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Abstract - Developing an intelligent technique to monitor fetal heart function at the beginning stages of pregnancy is crucial, 

and the research aims to achieve that by proposing two hybrid algorithms. The proposed algorithms integrate independent 

component analysis (ICA) and stationary wavelet transform (SWT) to extract fetal electrocardiogram (FECG) signals. The 

objective is to improve the clarity of the FECG signal, reduce noise and artifacts, and accurately detect the R-peaks using an 

improved spatially selective noise filtration (ISSNF) method or a threshold-based algorithm (TBA) in the wavelet domain. 

Accurate detection of fetal R-peaks can provide valuable clinical information for diagnosing and treating fetal heart conditions. 

In order to isolate the FECG signal from the mixed abdominal signal, the study utilizes ICA to separate the maternal ECG 

(MECG) and FECG signals. The signals with high noise levels are subsequently broken down into multiscale components 

utilizing SWT, with the choice of wavelet decomposition scale determined by the noise level. Either the ISSNF or TBA methods 

are utilized for denoising in the wavelet domain. The performance of the proposed methodology is assessed by making use of 

three clinical databases through qualitative and quantitative measures, including visual inspection, computation of signal-to-

noise ratio (SNR), and recognition of the QRS complex. The analysis findings suggest that the proposed system, especially when 

utilizing the TBA, surpasses conventional techniques for FECG extraction in terms of performance. The experimental findings 

demonstrate that the proposed system has the potential to extract clear FECG signals with good SNR results and minimal 

disturbances. 

Keywords - Fetal ecg, Improved spatially selective noise filtration, Independent component analysis, Stationary wavelet 

transforms, Threshold-based algorithm. 

1. Introduction 
The use of an electrocardiogram (ECG) to monitor the 

fetal heartbeat during pregnancy is a crucial tool for medical 

professionals. Timely identification of abnormalities in the 

heartbeat provides valuable information about the baby's 

development, enabling healthcare professionals to assess its 

physiological condition. [1] Anomalies in the heartbeat 

detected by the ECG can be indicative of potentially 

dangerous conditions. However, the conventional FECG 

monitoring performed utilizing cardiotocography (CTG) has 

high inaccuracies, which can lead to various diagnostic 

problems and unnecessary invasive procedures. [2]  

Fetal ECG (FECG) extraction offers better health 

monitoring, data preservation, and higher accuracy than 

traditional CTG, and its low data rate allows for wireless 

applications.  In addition, the FECG provides essential 

information on ECG shape, enabling the diagnosis of specific 

conditions that standard fetal monitoring services may not 

detect [3]. Despite these benefits, the FECG signal is weak 

compared to the maternal electrocardiogram (MECG), and 

there is high noise, making it challenging to isolate FECG 

from the abdominal electrocardiogram (AECG) and obtain an 

accurate assessment. The challenge primarily arises from the 

overlapping frequency components between MECG, FECG, 

and noise during the process of isolating the FECG signal. 

Several techniques have been proposed for extracting 

FECG, each with its own limitations. Many of these 

techniques aim to decrease the influence of MECG signals, 

with adaptive filtering being one such technique that employs 

the maternal thoracic signal as a reference to eliminate its 

presence in the AECG. [4].  

However, this method is simple but prone to disturbances 

caused by noise and MECG variance between the two 

electrode signals. The wavelet transform is a promising tool 

widely used in the literature for FECG extraction algorithms 

[5]. It decomposes the signal at different resolutions, allowing 

for analysis at different windows and isolating the FECG 

signal details using recursive inverse adaptive filtering [6]. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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When thoracic ECG is available, the least mean squares 

(LMS) algorithm in conjunction with a wavelet is employed. 

In this approach, the MECG serves as a reference signal to 

eliminate noise from the AECG components while 

maintaining the signal's integrity.[7] Our preliminary findings 

from research work utilizing wavelet-based recursive least 

squares (RLS) adaptive filtering are presented and discussed 

at a conference [8]. These algorithms effectively remove 

unwanted noise from the AECG without disturbing the 

structure of the FECG waveform. The utilization of wavelet-

based noise removal techniques enables the elimination of 

interfering signals from the AECG captured through a single 

electrode, facilitating subsequent analysis. The isolation of the 

FECG from the MECG can be achieved by comparing the 

power difference after eliminating all remaining interferences. 

The periodic component analysis is another approach 

employed to detect and extract repetitive patterns or periodic 

elements from a given AECG signal.[9] The autocorrelation 

method is utilized in fetal ECG extraction by computing 

correlations between a signal and its delayed versions. [10] 

Linear decomposition methods involve breaking down the 

complex AECG signal into its individual linear components, 

aiding in the analysis and extraction of FECG 

information.[11] 

 

The principal component analysis aims to remove high-

power vectors to eliminate MECG but may affect FECG [12]. 
Blind source separation (BSS) techniques enable the 

separation of mixed signals into their underlying source 

components, even in the absence of prior knowledge about the 

sources.  Independent component analysis (ICA) is an 

example, which means it can separate signals without prior 

knowledge of the source signals, and ICA has been shown to 

perform well in the presence of high levels of noise and 

interference, making it suitable for use in FECG extraction 

from the AECG [33]. Hybrid systems using ICA in FECG 

extraction have several advantages over traditional ICA-based 

approaches [14,15,16]. These include improved accuracy, 

robustness to artifacts, increased signal-to-noise ratio (SNR), 

real-time monitoring, and adaptability.  

 

In recent years, neural network methods have emerged as 

prominent techniques for FECG extraction. [17,19,34] These 

methods leverage the power of deep learning algorithms to 

extract fetal ECG signals from noisy recordings automatically. 

By leveraging the power of these advanced techniques, 

including convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), the automated extraction 

process ensures accurate and reliable identification of fetal 

ECG signals, eliminating the need for manual intervention. By 

training on large datasets, neural networks can learn complex 

patterns and relationships within the data, enabling accurate 

and efficient FECG extraction. These techniques have shown 

promising results, demonstrating their potential to enhance 

fetal monitoring and diagnosis in various clinical applications. 

