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Abstract - Cylinders are essential in constructing several engineering designs where fluid passes over them. Under varying 

environmental conditions, the fluid flows with impulse, affecting design structures considerably. This paper presents the 

numerical analysis of incompressible low-Re gusty flow with impulse inlet passing through three staggered cylinders. The 

problem is numerically simulated and investigated for two distinct variable factors keeping one constant at a time: inlet gust 

frequency and Reynolds number. The vorticity contours are obtained that provide information about local rotation. The 

streamlines are obtained to identify the wake region. The CL, CD, and St are computed. The results show a beneficial effect 

of variability in impulse intake velocity on the wake region generated between and behind the cylinders. It represents enhanced 

flow characteristics derived from low angular gust frequency value of intake velocity fluctuation. 

Keywords - CFRUNS, Incompressible N-S solver, Low-R, Staggered circular cylinders.

1. Introduction  
Researchers are keenly interested in the flow through 

cylindrical bodies due to its many mechanical, civil, and 

marine engineering applications. The researchers have 

investigated it extensively and reported fundamental 

phenomena associated with it. Some of them are briefly 

summarized as followings. Braza et al. [1] reported viscous 

flow over a circular cylindrical bodies with Re values 100, 

200, and 1000. He used a method based on velocity-pressure 

formulation and a convective scheme. D. J. Tritton [3] 

experimentally measured drag on circular cylindrical bodies 

in the range of Re 0.5 to 100. It provides information about 

vortex sheet transition in the wake region. Harichandan and 

Roy[5] introduced the "CFRUNS" cell flux reconstruction 

unstructured triangular grid fully explicit scheme solver. 

They employed it to investigate flow across two distinct 

configurations of cylinders under uniform fluid flow. Jiro 

Mizushimaa and Norihisa Suehiro[6] investigated uniform 

flow through tandem cylinders with a high Reynolds number, 

focusing on the gap ratio's effect. Papaioannou et al.[8] 

investigated the impact of 2D and 3D research on tandem 

cylinder flow. Yeo et al.[9] have conducted a numerical 

investigation utilizing FDM for uniform flow around 

cylinders. Lin et al.[11] carried out an investigation of the 

tandem cylinder layout for uniform flow and evaluated the 

effect of L/D in-depth, experimentally. Xiaoqiu et al. [14] 

studied three staggered circular cylinders in a symmetrical 

arrangement and correlated the wake frequency and interval 

among the cylinders. Salwa Fezai et al. [16] conducted a 

simulation-based investigation on two configurations of 

square cylinders at low-Re. They reported a comparative 

study of both the configuration and its effect on the lift and 

drag coefficient of cylinders. They also highlighted the effect 

of cylinder arrangement on the critical Re value. Haider et al. 

[18] have simulated different arrangements of circular 

cylinders under uniform flow with low Re. He observed that 

the cylinders in a staggered arrangement have better heat 

transfer characteristics. However, their velocity profile 

demonstrates considerable wake region behind cylinders. 

Meneghini.et al. [19] reported flow interface between 

cylinders in differenct arrangements. The author chirag et al. 

[21] reported gusty flow interface numerically using 

CFRUNS scheme for flow over single circular cylinder at 

different gust frequencies. and explained the effect the gust 

on separation point. The authors Joshi et al. [22] investigated 

the side-by-side cylinder arrangements for flow under gusty 

effect and reported reduced wake. Hence the authors see the 

scope for improvement in flow characteristics by means of 

reduction in wake behind the cylinders as a research gap. An 

attempt is made to numerically investigate the problem with 

flow under artificial gust effect and to identify the better 

design conditions for staggered cylinder arrangement to have 

minimum wake region in specific circumstances. 
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2. Problem Definition 
A flow problem with 2D cylindrical bodies in a 

staggered triangular arrangement with two different 

configurations is influenced by incompressible gusty fluid 

flow with a low Reynolds number (low Re). Here, the gusty 

flow represents the flow with velocity variation based on the 

cosine function. The problem is physically described in Fig.1 

(a) & (b). The first configuration is with two upstream 

circular cylinders and a single downstream cylinder, as 

shown in Fig.1 (a).  

 
Velocity inlet                                                         
U∞=1 (Non Dimensional)   

                                   
                                    Free Stream Wall                      
                                                                                                           

 

 

 

 

 
Y 

                            
         X              Free Stream Wall                     Pressure Outlet 
         
     Fig. 1 (a) Physical representation of problem configuration with 

single cylinder downstream 

 

The second configuration, with one single cylinder on 

the upstream side and two on the downstream side, is shown 

in Fig.1 (b).  

