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Abstract - This paper explores the application of machine learning techniques to honeypot-based thread detection in 

cybersecurity. Honeypot is a decoy system designed to lure attackers and gather information about their methods and 

objectives. Honeypot-based thread detection is a proactive approach to cybersecurity that can identify and prevent attacks 

before they cause damage. However, the sheer volume of data generated by honeypots can be overwhelming for human 

analysts. In this context, machine learning techniques can help automate the analysis of honeypot data and improve threat 

detection accuracy. The performance is evaluated using real-world honeypot data. Based on the experiment results, the 

Random Forest algorithm demonstrated superior performance compared to other algorithms, with an accuracy rate of 

99.20% for detecting malware. The results show that machine learning can significantly enhance the effectiveness of 

honeypot-based thread detection, enabling cybersecurity analysts to identify and respond to threats more quickly and 

efficiently. 
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1. Introduction 

Malicious software is now a significant risk to 

computer systems. They have brought about casualties and 

monetary losses. With the use of various methods, such as 

obfuscation, malicious individuals enhance the amount of 

malware[1].  

Based on information published by Gdata, cyber 

attackers unleashed nearly 135,000 fresh versions of their 

harmful software, equivalent to more than 93 assault efforts 

per minute. The attackers are relying on the incapacity of 

antivirus programs to match the rapid pace and their 

inability to recognize the newly created malware variants, 

granting them unrestricted access to the network. Security 

experts detected over 49 million distinct malware 

applications in 2022, representing a surge of 107 percent, 

more than double the number recorded in 2021[2]. 

Table 1. Latest malware trend 

Malware Impact Increment 

Mobile banking 

Trojan 

Fake updates, email, 

smishing 
60% 

Cryptocurrency 

Mining 

Power drain, 

Overheating, Excessive 

Data Usage, Slow 

80% 

Ransomware 
Encrypted data or pay 

the ransom 
60% 

 

Cybersecurity threats are causing significant damage to 

worldwide organizations and have increased 

exponentially[3]. Cybercriminals use various tactics such as 

malware, social engineering, and phishing to gain 

unauthorized access to sensitive data shown in Table 1. To 

minimize damage, such as in the data, initial prevention is 

needed to anticipate damage, such as detect cyber-attacks. 

 
Fig. 1 Exploiting sample vulnerabilities by file type 
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According to statistics from VirusTotal, the PE file 

format is the most submitted[4]. Based on the data obtained 

from VirusTotal, the Portable Executable (PE) file format 

has highest number of submissions, as shown in Figure 1. 

There are many ways to detect cyber-attacks, such as 

implementing security systems, log activity monitoring, 

firewall, intrusion detection system, penetration testing, 

honeypot, and machine learning. Overall, each technique of 

detecting cyber-attacks has its own advantages and 

disadvantages. Honeypots can be useful in detecting attacks 

before they happen, while other techniques such as 

firewalls, IDS, and machine learning can help detect attacks 

that have already occurred or are in progress. The 

appropriate detection technique depends on the system's 

specific needs and characteristics that need to be protected. 

 

Honeypots serve as fake systems designed to attract 

threat actors, and they can be used to identify and evaluate 

attacks while also gathering data on the techniques and tools 

employed by the threat actor[5]. Machine learning is a 

subfield of artificial intelligence that enables computers to 

learn, adjust and adapt without explicit programming. 

Combining a honeypot with machine learning[6] can help 

identify and prevent cyber-attacks. Through the utilization 

of data collected from honeypots, machine learning 

algorithms can be trained to recognize patterns and 

abnormalities in network traffic that may signify the 

existence of an attack. 

 

In recent times, there has been considerable interest in 

applying honeypots and machine learning for threat 

detection[7]. This technique has shown promise in detecting 

emerging threats that conventional signature-based 

detection systems may overlook.  

Moreover, it can furnish immediate notification to 

security teams to react promptly and prevent the attacks 

from causing significant damage. A system for detecting 

malware using machine learning has been introduced. It 

utilizes the header of Portable Executable (PE) files to 

extract features and determine whether the file is clean or 

malicious. Additionally, it can detect zero-day malware in 

the file. 

 

Previous studies have revealed that the average 

accuracy can be achieved up to 90%, with the evaluation 

results indicating the highest level of efficiency[8]. The task 

that will be conducted in this research is building a model 

for malware detection using machine learning.  

Based on the state-of-the-art malware research, 

Random Forest, Decision Tree, and Support Vector 

Machine will be built to choose parameters from the dataset 

to improve better performance. Then the model will be 

constructed to classify the malware within the dataset. 