However, these methods necessitate a time-consuming 

training process for the model. Another approach employed in 

this field is the template-matching algorithm [20]. In contrast 

to neural networks, the template matching method relies on 

multiple probability functions and is susceptible to high-

frequency disturbance. On the other hand, wavelet mode 

maximum methods provide a more straightforward 

implementation and find extensive applications in FECG 

extraction. [21] 

 

However, no preferred methods for FECG monitoring 

exist, and most require further validation. FECG extraction 

has not yet become a standard practice in hospitals due to the 

challenges and limited availability of reliable methods. In 

performing fetal ECG extraction, the current techniques face 

three difficulties. One, there will be different types of noises. 

Two, if MECG and FECG signals are overlapped, extracting 

the FECG from the overlapped signal would be difficult. 

Three, it will be fairly difficult to measure SNR. Comparative 

studies assess algorithms' ability to locate FECG positions and 

extract signals, but proximity to MECG can affect their 

performance. The challenging field of non-invasive FECG 

extraction requires new approaches and algorithms for 

medical use. 

 

This paper presents a novel composite formulation that 

combines ICA and Stationary Wavelet Transform (SWT) for 

achieving an optimal measurement of the FECG signal and 

SNR computation. Previous studies have demonstrated the 

robust performance of ICA in FECG extraction systems. In the 

proposed approach, the ICA algorithm is applied to separate 

the MECG and FECG signals. The noisy FECG signals are 

subsequently subjected to wavelet decomposition utilizing 

SWT, resulting in the generation of multiple resolution 

components. The proposed methodology involves a sequential 

application of ICA, SWT, and a noise removal algorithm. 

Either the Improved Spatially Selective Noise Filter (ISSNF) 

technique or threshold-based algorithm (TBA) is used for 

denoising in the wavelet domain. By utilizing ICA, the 

proposed system could effectively separate the MECG and 

FECG signals. 

 

Moreover, the ISSNF technique or TBA enables the 

extraction of the clean FECG signal, which is further refined 

through inverse SWT. This innovative fusion of different 

techniques demonstrates enhanced performance when 

compared to existing research findings in the field. By 

leveraging the complementary strengths of ICA and SWT, the 

proposed method achieves more accurate and efficient 

extraction of FECG signals, contributing to advancements in 

fetal monitoring and diagnosis. 

 

2. Materials and Methods 
Both ICA and WT hold great promise as approaches in the 

field of biomedical signal processing. This research paper 

introduces a novel methodology that combines the power of 
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SWT and ICA algorithms to extract FECG from abdominal 

signals. The proposed approach aims to enhance the accuracy 

and effectiveness of FECG extraction by leveraging the 

complementary strengths of both techniques. Additionally, to 

further improve the SNR performance, the researchers 

incorporate the use of the ISSNF technique and TBA. By 

employing these advanced noise reduction methods, the 

researchers intend to enhance the quality and fidelity of the 

extracted FECG signals for more accurate analysis and 

diagnosis in clinical settings. 

 

2.1. Independent Component Analysis 

The extensive application of ICA in the field of FECG 

processing involves its utilization for the purpose of denoising 

and extracting clean FECG signals from the complex AECG 

signal. This technique has proven effective in separating and 

isolating the desired FECG component from the mixture of 

signals, resulting in improved signal quality for further analysis 

and interpretation. The fundamental principle behind ICA is 

that the observed data (AECG), i.e., the signal x, is a linear 

mixture of the MECG, FECG, and other disturbances [22,23]. 

ICA is a BSS technique. BSS involves addressing a scenario 

where the original sources and the mixing matrix are unknown, 

with only the observed signals being available for the separation 

process. The primary goal of BSS is to extract independent and 

unidentified sources solely based on these observed signals. By 

employing various algorithms and techniques, BSS aims to 

uncover the underlying sources and untangle them from the 

mixed observations, enabling the recovery of the individual 

source signals without prior knowledge of their characteristics 

or the mixing process. 

The objective of ICA in the proposed study is to separate the 

target FECG and MECG from the AECG signal, considering 

their statistical independence. Mathematically the research 

problem can be considered an under-constrained problem 

because the count of unknown variables is higher than the count 

of known variables. The desired FECG signal is linearly mixed 

with other sources as follows:  

                                    𝑥 = 𝐴𝑠                                      (1) 

Where 𝑥 is the AECG signal, both 𝐴  and 𝑠 are unknown 

variables, where 𝐴  is the unknown mixing matrix, and 𝑠 is the 

FECG signal. The objective of the study is to measure the 

distinct FECG signal by determining its relationship with the 

inverse of the unknown mixing matrix, 𝐴, through the equation 

𝑠 = 𝑊𝑥. i.e.,  

                                        𝑠 = 𝐴−1𝑥                                  (2) 

The composite abdominal signal 𝑥 contains a mixture of 

MECG and FECG, both of which are affected by various types 

of noise interference. Thus, the clean FECG can be extracted by 

canceling the maternal components from the abdominal signal. 

The ICA is performed based on a divide-and-conquer strategy. 

ICA aims to decompose the square matrix A into several small 

pieces. 𝐴 = 𝑈𝛴𝑉𝑇  where 𝑈 and 𝑉 are rotation matrices, and 𝛴 

is a diagonal matrix that is real and non-negative. The unknown 

matrices are determined using two steps.  

1) Examine the covariance matrix, 〈𝑥𝑥𝑇〉 of the observed 

data. This results in a partial solution to the ICA problem. 

2) Finding the unknown rotation matrix, 𝑉 

 

The covariance of the abdominal signal can be determined 

by relating it to the underlying sources. 