    
  Velocity inlet                                                         
U∞=1 (Non Dimensional)   

                                   
                                    Free Stream Wall                      
                                                                                                           

 

 

 

 

 
Y 

                                
        X                       Free Stream Wall              Pressure Outlet 

 

Fig. 1 (b) Physical representation of problem configuration with 

single cylinder upstream 

 

3. Solution Methodology 
As per the above configurations, the problem is 

simulated using the CFRUNS solver developed by 

Harichandan and Roy [5]. The solver is modified to 

incorporate the gusty effect in the flow to create impulses in 

a specified region of the inlet flow field that acts as a source. 

A cosine wave source is employed to provide v-velocity 

variation in the y-direction. Under the combined effect of u-

velocity inlet and source, the cylinders experience gusty flow 

impulses. The effect of flow variations is captured in terms 

of the physical wake region between and behind the 

cylinders. The lift force coefficient and drag force 

coefficients for cylinder walls are calculated. The vorticity 

contours are obtained that provide information about local 

rotation. The streamlines are obtained to identify the wake 

region. The inlet, upper, and lower flow domain limits are 

10D from the body's centre. And the outflow limit is set at 

25D from the nearest cylinder centre. The outer boundaries 

are applied with free-stream Dirichlet boundary conditions, 

and the body surface is applied with no-slip boundary 

conditions. 

 

3.1. Governing Equations  

Three basic equations govern the fluid flow involved in 

this problem. These are the continuity equation (conservation 

of mass law), the 2D Navier-Stokes x-momentum equation, 

and the y-momentum equations (conservation of momentum 

law), as shown in the differential form below.  

 

Conservation of Mass Equation 

𝛻. 𝑣 = 0          (1) 

Momentum in X direction 
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Where,  

vx represents the horizontal velocity component, 

vy represents the vertical velocity component, 

p represents the pressure-to-density ratio, 

t represents the non-dimensional time  

U∞ represents the Free stream velocity. 

 

The numerical simulation solver code solves governing 

equations iteratively. First-order accuracy in time and 

second-order accuracy in space characterize the solver. It 

follows SIMPLE algorithm steps for a solution where 

velocity and pressure gradients are initially computed based 

on boundary conditions. Then it computes the instantaneous 

velocity fields by solving the discretized momentum 

equations. Afterwards, it corrects the pressure using the 

pressure poison equation. The updated pressure is then 

applied to update boundary pressure conditions. The fluxes 

and cell velocities are then corrected. 

 

As mentioned above, a source velocity component is 

employed in an upstream region defined as follows:  
 

                 (4)  

                                                            

Where ‘ ’ is the amplitude of gust intensity reference to 

the flow, ‘k’ represents the wave number, ‘x’ represents the 

source x-coordinate, and ‘w’ represents the angular gust 

frequency.  
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3.2. Solver Validation 

The results of an identical flow problem are compared 

against numerical and experimental data published by 

researchers for a benchmark flow issue, "uniform flow past a 

single cylinder", to validate the code. The time progression 

study of CL & CD for low Re (Re 100) uniform flow across a 

cylinder is depicted in Figure 2.2. It shows periodic 

oscillation with respect to time, which represents the 

shedding of vortices alternately initiating from the 

cylinder's top and bottom. 
 

      

 
    Fig. 2 Model flow problem and its CL and CD evolution at Re 100 [13] 

 

In Table 1, computed CL & CD values are compared to 

data released by other researchers for a comparable problem. 

Observations indicate that the computed findings are 

comparable. It demonstrates the code's predictability for 

handling comparable issues with low-Re. 
 

Table 1. Comparison of computed data with published data flow over a 

cylinder (Re 100) 

Author CL  CD  

Chassing et al. [1]  1.364 ± 0.02 ± 0.25 

Tritton [3] 1.320 ± 0.01 NA 

A B Harichandan et al. [5] 1.352 ± 0.01 ± 0.278 

Yeo et al. [9] 1.356 ± 0.01 ± 0.287 

Saltara et al. [19] 1.370 ± 0.01 NA 

Present code Results 1.359 ± 0.01 ± 0.251 

 

3.3. Grid Independence  

The grid independence is carried out using 80, 120, 160, 

and 200 line elements on the cylinder's circumference. 