Finally, a machine learning model will be applied. This 

paper will utilize the strengths and advantages of the models 

mentioned above to enhance the performance of the 

malware detection model. 

The proposed model employs a static analysis approach 

that involves four layers: data acquisition, preprocessing, 

performance evaluation, and prediction. This model can 

identify malware without the need to execute the executable 

file[23].  

The approach is based on supervised machine learning 

techniques with binary classification to categorize the 

dataset into either malicious or benign classes. The 

performance of the proposed system is evaluated using 

various metrics, including accuracy, F1-score, precision, 

and recall. Based on the experimental results, the Random 

Forest algorithm demonstrated superior performance 

compared to other algorithms, achieving a 99.20% accuracy 

rate in detecting malware. 

2. Related Works 
Research related to malware classification has been 

developed using various combinations of algorithms with 

various datasets. The reason behind this is mainly because 

malicious code can often be designed in a manner that tricks 

detection tools. It is essential to employ effective protective 

measures to safeguard devices from the yearly surge of new 

malware. It is necessary to adopt more advanced security 

measures to protect data from potential harm caused by 

unfamiliar and dangerous ransomware threats[10]. 

 

A signature, like a fingerprint, is a distinctive 

characteristic or set of characteristics that uniquely 

distinguishes an executable. Typically, after installing an 

executable file with the belief that it is secure but contrary 

to expectations, it poses a significant threat. This is how 

malware infiltrates the system. Once on the screen, it 

spreads out and conceals itself within various files, making 

it challenging to detect. The aim is to obtain personal or 

valuable information; it can establish a direct connection to 

the operating system and initiate encryption[11]. 

 

Malware is one of the evolving dangers to information 

security, according to the study[12]. Malware detection is 

regarded as being beyond the capabilities of security 

solutions like antivirus, firewalls, and signature-based IDS. 

Recognizing new attack strategies, viruses, or worms 

outside of signature-based security systems is challenging. 

 

Research conducted in [24] examined the exfiltration of 

private information by malicious software, with the goal of 

presenting a methodology for classifying and identifying 

malicious software to protect private information from 

malware threats. They employed data mining and machine 

learning classification methods by examining features based 

on signatures and anomalies. The research results show an 

accuracy of 98.6%. 

 

In a different study, executable file types are used as the 

main input source for static malware detection[14]. This 

study focuses on malware detection and categorization. To 

detect behavior-based malware effectively, machine 

learning approaches need a dataset of malware with a 

variety of properties. The contribution of this study lies in 

the utilization of a minimal feature set for malware 



Diandra Amiruddin Firmansyah & Amalia Zahra  / IJETT, 71(8), 243-252, 2023 

 

 

245 

identification. This approach involves using features 

determined based on the significance of rough sets, 

combined with Ant Colony Optimization (ACO) as a 

heuristic search technique. Malware can be discovered by 

analyzing portable executable (PE) files. A benchmark 

dataset for this work is a malware dataset called 

Classification of Malwares Portable Executable (ClaMP), 

containing integrated and raw features with an accuracy 

result of 95.02% for raw and 90.55% for integrated. 

The study focused on static malware threats and used a 

behavioral-based detection approach[15]. This approach 

commonly uses frequency-based graph mining algorithms 

to extract unique patterns from a collection of malware 

graphs. It frequently uses graphs to describe system 

activities or behaviors. This paper proposes a new approach 

for malware detection, which involves utilizing 

compression-based mining on quantitative data flow graphs 

to generate a highly accurate detection model. This 

approach exceeds frequency-based detection models in 

terms of detection success according to a test that focused 

on a sizable and varied group of malwares. Using a 

machine-learning-enabled honeypot is one approach for 

detecting malware.  

While machine learning can identify malware by 

classifying samples, honeypots can be employed to catch 

suspicious packets. The classification techniques employed 

include Decision Tree and Support Vector Machine (SVM). 

3. Research Methodology 
The topic of this research is to classify malicious 

software from the model that will be built with the dataset. 

This research proposed machine learning models to classify 

malware datasets. This research will be done in supervised 

learning as Random Forest, Decision Tree, and Support 

Vector Machine has already been labeled to train machine 

learning models. 

 This research begins by selecting the research topic and 

conducting a comprehensive review of relevant literature. 