〈𝑥𝑥𝑇〉 = 〈(𝐴𝑠)(𝐴𝑠)𝑇〉 

                              = ⟨(𝑈𝛴𝑉𝑇𝑠)(𝑈𝛴𝑉𝑇𝑠)𝑇〉 

                                                = 𝑈𝛴𝑉𝑇〈𝑠𝑠𝑇〉𝑉𝛴𝑈𝑇  

                                    = 𝑈𝛴2𝑈𝑇                                           (3) 

In the context of linear algebra, it is known that symmetric 

matrices, such as covariance matrices, can be orthogonally 

diagonalized using their eigenvectors. Let's consider a matrix 𝐸, 

where its columns correspond to the eigenvectors of the 

covariance matrix of variable 𝑥 . Thus, 

〈𝑥𝑥𝑇〉=  𝐸𝐷𝐸𝑇                                           (4) 

Where D represents the diagonal matrix consisting of the 

associated eigenvalues, it is worth noting that the eigenvectors 

of the data's covariance matrix create an orthonormal basis, 

implying that matrix 𝐸 is orthogonal. By utilizing the 

eigenvectors of the data's covariance matrix, we have 

discovered a partial solution to matrix   𝐴 . Matrix 𝑈 is 

composed the stacked eigenvectors, while matrix 𝛴 consists of 

the square roots of the corresponding eigenvalues. It takes the 

form of a diagonal matrix. Furthermore, 

𝑊 = 𝑉𝐷−
1
2𝐸𝑇                                       (5) 

is the solution to ICA and this matrix can be used to 

estimate the underlying sources. After decomposing the matrix, 

𝐴 and performing data whitening, the problem is successfully 

simplified to find a rotation matrix 𝑉, where the estimated 

source signal. 𝑠̂ can be obtained as 𝑉 times the whitened data, 

𝑥𝑊. 

2.2. Stationary Wavelet Transform  

WT is recognized as a highly potent and effective tool that 

has been frequently used in biomedical signal processing [35]. 

This is due to its ability to analyse signals at multiple scales and 

its efficient representation of non-stationary signals. FECG 

extraction algorithms commonly employ it as a prevalent 

technique, frequently referenced in the existing literature. The 
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integration of WT with additional noise-reducing techniques 

has the potential to yield more noise-reduction benefits. 

Wavelet-based denoising techniques have shown promise in 

removing different types of noise from AECG signals, such as 

power line interference, baseline wander, and muscle artifacts. 

Removing such noise can make the ECG signal easier to 

analyse and interpret, leading to potentially more accurate 

diagnoses and better patient outcomes. However, the 

effectiveness of wavelet-based denoising techniques depends 

on several factors, including the wavelet selection, denoising 

threshold, and the presence of other noise sources or artifacts in 

the signal. Thus, careful consideration and validation of the 

denoising method are crucial to ensure its effectiveness in 

removing interference signals from AECG signals. 

 

Discrete wavelet transforms (DWT) and SWT are two 

types of wavelet-based analysis methods. They both employ a 

decomposition approach to split signals into multiple frequency 

bands. These two wavelet transforms differ in their approach to 

signal decomposition. One key distinction between the DWT 

and the SWT lies in their treatment of signal resolution during 

the decomposition process. In DWT, the resolution is 

successively reduced by half at each level of decomposition, 

whereas in SWT, the resolution remains unchanged throughout 

the decomposition process. [25] In the case of DWT, the signal 

undergoes a two-step process. Initially, it is divided into low and 

high-frequency sub-bands, followed by down-sampling each 

sub-band by a factor of 2 before advancing to the subsequent 

decomposition level. This process is repeated iteratively to 

achieve multilevel decomposition. As a result, the resolution of 

the signal is reduced at each level of decomposition. In contrast, 

the SWT does not involve down-sampling the signal. Instead, it 

decomposes the signal into a series of wavelet coefficients 

while preserving the resolution at each level of decomposition. 

The SWT addresses the issue of translation invariance inherent 

in the DWT. By employing a different approach, SWT 

overcomes this limitation, allowing for improved translation-

invariant analysis of signals. Wavelet-based noise reduction 

algorithms demonstrate a remarkable capability to eliminate a 

significant portion of interference signals present in the AECG 

signal, thereby facilitating easier analysis of the underlying 

FECG signal. 

 

The SWT is a reliable and effective technique in processing 

signals. In the context of wavelet analysis, the wavelet function, 

Ψ(n), is often referred to as the mother wavelet or analyzing 

wavelet. Similarly, the scaling function, Φ(n), can be referred to 

as the father wavelet or synthesis wavelet. The wavelet 

decomposition generates a set of coefficients consisting of both 

approximation and detail coefficients, providing valuable 

information about the signal's various frequency components. 

In DWT, the decomposition process at level i yields two sets of 

coefficients: the approximation coefficients, denoted as  𝐴𝑖 , 

which capture the coarse-scale information of the signal, and the 

detail coefficients, denoted as 𝐷𝑖, which represent the fine-scale 

details or high-frequency components of the signal. The original 

signal 𝐴0 represents the input signal, while h and l correspond 

to the high pass and low pass filters, respectively, used in the 

decomposition process to separate the input signal into its high-

frequency and low-frequency components. [25, 26] 

𝐴𝑖  =  𝑙 ∗  𝐴𝑖−1,     𝑖 = 1,2, . . . . , 𝑁                           (6) 

𝐷𝑖  =  ℎ ∗  𝐴𝑖−1,     𝑖 = 1,2, . . . . , 𝑁                          (7)   

In SWT-based wavelet decomposition, the resulting 

coefficients are divided into two categories: the approximation 

coefficients, denoted as 𝐴𝜀
𝑖  and the detail coefficients denoted 

as 𝐷𝜀
𝑖 . The value of 𝜀 in DWT is invariably 0, however in SWT, 

𝜀 = [𝜀1, 𝜀2,....,𝜀𝑛], [36]. l 𝑖and h 𝑖are low-pass and high-pass 

filters, respectively, such that l 𝑖 ↑ 2 = 𝑙 𝑖+1and h 𝑖 ↑ 2 = ℎ 𝑖+1. 

 𝐴𝜀1,……..𝜀𝑖
𝑖 = 𝑙 𝑖−1 ∗  𝐴𝜀1,……..𝜀𝑖−1

𝑖−1  , 𝑖 = 1,2, . . , 𝑁                   (8) 

𝐷𝜀1,........𝜀𝑖
𝑖 =  ℎ 𝑖−1 ∗  𝐴𝜀1,........𝜀𝑖−1

𝑖−1  , 𝑖 = 1,2, . . , 𝑁                    (9) 

In order to improve the performance of the hybrid approach 

that combines ICA and SWT for fetal ECG signal extraction, 

either the ISSNF or TBA methods are used in the wavelet 

domain. These methods effectively remove the noise caused by 

MECG, movement artifacts, and other sources of interference. 