Referred to Table 2, the results are significantly refined as the 

number of elements on the cylinder circumference increases 

from 40 to 160. However, after 160, there is no substantial 

variation.  
 

Table 2. Result for grid test for single cylinder (Re 100) 
Elements on cylinder 

circumference 

of cylinder 

CL CD St 

80 1.112 ± 0.021 0.181 0.168 

120 1.185 ± 0.015 0.210 0.164 

160 1.352 ± 0.010 0.278 0.161 

200 1.381 ± 0.010 0.281 0.161 

4. Results and Discussion 
As mentioned in Section 2, two different configurations 

of cylinders in the triangular arrangement are studied under 

gusty flow. Figure 3 shows the grid generated for simulation 

with 160 elements on the cylinder wall. Figure 4 represents 

comparative streamlined plot results. Figure 5 shows the 

contour plot for the said two configurations.  

 

  
Fig. 3 Grid generation  

   

  

Fig. 4 Streamline plot for Re = 100, T = 3D, and w = 0.25π 

  
Fig. 5 Vorticity contours plot for Re = 100, T = 3D, and w = 0.25 

 

Figure 6 shows the time evaluation results for the two 

configurations. It is observed that out of the two stated 

arrangements, the second one, wherein a single cylinder is 

upstream, and two cylinders are downstream, shows more 

fluctuations in CL and CD comparatively. That indicates more 

fluctuating flow in the second configuration compared to the 

first one.  
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Fig. 6 The time progression study of CL & CD for w = 0.25 

 

 

 
(a)  

 

 
(b) 

 

 

(c) 

  
(d) 

Fig. 7 Streamline plot for Re = 100, T = 3D, and (a) w = 0.25π, (b) w 

=0.50π, (c) w = 0.75π, (d) w = 1.0π 

 

Further, considering more fluctuating characteristics 

of the second type of arrangement, it is studied with four 

gust frequency values at Re 100 to study wake 

characteristics in this case. The gust frequencies employed 

for the study are (a) w = 0.25π, (b) w =0.50π, (c) w = 0.75π, 

(d) w = 1.0π.  
 

Figure 7 represents the comparative result plots of 

streamline and velocity contour that give insight into wake 

at different gust frequency values. 

 

As visible in Figure 7, for the considered value of Re, 

with low gust frequency, i.e.0.25π, the amount of wake 

generated is minimum. With increased gust frequency to 

1.0π, flow behaves like uniform flow, and sows increased 

wake region. It shows that an artificial low gust frequency 

flow can help to reduce the amount of wake in a low 

Reynolds number flow.   

 
Table 3. Result for flow over the staggered cylinder (Re 100) 

Parameters 
CL CD 

Re = 100 Re = 100 

W=0.25π UC 0.5483 ± 0.0441 -0.016 ± 0.1905 

W=0.50π UC 0.39965 ± 0.03295 -0.0166 ± 0.0181 

W=0.75π UC 0.3961 ± 0.0303 -0.0158 ± 0.0049 

W=1.0π UC 0.389 ± 0.0327 -0.016 ± 0.0027 

W=0.25π DUC -0.97655 ± 0.13515 -0.0531 ± 0.2519 

W=0.50π DUC -0.93335 ± 0.02675 -0.0328 ± 0.0413 

W=0.75π DUC -0.9351 ± 0.0323 -0.0304 ± 0.0275 

W=1.0π DUC -0.9492 ± 0.0429 -0.0255 ± 0.0227 

W=0.25π DLC 0.90975 ± 0.11755 -0.0538 ± 0.1598 

W=0.50π DLC 0.80765 ± 0.04535 -0.0536 ± 0.0151 

W=0.75π DLC 0.80015 ± 0.04245 -0.0518 ± 0.0117 

W=1.0π DLC 0.78535 ± 0.04085 -0.0538 ± 0.0107 

 

During the study, it is found that, for the same gust 

frequency, with the increase in Reynolds number from 50 

to 75 to 100, there is no significant variation in the flow 

pattern except the elongation of flow contours downstream 

side of the cylinders. It supports the theoretical argument 

that the flow will travel fast at increased Re due to 

increased velocity, resulting in an elongated pressure 

region. 
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Fig. 8 Effect of gust (ω) on CL, CD, and St at Re 100 

  

Table 3 shows the results for the effect of gust frequency 

on the upstream single cylinder, downstream upper cylinder, 

and downstream lower cylinder.  