Subsequently, the appropriate methodology and machine 

learning model are chosen. The dataset is then prepared, 

followed by data preprocessing and feature extraction. In the 

subsequent phase of the research, the model is fine-tuned and 

trained. Finally, after training all the models, they are 

evaluated using various metrics, including confusion matrix 

and F1-score. The experimental results are analyzed, and the 

conclusions are presented in the paper, as shown in Figure 2. 

 
Fig. 2 Research process stages 
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Fig. 3 Data distribution 

3.1. Preparing Dataset 

In this research, the Classification of Malwares 

Portable Executable (ClaMP) dataset will be utilized for 

training and building the model. ClaMP [16] contains 7574 

malware and 4989 benign. The model's training involved 

using the Classification of Malware with PE headers 

(ClaMP) dataset, sourced from the Github repository.  

The dataset was split into two groups—the first group 

comprised raw features [17], which consisted of 55 distinct 

characteristics. The second group was made up of integrated 

features, which included both derived and expanded 

features. However, in this research, the dataset used will be 

combined with malware data obtained from a Dionaea 

honeypot [18] that has been gathered from January until 

February 2023. The honeypot is installed in one of the 

government institutions in Indonesia. 

The distribution of the malware in the dataset is shown 

the Figure 3. In this work, the data was obtained from a 

honeypot installed in one of the ministries in Indonesia and 

combined with an online data repository. The dataset 

contains header features of Portable Executable (PE) files 

and is categorized into benign and malicious classes. In the 

legitimate attribute of the dataset, the benign class is 

assigned a value of 0, while the malicious class is assigned 

a value of 1[25]. The header features used are 33 PE header 

features from a combination of data from an online 

repository and data recorded on the honeypot. Table 2 

provides a description of the PE header, such as key features 

from PE header files and their corresponding descriptions. 

Table 2. Portable executable header 

Feature Name Description 

CheckSum Only used for kernel driver/DLL mode and can be set to 0 for user executable/DLL mode. 

Subsystem The subsystem used by the file, with follower values specified in the file. 

ImageBase The first-bit address of the image file. 

MajorimageVersion                                                                  The major/ primary version number of the image. 

MinorImageVersion Image minor version number. 

SizeOfStackCommit Amount of memory used on the stack. 

AddressOfEntryPoint RVA on entry point. 

SectionAlignment The sequence of loading the section into memory. 

FileAlignment The sequence of raw data sections in the image file. 

SizeOfCode Size of the code section. 

SizeOfInitializedData The size of the initialized data section. 

NumberOfSections Size of section table. 

BaseOfData Pointer when starting the data section. 

BaseOfCode Pointer when starting the code section. 

SizeOfUninitializedData Size of the uninitialized data section. 

MajorOperatingSystemVersion Referring to the major version number of the operating system. 

MinorOperatingSystemVersion Operating system minor version number. 

SizeOfStackReserve The value of the space allocated for the stack. 

SizeOfImage Image value. 

MajorLinkerVersion Number version Major Linker. 

MinorLinkerVersion Number version Minor Linker. 

SizeOfHeapCommit The number of bytes required for the input heap. 

SizeOfHeaders Header Size. 

LoaderFlags Reserved. 

MajorSubsystemVersion Major number version subsystem. 

MinorSubsystemVersion Minor number version subsystem. 

SizeOfHeapReserve Bytes received number by the heap. 

e_cblp Bytes on the last page of the file. 

e_cp Total number of pages that a file had. 

e_cparhdr Size of the header in paragraphs. 

e_maxalloc The maximum amount of additional allocation required. 

e_sp Value from sp register. 

e_lfanew Contain file address from exe header. 
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Preprocessing involves cleaning and filtering the data 

or files used as a dataset so that only the relevant data is 

processed further. The preprocessing is implemented by 

extracting signatures from each malware sample. Each 

malware sample will be identified by its MD5 hash [20] and 

recorded in a .csv file. The signatures are necessary for 

labeling in the next stage. 

 

3.2. Feature Selection 

The feature selection process involves choosing the 

variables, attributes, or subsets of variables pertinent to 

developing a model. To create sub-datasets, the method of 

data splitting is employed, where the data is divided into two 

or more parts. The dataset used for learning is known as data 

training. The modeling of the machine learning algorithm is 

done by applying supervised learning classification 

methods, as shown in Figure 4. 

 
Fig. 4 Data gathering mechanism 

3.3. Classifier 

Data training assists machine learning modeling based 

on classification algorithms using separated data for training 

purposes. At the initial stage, the dataset is split into testing 

and training data, where X_train and y_train are variables 

used to implement the data training. X_train contains the 

Portable Executable (PE) features, while y_train is the class 

label that will be utilized for training the model. The result 

of the data training is saved in (.pkl) format and exported 

into a model format. The model file is then saved in the 

/model directory. 