By reducing the high noise level in the signal, the FECG signals 

can be extracted more efficiently and accurately. The SWT-

based approach, coupled with effective noise reduction 

techniques, can considerably enhance the precision and 

dependability of FECG signal extraction from AECG signals. 

2.3. Improved Spatially Selective Noise Filtration  

A systematic approach for extracting fetal ECG requires 

the implementation of an efficient denoising algorithm that 

operates within the domain of wavelet analysis. This algorithm 

is known as the spatially selective noise filtration technique 

(SSNF), which is particularly useful in biomedical signal 

processing [27]. The SSNF algorithm is capable of removing 

noise from a signal while preserving essential features such as 

waveform shape, amplitude, and frequency content.  Moreover, 

it demonstrates effectiveness in eliminating diverse forms of 

noise, including powerline noise, baseline wander, and muscle 

artifacts. To improve the SNR results, an enhanced version of 

the conventional SSNF algorithm has been employed [28]. The 

ISSNF is the modified version of the SSNF technique. ISSNF 

operates by calculating the spatial correlation 𝐶𝑜𝑟𝑅(𝑔, 𝑘)  

between signal components for each wavelet scale, 𝑔. The 

degree of correlation between the signal components is high, 

while that of noise components is low.                                                                                                                                                           

𝐶𝑜𝑟𝑅(𝑔, 𝑘) = ∏𝑖=0
𝐿−1 𝑊(𝑔 + 𝑖, 𝑘); 𝑘 = 1,2, . . , 𝑁               (10) 

The following steps constitute the ISSNF algorithm: 

1) To achieve precise edge extraction from coarse-scale to 

fine-scale components in the ISSNF algorithm, it is crucial 
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to select the  𝜆(𝑔) and 𝑡ℎ(𝑔) parameters with great 

accuracy ahead of time. The steps for selecting these 

parameters are outlined below. 

2) Calculate the correlation 𝐶𝑜𝑟2(𝑔, 𝑘) among the signal 

components at each level of the wavelet decomposition, 𝑔  

3) Get 𝑁𝑜𝑟 𝐶𝑜𝑟2(𝑔, 𝑘) such that the power of  𝐶𝑜𝑟2(𝑔, 𝑘) is 

normalized with respect to   𝑊(𝑔, 𝑘). 

𝑁𝑜𝑟 𝐶𝑜𝑟2(𝑔, 𝑘)  =  𝐶𝑜𝑟2(𝑔, 𝑘)√
𝑃𝑤(𝑔)

𝑃𝐶𝑜𝑟(𝑔)
         Where  

𝑃𝑤(𝑔) and 𝑃𝐶𝑜𝑟(𝑔) are defined as:

                                                      

     

 

𝑃𝑤(𝑔) = ∑ (𝑊(𝑔, 𝑘))𝑁
𝑘=1

2
  ,       𝑃𝐶𝑜𝑟(𝑔) =

∑ (𝐶𝑜𝑟2(𝑔, 𝑘))𝑁
𝑘=1

2

                               (11) 

4) The component values in 𝑁𝑜𝑟 𝐶𝑜𝑟2(𝑔, 𝑘)
 
and 𝑊(𝑔, 𝑘) 

are compared. If |𝑁𝑜𝑟 𝐶𝑜𝑟2(𝑔, 𝑘) ≥ 𝜆(𝑔) ∗ 𝑊(𝑔, 𝑘)|, 
the corresponding components are selected and stored in 

 𝑊𝑛𝑒𝑤(𝑔, 𝑘). Then reset  𝑊(𝑔, 𝑘) and 𝐶𝑜𝑟2(𝑔, 𝑘). 

 

5) Perform the iterations continuously, leading to the power 

of unextracted pixel values being almost equivalent to a 

specific predefined noise power at the 𝑔𝑡ℎ wavelet 

decomposition level. 

 

6) Follow the step-by-step procedures repeatedly till the 

power of data points that have not been extracted 

approaches the predefined noise power at the 𝑔𝑡ℎ wavelet 

decomposition level. Once M data values have been 

extracted, the noise power variance, 𝜎𝑔
2 can be computed. 

Subsequently, repeat this process until 

 

               𝑃𝑊(𝑔)  −  𝑡ℎ(𝑔)(𝑁 − 𝑀)𝜎𝑔
2 ≤ 0.05𝑃𝑊(𝑔)       (12)                                                            

After extracting the FECG signal components from the 

primary noisy source, these components are stored in a new 

data vector denoted by  𝑊𝑛𝑒𝑤(𝑔, 𝑘).   

The choice of thresholding method is critical in 

determining the SNR performance of a wavelet-based 

denoising technique. To ensure optimal SNR performance, it 

is important to carefully select the thresholding parameters   

𝜆(𝑔) and 𝑡ℎ(𝑔). The reference noise power (𝑁 − 𝑀)𝜎𝑔
2 is 

multiplied by a factor 𝑡ℎ(𝑔) at coarse scales where 𝑡ℎ(𝑔) ≥ 1 

. For different signals, 𝑡ℎ(𝑔) should vary.  

 

However, a common 𝑡ℎ(𝑔) can be chosen as a general 

case since the filtering results are not sensitive to 𝑡ℎ(𝑔). 

According to [28], the thresholding parameter 𝑡ℎ(𝑔) can be 

selected such that 𝑡ℎ(1) = 1.1 − 1.2,  𝑡ℎ(2) = 1.2 − 1.4,  

𝑡ℎ(3) = 1.4 − 1.6, and 𝑡ℎ(𝑔) = 1.6 − 1.8 when g≥ 4. By 

following this approach, any of these combinations inherently 

fulfill the prerequisites for denoising during FECG extraction. 

Consequently, the optimal parameters are determined through 

a visual examination of the extracted signals, which, in certain 

instances, hold more significance than quantitative metrics.  

