM47753.2019.8965419
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+Detection+Using+Honeypot+and+Machine+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/8965419
https://doi.org/10.14445/23488387/IJCSE-V2I5P138
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=67
https://doi.org/10.4018/IJISP.2020070106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+Reduction+and+Optimization+of+Malware+Detection+System+Using+Ant+Colony+Optimization+and+Rough+Sets&btnG=
https://www.igi-global.com/article/feature-reduction-and-optimization-of-malware-detection-system-using-ant-colony-optimization-and-rough-sets/256570
https://doi.org/10.1109/TDSC.2017.2675881
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Leveraging+Compression-Based+Graph+Mining+for+Behavior-Based+Malware+Detection&btnG=
https://ieeexplore.ieee.org/abstract/document/7867799
https://doi.org/10.1007/978-981-16-7618-5_53
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+Detection+Using+Machine+Learning+Algorithms+for+Windows+Platform&btnG=
https://link.springer.com/chapter/10.1007/978-981-16-7618-5_53#citeas
https://doi.org/10.1016/j.jksuci.2017.01.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+learning+model+to+detect+maliciousness+of+portable+executable+using+integrated+feature+set&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157817300149
https://doi.org/10.1109/ICoICT52021.2021.9527422
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=XB-Pot%3A+Revealing+Honeypot-based+Attacker%E2%80%99s+Behaviors&btnG=
https://ieeexplore.ieee.org/abstract/document/9527422
https://doi.org/10.14445/23488387/IJCSE-V1I8P101
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=22
https://doi.org/10.1016/j.jnca.2019.102526
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+rise+of+machine+learning+for+detection+and+classification+of+malware%3A+Research+developments%2C+trends+and+challenges&btnG=
https://www.sciencedirect.com/science/article/pii/S1084804519303868

Diandra Amiruddin Firmansyah & Amalia Zahra / IJETT, 71(8), 243-252, 2023

252

[21] Davide Chicco, and Giuseppe Jurman, “The Advantages of the Matthews Correlation Coefficient (MCC) Over F1 Score and Accuracy

in Binary Classification Evaluation,” BMC Genomics, vol. 21, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[22] Muhammad Ijaz, Muhammad Hanif Durad, and Maliha Ismail, “Static and Dynamic Malware Analysis Using Machine Learning,”

2019 16th International Bhurban Conference on Applied Sciences and Technology, 2019. [CrossRef] [Google Scholar] [Publisher

Link]

[23] Syed Khurram Jah Rizvi et al., “PROUD-MAL: Static Analysis-based Progressive Framework for Deep Unsupervised Malware

Classification of Windows Portable Executable,” Complex & Intelligent Systems, vol. 8, pp. 673–685, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[24] Mozammel Chowdhury, Azizur Rahman, and Rafiqul Islam, “Malware Analysis and Detection Using Data Mining and Machine

Learning Classification,” Advances in Intelligent Systems and Computing, pp. 266–274, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[25] Akram M. Radwan, “Machine Learning Techniques to Detect Maliciousness of Portable Executable Files,” 2019 International

Conference on Promising Electronic Technologies, 2019. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1186/s12864-019-6413-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+advantages+of+the+Matthews+correlation+coefficient+%28MCC%29+over+F1+score+and+accuracy+in+binary+classification+evaluation&btnG=
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-7?trk=public_post_comment-text#citeas
https://doi.org/10.1109/IBCAST.2019.8667136
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Static+and+Dynamic+Malware+Analysis+Using+Machine+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/8667136
https://ieeexplore.ieee.org/abstract/document/8667136
https://doi.org/10.1007/s40747-021-00560-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PROUD-MAL%3A+static+analysis-based+progressive+framework+for+deep+unsupervised+malware+classification+of+windows+portable+executable&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PROUD-MAL%3A+static+analysis-based+progressive+framework+for+deep+unsupervised+malware+classification+of+windows+portable+executable&btnG=
https://link.springer.com/article/10.1007/s40747-021-00560-1#citeas
https://doi.org/10.1007/978-3-319-67071-3_33
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+Analysis+and+Detection+Using+Data+Mining+and+Machine+Learning+Classification&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-67071-3_33#citeas
https://doi.org/10.1109/ICPET.2019.00023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+Techniques+to+Detect+Maliciousness+of+Portable+Executable+Files&btnG=
https://ieeexplore.ieee.org/abstract/document/8925324