After completing the model training process using the 

training data, the separated testing data will be saved and 

used only for performance testing of the model. The testing 

data is part of the dataset that has been separated in the data-

splitting phase and is used for evaluation after the model has 

been constructed. Implementation of the testing data is 

carried out by dividing the data into variables X_test and 

y_test. The variable X_test contains Portable Executable 

(PE) features, while y_test contains class labels. 

 

3.4. Model 

Only a portion of the data is used for training to build 

a model, and this data is also used to evaluate the model's 

performance. The dataset is split into two components: 

training data and testing data. The variation value of the data 

split is determined by the size of 90:10. Data splitting is 

implemented by separating the feature class into the 

variable y and other features into X. Then, each X and y is 

divided into 4 variables, namely X_train, X_test, y_train, 

and y_test. 

 

3.5. Evaluation 

The built model is tested to measure its performance. 

The evaluation was carried out on cross-validation, 

percentage split, and hyperparameters. In cross-validation, 

the data used is based on the training data, while in 

percentage split, the data used for evaluation is the testing 

data. Four classification metrics are used to evaluate 

accuracy, precision, recall, and f1-score[21]. In this study, 

the Primary dataset contains malware samples from the 

honeypot, and the Secondary data is the ClaMP dataset. 

 

Accuracy  =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

Precision =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
  (2) 

 

Recall   =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
  (3) 

 

F1-Score  =  2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑇𝑃𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑇𝑃𝑅
 (4) 

The accuracy is calculated by summing the number of 

true positives (TP) and true negatives (TN) and then 

dividing it by the total number. Equation 1 is utilized to 

compute the accuracy. Equation 2 is employed to compute 

precision. Precision represents the ratio of correctly 

predicted results to the total predicted results. It measures 

the relevance of the predicted results among all the 

predicted instances.  

 

Recall, also known as sensitivity, represents the 

proportion of correctly predicted results to the actual results, 

indicating the accuracy of predicting the actual results. The 

formula in Equation 3 is utilized to calculate the recall. The 

F-measure, also referred to as the F1-score, is the harmonic 

means of precision and recall, as depicted in Equation 4. A 

high F-measure value close to 1 indicates an ML model with 

both high precision and recall, indicating its effectiveness 

and accuracy. 
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4. Result and Discussion 
4.1. Preparing Dataset 

The pefile library is used to read the header of the 

portable executable file so that feature extraction can be 

performed on malware samples[22]. The scikit-learn library 

splits the percentage of training and validation samples. The 

panda's library is used for data analysis and manipulation. 

From the malware obtained through the Dionaea Honeypot, 

there are at least 2169 file samples consisting of portable. 

The malware samples used in this study are portable 

executable types, including file extensions such as .exe, 

infected files in the .dll library extension, and .sys drivers. 

 

The dataset is examined for any unavailable values. 

Malware samples will be labeled by extracting signatures 

from each malware sample. MD5 hash identification is 

performed from the malware samples, as shown in Figure 5, 

and will be saved in .csv format. After obtaining the MD5 

hash, the next process is to scan the hash using VirusTotal 

to ensure that the hash is malware or not. 

4.2. Feature Selection 

The feature selection phase involves the selection of 

relevant features for machine learning. In this stage, less 

relevant features are eliminated from the dataset to enhance 

the prediction performance and increase the efficiency of 

the proposed model. In this stage, the method used for 

feature selection is by using a tool called a wrapper. In each 

feature, an evaluation is performed using the Random Forest 

and Decision Tree algorithm to indicate which features 

impact accuracy most. The result from feature selection will 

apply to the model and improve the accuracy, as shown the 

Figure 6. 

 
Fig. 5. MD5 hash from portable executable file 

 

 
(a) Measuring feature importance using random forest 

 

(b) Measuring feature importance using decision tree 

Fig. 6 Feature importance from the dataset 
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Table 3. Importance measure from each parameter 

(Decision Tree) (Random Forest) 

Feature Importance Stdev Feature Importance Stdev) 