 

This ensures that after denoising, the amplitude of fetal 

QRS complexes remains reasonably preserved without 

excessive reduction. These considerations are used to select an 

optimal fit as 𝑡ℎ(𝑔) = [1.1, 1.3, 1.5, 1.7, 1.7] and the results 

are satisfying. A weight factor 𝜆(𝑔) is introduced at fine scales 

to avoid noise extracting as edges [28]. Based on several 

experiments for a wide range of FECG signals,  𝜆 (𝑔) =
[1.15,1.06,1,1,1] is chosen. ISWT follows the ISSNF 

algorithm, and the FECG signal can be extracted in the time 

domain.  

 

2.4. Threshold-Based Denoising 

In Donoho's work on noise removal in the wavelet 

domain, he suggests two algorithms: hard thresholding and 

soft thresholding [36]. While soft thresholding is generally 

effective, in certain applications, hard thresholding can 

produce superior results [28]. In fact, it is believed that hard 

thresholding is particularly effective when used with an 

undecimated wavelet transform [36]. One straightforward and 

efficient hard thresholding algorithm is presented in Donoho's 

work [28]. The algorithm can be summarized as follows:

 

 
Fig. 1 Proposed system configuration. The abdominal signals are applied with ICA, followed by SWT and the denoising algorithm. Finally, the 

maternal and fetal ECG signals are extracted 

 



P. Darsana & Vaegae Naveen Kumar / IJETT, 71(8), 131-142, 2023 

 

136 

𝑊̂(𝑔, 𝑘) = {
𝑊(𝑔, 𝑘) 𝑤ℎ𝑒𝑛 𝑊(𝑔, 𝑘) ≥ 𝑡(𝑔)
    0      𝑤ℎ𝑒𝑛 𝑊(𝑔, 𝑘) < 𝑡(𝑔)

                  (13) 

To establish the threshold for the hard thresholding 

algorithm, Donoho proposes using the equation 𝑡(𝑔) = 𝑎. 𝜎𝑔, 

where 𝑎 is a constant [32]. By setting the threshold to be equal 

to 𝜎, 2𝜎, 3𝜎, and so on, the algorithm can effectively suppress 

68.26%, 95.44%, and 99.74% of values for i.i.d. Gaussian noise 

[28]. Through experimental observations, it is determined that 

setting 𝑎 = 2.7  results in optimal performance for the 

algorithm.  

2.5. Proposed System for Fetal ECG Measurement  

The methodology proposed for extracting the fetal ECG 

signal is depicted in Figure 1. It consists of four main steps: 

separation of the maternal ECG signal using ICA, wavelet 

decomposition, artifact removal using denoising techniques, 

and measurement of the fetal ECG signal. 

• The first step in the analysis is to load the abdominal ECG 

data, which is then subjected to ICA to separate the 

maternal and fetal ECG signals. Through this process, a 

noisy estimate of the MECG and FECG signals is obtained. 

• Both the noisy MECG and FECG are applied with SWT, 

and the multiresolution components are extracted. The 

efficiency of various wavelets from the Matlab Wavelet 

Toolbox is evaluated to determine which one has the best 

reconstruction capability. After careful analysis, it is found 

that the Bior 1.5 wavelet is the most effective. A 

decomposition scale of 5 is chosen based on frequency 

characteristics to improve the reconstruction capability 

further. 

• When using the ICA in the first step, the resulting MECG 

and FECG components often contain artifacts and other 

types of noise. It is observed that the signal components are 

highly correlated, while the noise components exhibit a low 

degree of correlation. To address this issue, spatial 

correlations are calculated for both the approximation and 

detail coefficients at each wavelet scale. 

• Either the ISSNF algorithm or the TBA is used to eliminate 

the noise components in both MECG and FECG 

components. 

• Once the wavelet coefficients have been processed, they 

are subjected to ISWT. The output of this process is MECG 

and FECG signal that is free from noise, which can be used 

to identify the R-peaks in the FECG waveform. 

• The proposed methods are implemented and evaluated 

using three publicly available real databases and compared 

with other related works.  

 

3. Results 
The suggested approach employs a hybrid algorithm to 

measure FECG by integrating the advantages of ICA, SWT, and 

noise elimination methods. Two methods are employed, one 

utilizing ICA, SWT, and ISSNF algorithms and the other using 

ICA, SWT, and a threshold-based algorithm. The performance 

of these methods is evaluated through experiments on various 

databases containing clinical data. The performance of the 

proposed methods is compared with similar research works that 

use ICA and wavelet transforms. MATLAB (R2015a) is used 

for conducting experiments, and only abdominal signals are 

utilized for experimental evaluation. At least two abdominal 

channels are required for the experimental purpose, and two or 

more combinations of abdominal channels are used as inputs for 

performance evaluation. 

 

To evaluate the suggested technique's effectiveness, the 

FECG signal's extracted waveform is divided into M segments 

using the R-peaks as a basis for partitioning. The SNR is then 

computed using Eigen value and Cross-correlation analysis 

methods [7]. Each signal segment has a uniform duration and 

encompasses a single QRS complex. The SNR calculation, 

utilizing Eigenvalues, follows the defined formula:  

  
Fig. 2 The FECG extraction using ICA, SWT, and ISSNF on the DaISy 

database. The figure displays three waveforms arranged from top to 

bottom, representing 1) the AECG signal, 2) the extracted MECG 

signal, and 3) the extracted FECG signal 

SNR(𝐸) =  
𝜆max

M - 𝜆max
                                (14)                                                                                         

The variable 𝜆max represents the largest Eigenvalue 

among the ‘M’ segments of signals. The performance is also 

evaluated using SNR utilizing cross-correlation analysis 

which is given by: 

SNR(𝐶) =  
𝜇

1 -𝜇 
                                 (15)                                                                                                                         

 

Where 𝜇 = 
2

𝑀(M-1)
∑ ∑ 𝑥(𝑖)𝑇𝑀−1

𝑘=𝑖+1
𝑀−2
𝑖=0 𝑥(𝑘) and the 

notation  𝑥(. )  represents an individual signal piece.  

Due to the significantly higher fetal heart rate compared to 

the maternal heart rate, fetal QRS complexes may overlap with 

maternal QRS complexes. Hence there is a potential risk of 

missing or losing fetal QRS points that overlap during the 

process of extracting the FECG signal. Furthermore, fetal 
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heartbeats are much weaker than maternal heartbeats, making it 

challenging to detect fetal QRS complexes accurately. To 

identify overlapped fetal QRS points and eliminate misdetected 

fetal QRS complexes, a heuristic algorithm can be used. This 

algorithm compares the interval differences between successive 

fetal QRS complexes and identifies any differences greater than 

150%, indicating overlapping fetal QRS complexes. 

 

Conversely, if the difference is less than 45%, misdetection 

is possible, and the related beats can be removed. To evaluate 

the performance of the fetal R-peak detection algorithm, it is 

possible to use various statistical measures, including 

Sensitivity (SE), Positive Predictivity (PP), Accuracy (A), and 

F1 score. These measures can be used to assess how effective 

the algorithm is at detecting fetal R-peaks.  

𝑆𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100%        (16)                                                                                                                                                    

                            

𝑃𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100%          (17)  

 
                                                                                                                                                                                                                   

𝐴 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
∗ 100%        (18)  

                                                                                                                                                                        

𝐹1 = 2
𝑃𝑃∗𝑆𝐸

𝑃𝑃+𝑆𝐸
        (19)                                                                                                                                                                         

                   

                                                                                                                                                                                        

The statistical measures require the computation of 

accurate positive identifications (TP), incorrect positive 

identifications (FP), and missed positive identifications (FN). 

The effectiveness of two algorithms, namely the ICA, SWT, 

ISSNF algorithm, and the ICA, SWT, TBA, are compared with 

previous research using the same databases (DaISyDB, 

ADFECGDB, and PNIFECGDB). 

 

3.1. DaISy Database 

In order to assess the proposed methodologies, actual data 

is gathered from DaISyDB, a widely recognized real open-

access database organized by Lathauwer [30]. By utilizing this 

diverse dataset, the proposed methods can be rigorously tested 

and validated, providing valuable insights into their 

effectiveness for FECG extraction. This database comprises a 

total of eight recordings, including five combined AECG 

recordings and three thoracic ECG recordings, all acquired from 

a pregnant individual. The signal has a sampling frequency of 

250Hz and a duration of 10 seconds. One channel is excluded 

from the evaluation due to its high instability. The proposed 

system's performance is evaluated using both quantitative and 

qualitative methods, including simulations and observations. 

Experimental results for method-1 (ICA, SWT, ISSNF 

algorithm) and method-2 (ICA, SWT, TBA) for DaISyDB are 

illustrated in Figure 2 and Figure 3, respectively. 

 

The feasibility of the proposed methods is analysed by 

comparing the FECG extraction results obtained using the 

AECG signal as input. The extracted FECG waveforms for the 

first 1920 sampling points are plotted, and the R-peaks of the 

QRS complex are detected. When selecting the length of the 

signal, certain considerations are considered for stationary 

wavelet-based preprocessing. Specifically, the length of the 

signal (example, 1920) must be divisible by 2m where the 

variable m denotes the wavelet decomposition level (here, m is 

5 and so 25 = 32, and 1920/32 = 60 is perfectly divisible). The 

effectiveness of the suggested methodologies is assessed by 

utilizing two evaluation techniques: SNR analysis based on 

Eigenvalues and Cross-correlation coefficients. Additionally, 

the performance of the proposed methods is compared with the 

direct application of the ICA algorithm on the same clinical 

data. 

Upon visually comparing both illustrations, it becomes 

evident that Figure 3 exhibits superior signal quality compared 

to Figure 2 due to a noticeable noise reduction. However, when 

the maternal-fetal signals overlapped, the proposed method-1 

produced FECG signals with a low SNR. This issue is 

effectively addressed by applying the proposed method-2, as 

highlighted by the black box in Figure 3. Table 1 presents a 

comparison between the ISSNF technique and TBA for 

denoising in terms of  SNR(E) and SNR(C) for the DaISy 

database.  

3.2. Physionet Non-invasive Fetal ECG Database 

The PNIFECGDB dataset consists of 55 recordings of 

multichannel AECG signals obtained from a single subject 

during the gestational age period of 21 to 40 weeks. [31] Within 

the database, there are 3 to 4 abdominal channels and 2 thoracic 

channels available for analysis. All channels are sampled at a 

frequency of 1 kHz and have a resolution of 16 bits. The same 

set of recordings used in previous studies [2,5, 6] are utilized for 

fetal ECG extraction and R-peak detection analysis in the 

proposed system. Results of the experimental analysis 

conducted using method-1 (ICA, SWT, ISSNF algorithm) and 

method-2 (ICA, SWT, threshold-based algorithm) on 

PNIFECGDB are presented in Figure 4 and Figure 5, 

respectively. 

Figure 4 shows the fetal ECG extraction results from 

method-1 (combining ICA, SWT, and ISSNF) using the record 

‘ecgca274’ with the channel 1 AECG input signal, extracted 

MECG signal, and the extracted FECG signal, respectively. The 

results of FECG extraction using method-2 (combining ICA, 

SWT, and TBA) for the same record are depicted in Figure 5. 

The first 9600 sampling points are utilized to plot the ECG 

waveforms, which satisfies stationary wavelet preprocessing 

(where m is 5 and so 25 = 32, and 9600/32 = 300 is perfectly 

divisible). For the proposed methodology using NIFECGDB, 

the qualitative and quantitative analyses are performed using 

visual observations and R-peak detection, respectively. 
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3.3. Abdominal and Direct Fetal ECG Database 

In order to validate the proposed approach, the Abdominal 

and Direct Fetal Electrocardiogram Database (ADFECGDB)  

Fig. 3 The FECG extraction using ICA, SWT, and TBA on the DaISy 

database. The figure displays three waveforms arranged from top to 

bottom, representing 1) the AECG signal, 2) the extracted MECG 

signal, and 3) the extracted FECG signal 

Fig. 4 The FECG extraction using ICA, SWT, and ISSNF on the record 

‘ecgca274’belonging to the PNIFECG database. The waveforms from 

top to bottom are 1) the AECG signal, 2) the extracted MECG signal, 

and 3) the extracted FECG signal 

is employed, which is a publicly accessible clinical database 

[32]. The dataset used in this study comprises recordings from 

five pregnant women who delivered between 38-41 weeks of 

gestation. Each record in the database includes four signals 

captured from the maternal abdomen and one signal obtained 

from the fetal scalp. The sampling rate for these signals is 1 kHz, 

and they are recorded for a duration of 5 minutes. 