CheckSum 0.2285 0.0035 MajorImageVersion 0.0499 0.0034 

AddressOfEntryPoint 0.2080 0.0042 e_lfanew 0.0215 0.0009 

SizeOfInitializedData 0.0993 0.0016 CheckSum 0.0187 0.0003 

MinorLinkerVersion 0.0963 0.0013 SizeOfInitializedData 0.0100 0.0016 

e_lfanew 0.0811 0.0021 MinorLinkerVersion 0.0077 0.0006 

MajorLinkerVersion 0.0750 0.0022 AddressOfEntryPoint 0.0069 0.0012 

SizeOfCode 0.0462 0.0014 NumberOfSections 0.0043 0.0002 

MajorImageVersion 0.0399 0.0018 MinorSubsystemVersion 0.0042 0.0004 

SizeOfStackReserve 0.0392 0.0008 MajorLinkerVersion 0.0017 0.0004 

MajorSubsystemVersion 0.0368 0.0025 MajorSubsystemVersion 0.0012 0.0004 

BaseOfData 0.0285 0.0012 SizeOfCode 0.0010 0.0002 

NumberOfSections 0.0273 0.0027 BaseOfData 0.0009 0.0003 

MinorSubsystemVersion 0.0195 0.0015 LoaderFlags 0.0006 0.0003 

BaseOfCode 0.0172 0.0013 MajorOperatingSystemVersion 0.0004 0.0001 

SizeOfHeapReserve 0.0118 0.0015 MinorOperatingSystemVersion 0.0003 0.0002 

MinorOperatingSystemVersion 0.0111 0.00047 MinorImageVersion 0.0002 0.0000 

MajorOperatingSystemVersion 0.0051 0.0005 SizeOfStackCommit 0.0002 0 

SizeOfStackCommit 0.0013 0.0001 BaseOfCode 0.0001 0.00015 

MinorImageVersion 0.0012 0.0001 SizeOfStackReserve 0.0001 0.00015 

SizeOfUninitializedData 0.0009 0.0002 SizeOfHeapReserve 0.0000 0.00020 

e_sp 0.0002 0 SizeOfUninitializedData 0.0000 0.00008 

The measurement in feature selection is used to know 

how parameters affect the performance, as shown in Table 

3. From the measurement, classification will be performed 

using only the intersection at the top 5 influential parameters 

algorithm used for feature selection. Feature importance 

techniques allow us to focus on the data's most relevant and 

informative aspects, improve model interpretability, 

address noise and collinearity issues, and enhance 

computational efficiency, ultimately leading to better model 

performance. 

4.3. Classifier 

Results from the classifier indicate a comparison of 

classifiers using the combined ClaMP + Honeypot dataset 

and the ClaMP dataset with Decision Tree; both datasets 

show similar performance, with an accuracy of around 

97.9% and an F1-score of 98.2%. The precision, recall, and 

F1-score are consistent across the two datasets. 

 

Random Forest shows ClaMP + Honeypot dataset 

yields a slightly higher accuracy of 97.7% compared to 

98.3% for the ClaMP dataset only. The ClaMP dataset 

exhibits slightly higher precision, recall, and F1-score 

values. The Support Vector Machine classifier is lower 

compared to the other two classifiers. Both datasets show 

similar results, with an accuracy of around 83.7% - 84.3% 

and an F1-score of 86.1% - 87.9%. The precision and recall 

scores are also lower than the other classifiers, as shown in 

Table 4. 

 

In conclusion, the Decision Tree and Random Forest 

classifiers demonstrate consistent and high performance 

across both datasets. The Support Vector Machine classifier 

performs relatively lower accuracy, precision, recall, and 

F1-score. Therefore, the Decision Tree and Random Forest 

classifiers are recommended for malware detection using 

the given datasets. 

 

4.4. Model 

The Scikit-learn library from Python is used to 

conduct the analysis based on the experiment. Machine 

learning is used to detect malware on the Portable 

Executable (PE) dataset. Models' performance is assessed 

on preprocessed data, divided into testing and training 

subsets. Various metrics such as model accuracy, recall, 

precision, and F1-score are computed for each classifier.  
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Table 4. Comparison machine learning technique 

Algorithm Matrix 
ClaMP + 

Honeypot 
ClaMP 

Decision 

Tree 

Accuracy 97.9% 98.2% 

Precision 98.6% 98.3% 

Recall 97.9% 98.2% 

F1-score 98.2% 98.3% 

Random 

Forest 

Accuracy 97.7% 98.3% 

Precision 97.9% 98.2% 

Recall 98.4% 98.6% 

F1-score 98.1% 98.4% 

Support Vector 

Machine 

Accuracy 87.1% 90.3% 

Precision 90.1% 91.1% 

Recall 95.2% 96% 

F1-score 85.6% 86.7% 

 