The experimental results of FECG extraction using 

proposed method-1 (comprising of ICA, SWT, and ISSNF) 

with the record 'r01' are depicted in Figure 6. The figure displays 

the channel 5 AECG input signal, the extracted MECG signal, 

and the extracted FECG signal, respectively.   

Fig. 5 The FECG extraction using ICA, SWT, and TBA on the record 

‘ecgca274’belonging to the PNIFECG database. The waveforms from 

top to bottom are 1) the AECG signal, 2) the extracted MECG signal, 

and 3) the extracted FECG signal.  

Fig. 6 ECG extraction using ICA, SWT and ISSNF on the record 

‘r01’belonging to the ADFECG database. The waveforms from top to 

bottom are 1) the abdominal ECG signal, 2) the extracted maternal 

ECG signal, and 3) the extracted fetal ECG signal.  
 

Figure 7 illustrates the FECG extraction results obtained 

using proposed method-2 (comprising of ICA, SWT, and TBA) 

on the same record as in Figure 6.  

The quality of FECG signals obtained through proposed 

method-2, as compared to method-1, is significantly better, 

indicating that the former method produces superior results. The 

effectiveness of the proposed methods is assessed by evaluating 

the SNR through Eigenvalue analysis and Cross-correlation 

analysis.  

Table 2 presents a comparison of SNR(E) results for each 

record in the ADFECGDB when compared to a recent study. 

On the other hand, Table 3 showcases the SNR(E) and SNR(C) 

performance of the proposed methods on ADFECGDB, along 

with a comparison to similar research works. 
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Table 1.  SNR performance on DaISy database 

Method SNR(E) SNR(C) 

LMS algorithm [7] 0.90 0.60 

LMS+SWT+SSNF [7] 2.20 2.20 

RLS+SWT+ISSNF [8] 2.60 2.55 

RLS+SWT+TBA [Our work] 2.30 2.40 

ICA+SWT+ISSNF [Proposed 

method-1] 
2.75 2.62 

ICA+SWT+TBA [Proposed method-

2] 
3.67 3.42 

Table 2.  SNR(E)  in dB on ADFECGDB 

Record 

Fast 

ICA+SVD 

[21] 

ICA+SWT+ISSN

F (Proposed 

method-1) 

ICA+SWT+TB

A (Proposed 

method-2) 

r01 3.19 1.15 4.78 

r04 2.75 0.89 3.92 

r07 5.35 2.17 5.67 

r08 3.13 1.38 4.24 

r10 3.26 2.13 4.09 

Table 3.  SNR(E) and SNR(C) performance on ADFECGDB 

Method SNR(E) SNR(C) 

Fast ICA [ 16] 0.99 0.59 

Improved fast ICA [16] 1.55 2.02 

Fast ICA+SVD [21] 2.60 2.55 

ICA+SWT+ISSNF (Proposed 

method-1) 
1.54 1.68 

ICA+SWT+TBA (Proposed method-

2) 
4.54 4.82 

Fig.7 The FECG extraction using ICA, SWT, and TBA on the record 

‘r01’belonging to the ADFECG database. The waveforms from top to 

bottom are 1) the AECG signal, 2) the extracted MECG signal, and 3) 

the extracted FECG signal 

4. Discussion 
The experimental results using various databases indicate 

that algorithm-1 (which involves ICA, SWT, and ISSNF) and 

algorithm-2 (which involves ICA, SWT, and TBA) effectively 

separate MECG and noise components and extract FECG signal 

efficiently. The TBA-based approach, especially when 

combined with SWT, demonstrates superior effectiveness and 

efficiency compared to ISSNF. When employing only the ICA 

algorithm without SWT and denoising techniques, the extracted 

FECG still contains maternal components and disturbances. 

However, the combination of ICA and SWT, along with 

the TBA, achieves excellent results in extracting FECG signals. 

While various datasets and algorithms have been employed by 

researchers for FECG extraction, the lack of extensive publicly 

available databases presents a significant limitation. Three 

clinical databases are used to assess the proposed methodology 

using method-1 and method-2.  The lack of a benchmark 

database makes it difficult to directly compare the proposed 

algorithms with existing methods, as there is no standardized 

reference for performance evaluation. 

By utilizing the DaISy database, the SNR(E) and SNR(C) 

performance are evaluated.  Table 1 presents a comparison of 

the SNR results between the proposed methods and the 

algorithm introduced by References [7, 8] for the DaISy 

database. The results indicate that the proposed approach using 

the TBA outperforms the ISSNF algorithm, offering the 

additional advantage of reduced computational complexity. 

Table 4 presents a comparison between the R-peak detection 

performance of the proposed method-1 and proposed method-2 

on three different databases: DaISyDB, NIFECGDB, and 

ADFECGDB. The statistical results presented in Table 4 

indicate that the second method, using the TBA, outperforms 

the first method using ISSNF, for all three databases. 

The DaISy database contains multiple channels of 

abdominal signals, with each channel comprising a total of 22 

fetal cardiac beats. Different combinations of abdominal 

channels are used for experiments. The study examines 572 

fetal beats derived from 26 abdominal input signal 

combinations. In the first approach, ICA, SWT, and ISSNF 

techniques are employed to detect these fetal heartbeats, 

resulting in the correct detection of 560 beats (TP), while 12 

beats are missed (FN), and 4 beats are misdetected (FP). The 

second method uses ICA, SWT, and TBA, which detects 568 

beats (TP) accurately, misses 4 beats (FN) and misdetects 2 

beats (FP).  

The majority of missed fetal QRS complexes are in areas 

where they overlap with maternal QRS complexes, and 

misdetection is more prevalent in areas with low SNR. Table 

4 showcases the enhancements in SE, PP, A, and F1 scores 

achieved by the proposed method-2 when utilizing the 

DaISyDB. 
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Table 4.  R peak detection analysis on three databases 

Method Database SE PP A F1 

ICA+SWT+ISSNF DaISyDB 97.90 99.29 97.22 98.59 

ICA+SWT+ISSNF NIFECGDB 97.78 98.68 96.53 98.23 

ICA+SWT+ISSNF ADFECGDB 96.54 98.67 95.30 97.59 

ICA+SWT+TBA DaISyDB 99.30 99.65 98.95 99.47 

ICA+SWT+TBA NIFECGDB 99.09 99.35 98.45 99.22 

ICA+SWT+TBA ADFECGDB 97.84 98.69 96.58 98.26 

Table 5. The analysis of R-peak detection utilizing various databases. 

Method Database SE PP A F1 

DWT-RI [6] DaISy 100 91.3 91.3 - 

MSF-ANC [5] DaISy - 91.66 84.61 - 

Wavelet [2] DaISy 98.86 100 98.86 - 

PSF + ANC [17] DaISy, PhysioNet2013 97.92 94.66 - 96.12 

Fast ICA + SVD + WT [21] ADFECGDB, PhysioNet2013 96.90 98.23 - 95.24 

Conv1D+ CycleGAN [18] ADFECGDB, NI-FECGDB - - - 99.70 

EEMD + RLS + ICA [14] ADFECGDB, PhysioNet2013 95.09 96.36 - 95.69 

Fast ICA [ 16] ADFECGDB 99.03 98.53 - 98.78 

Improved fast ICA [16] ADFECGDB 99.37 99.00 - 99.19 

RLS+SWT+ISSNF [8] DaISy, NI-FECGDB 97.72 98.85 96.62 - 

RLS+SWT+TBA (Our work) DaISy, NI-FECGDB 98.48 98.48 97.01 - 

ICA+SWT+ISSNF (Proposed method-1) DaISy, NI-FECGDB, ADFECGDB 97.41 98.88 96.35 98.14 

ICA+SWT+TBA (Proposed method-2) DaISy, NI-FECGDB, ADFECGDB 98.74 99.23 97.99 98.98 

The PNIFECGDB is also used for R-peak detection 

analysis, and the SE, PP, A, and F1 values obtained are 

presented in Table 4. The same set of 1-minute recordings 

from PNIFECGDB used in Ref. [2] is selected for the analysis, 

where 767 FQRS are manually annotated by an expert in the 

medical field using visual inspection techniques on the 

channel with the highest-quality fetal QRS appearance. The 

proposed method, utilizing ICA, SWT, and ISSNF, detects 

750 heartbeats (TP) accurately, with 17 heartbeats missed 

(FN) and 10 false detections (FP). The same process is 

repeated for the second method using ICA, SWT, and TBA, 

which accurately detects 760 heartbeats (TP), misses 7 (FN), 

and misdetects 5 (FP). The statistical result presented in Table 

4 indicates that the second method, using the threshold-based 

algorithm, outperforms the first method using ISSNF for the 

PNIFECGDB database.  

In this research, the effectiveness of the suggested 

techniques for extracting fetal ECG signals is assessed by 

examining each record within the ADFECGDB. Additionally, 

the proposed algorithm's performance is compared to that of 

the Fast ICA and SVD algorithms utilized in a prior study 

(referenced as [21]). The SNRs for each record, as determined 

by Eigenvalue analysis, are presented in Table 2. Furthermore, 

Table 3 offers a comparative analysis of SNR performance, 

utilizing both Eigen value coefficients and Cross-correlation 

coefficients, compared to previous research conducted on the 

same database. Different combinations of abdominal input 

signals are used for experiments. The study examines 231 fetal 

beats derived from 11 abdominal channel combinations. 

In the first approach, ICA, SWT, and ISSNF techniques 

are employed to detect these fetal heartbeats, resulting in the 

correct detection of 224 beats (TP), while 7 beats are missed 

(FN), and 3 beats are misdetected (FP). The second method 

uses ICA, SWT, and TBA, which detects 228 beats (TP) 

accurately, misses 3 beats (FN) and misdetects 2 beats (FP). 

To evaluate the detection of fetal ECG signals in the 

ADFECGDB, the signals from the fetal head are used as a 

reference standard for calculation purposes. The calculated 

parameters include SE, PP, A, and the F1 score. The results 

are shown in Table 4. The second method also demonstrates 

superior performance compared to the first method for the 

ADFECGDB. 

Table 5 presents a comparison between the R-peak 

detection performance of the proposed algorithms and state-

of-the-art methods on three different databases: DaISyDB, 

NIFECGDB, and ADFECGDB. The table displays the mean 

SE, PP, A, and F1 scores, calculated based on the FECG 
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extracted from the MECG for each of the three datasets. The 

obtained results indicate that the proposed method-2 achieves 

comparable outcomes to state-of-the-art methods while 

offering the advantage of reduced computational complexity. 

This means that it can deliver similar performance to the 

existing advanced techniques while requiring fewer 

computational resources. By striking a balance between 

effectiveness and efficiency, the proposed method-2 provides 

a promising solution for FECG signal extraction, enabling 

practical implementation in real-world scenarios. 

5. Conclusion 
In order to estimate the fetal heart rate, the research 

introduces a hybrid ICA-based filtering technique that 

combines SWT with two denoising algorithms. Two methods 

are proposed: method-1, which uses ICA, SWT, and the 

ISSNF algorithm, and method-2, which uses ICA, SWT, and 

the TBA. The fetal and maternal components of the AECG 

signals are separated using ICA processing. The SWT is then 

used to apply to the MECG and FECG components that are 

still impacted by noise. 

Even when MECG and FECG signals overlap in the 

wavelet domain, ISSNF and TBA techniques efficiently 

estimate fetal heartbeats. Calculating SNR and looking for R-

peaks allows for quantitative analysis of the experimental 

results. While FECG extraction using the ISSNF and TBA 

approaches both works well, the threshold-based approach 

exhibits improved R-peak detection and lower computational 

cost. The suggested approaches' SNR performance in real-

time scenarios is a considerable advantage, proven using 

clinical data. Future studies will confirm the suggested 

approach through the use of more clinical data, with the 

ultimate goal of employing the proposed methodology to 

diagnose aberrant heart rate activity during pregnancy. 
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