Table 5. Experiment result using parameters reduction 

Algorithm Matrix 
ClaMP + 

Honeypot 
ClaMP 

Decision Tree 

Accuracy 98.9% 99.2% 

Precision 99.2% 98.8% 

Recall 99.1% 99.6% 

F1-score 99.1% 99.2% 

Random Forest 

Accuracy 99.2% 99.4% 

Precision 99.1% 99.2% 

Recall 99.6% 99.6% 

F1-score 99.36% 99.4% 

Support Vector 

Machine 

Accuracy 87.1% 90.3% 

Precision 90.1% 91.1% 

Recall 95.2% 96% 

F1-score 85.6% 86.7% 

 

Table 6. Gap result from parameters reduction 

Algorithm Matrix 
ClaMP + 

Honeypot  
ClaMP 

Decision Tree 

Accuracy 0.1% 0.1% 

Precision 0.6% -0.5% 

Recall 1.2% 1.4% 

F1-score 1.1% 0.9% 

Random Forest 

Accuracy 1.5% 1.1% 

Precision 0.2% 0% 

Recall 0.8% 0.8% 

F1-score 1.26% 1% 

Support Vector 

Machine 

Accuracy 0% 0% 

Precision 0% 0% 

Recall 0% 0% 

F1-score 0% 0% 

The experimental results for all classifiers are presented 

in Table 5. The decision tree classifier achieves an accuracy 

of 97.9%, recall of 98.6%, precision of 97.9%, and an F1-

score of 98.2%. In comparison, the Random Forest classifier 

achieves an accuracy of 97.7%, recall of 98.4%, precision 

of 97.9%, and an F1-score of 98.1%. The Support Vector 

Machine (SVM) classifier achieves an accuracy of 83.7%, 

precision of 81.4%, recall of 95.5%, and an F1-score of 

87.9%. 

4.5. Evaluation 

Results from the experiment and comparison with other 

machine learning techniques are provided in Table 4, which 

presents the model's performance. Given that the dataset has 

already been split into training and testing datasets, the 

model is constructed using the training data. The validation 

dataset is created by randomly selecting 10% of the training 

dataset to monitor the learning progress. Based on the 

evaluation results presented in Table 4, the Decision Tree 

and Random Forest algorithms performed better compared 

to the Support Vector Machine algorithm.  

 

Both Decision Tree and Random Forest achieved high 

accuracy, precision, recall, and F1-score values, indicating 

their effectiveness in the classification task. On the other 

hand, the Support Vector Machine algorithm had lower 

accuracy, precision, and F1-score values, suggesting that it 

may not be as suitable for this specific classification 

problem. 

The metrics presented in Table 5 provide a 

comprehensive analysis of the predictions made by the 

proposed model on the test dataset, considering five different 

parameters. These metrics offer insights into the 

performance and accuracy of the model in predicting each 

label accurately, and metrics, as shown in Table 6, perform 

gap results between models that use parameter reduction and 

models without parameter reduction. Decision Tree updated 

metrics show an improvement in accuracy, precision, recall, 

and F1-score compared to the previous data, indicating better 

performance. Random Forest updated metrics for Random 

Forest also demonstrate improvement across all performance 

measures. The utilization of these five parameters leads to a 

higher accuracy percentage compared to previous studies. 

These parameters are obtained through feature selection 

techniques, enabling the measurement of the dataset's feature 

importance. 

 

5. Conclusion 
The proposed model in this study presents a static 

analysis approach for malware detection, utilizing four 

layers: data acquisition, preprocessing, prediction, and 

performance evaluation.  

The model demonstrates the ability to detect malware 

without executing the executable file, which enhances 

security and reduces potential risks. By employing a 

supervised machine learning approach with binary 

classification, the model effectively categorizes the dataset 

into either malicious or benign classes. 



Diandra Amiruddin Firmansyah & Amalia Zahra  / IJETT, 71(8), 243-252, 2023 

 

 

251 

Various metrics such as F1-score, precision, recall, and 

accuracy are utilized to evaluate the proposed system's 

performance. The experimental results indicate that the 

Random Forest algorithm performs exceptionally well, 

outperforming other algorithms in terms of accuracy. The 

Random Forest algorithm achieves an impressive 99.20% 

accuracy rate in detecting malware, showcasing its 

effectiveness in identifying malicious samples. These 

findings suggest that the proposed model can serve as a 

reliable solution for malware detection, providing high 

accuracy and robust performance. It offers a non-execution-

based approach, making it suitable for real-time detection 

and ensuring the security of systems and networks. 
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