 

The results for Re 100 that are listed in Table 3 are 

represented in fig.8 in terms of charts, comparing the effect 

of gust frequency variation on the CL, CD and St. The analysis 

shows that there is a significant difference in the effect of gust 

frequency variation on a single upstream cylinder, 

downstream upper cylinder, and downstream lower cylinder 

as shown in three different charts in fig.8. 

 

Similarly, as the study carried out and discussed above, 

the analysis is also done for the other two values of Reynolds 

number for Re 75 and Re 50, as mentioned previously. The 

results are listed in Table 4 and Table 5. 

 
Table 4. Result for flow over the staggered cylinder (Re 75) 

Parameters 
CL CD 

Re = 75 Re = 75 

W=0.25π UC 0.50425 ± 0.03525 -0.0153 ± 0.1668 

W=0.50π UC 0.37235 ± 0.02565 -0.01505 ± 0.01625 

W=0.75π UC 0.3651 ± 0.029 -0.0138 ± 0.0039 

W=1.0π UC 0.36505 ± 0.02835 -0.0138 ± 0.0023 

W=0.25π DUC -0.96185 ± 0.14985 -0.05025 ± 0.21265 

W=0.50π DUC -0.863 ± 0.0165 -0.0345 ± 0.0227 

W=0.75π DUC -0.85855 ± 0.02355 -0.0348 ± 0.0125 

W=1.0π DUC -0.86575 ± 0.02455 -0.03415 ± 0.00965 

W=0.25π DLC 0.8686 ± 0.1528 -0.04865 ± 0.13225 

W=0.50π DLC 0.79695 ± 0.04025 -0.0472 ± 0.01 

W=0.75π DLC 0.78935 ± 0.02535 -0.0486 ± 0.0037 

W=1.0π DLC 0.7879 ± 0.0245 -0.04945 ± 0.00215 
 

Table 5. Result for flow over the staggered cylinder (Re 50) 

Parameters 
CL CD 

Re = 50 Re = 50 

W=0.25π UC 0.42905 ± 0.04845 -0.0161 ± 0.141 

W=0.50π UC 0.35445 ± 0.03235 -0.01285 ± 0.02345 

W=0.75π UC 0.3456 ± 0.0294 -0.00888 ± 0.00792 

W=1.0π UC 0.3467 ± 0.0263 -0.01325 ± 0.00235 

W=0.25π DUC -0.8975 ± 0.1234 -0.0601 ± 0.1498 

W=0.50π DUC -0.83845 ± 0.02055 -0.0481 ± 0.0127 

W=0.75π DUC -0.8414 ± 0.0294 -0.0477 ± 0.0029 

W=1.0π DUC -0.8446 ± 0.0207 -0.04805 ± 0.00205 

W=0.25π DLC 0.84335 ± 0.12785 -0.05135 ± 0.09695 

W=0.50π DLC 0.7951 ± 0.0382 -0.0502 ± 0.0078 

W=0.75π DLC 0.801 ± 0.0264 -0.05065 ± 0.00185 

W=1.0π DLC 0.8059 ± 0.0226 -0.0513 ± 0.0015 
 

Considering all the above investigations and results, it is 

observed that the flow approaches uniform flow as the values 

of gust frequency increase within range. The amount of the 

wake behind the cylinders is reduced considerably as the 

values of gust frequency decrease within the range. That is 

Angular Gust Frequency

Effect of gust (ω) on CL, CD, and St for 

upstream cylinder at Re 100  

CL mean CD mean Strauhal No

Angular Gust Frequency

Effect of gust (ω) on CL, CD, and St for 

downstream lower at Re100  

CL mean CD mean Strauhal No

Angular Gust Frequency

Effect of gust (ω) on CL, CD, and St for 

downstream upper cylinder at Re 100  

CL mean CD mean Strauhal No
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because; the cosine function impulse creates continuous 

variation in the flow direction and creates a gusty effect in the 

x direction. That is providing a shift of flow separation points 

continuously. This variation does not allow the wake to settle 

down in the region behind the cylinder, specifically at low 

gust frequencies. And considerably reduced wake in the 

region behind the cylinders is observed.  

5. Conclusion  
The extension of fully explicit code with CFR scheme 

for gusty flow can capture the flow patterns with significantly 

less computational facility, provided that it takes 

considerable time to solve the flow problem. As a key 

outcome of the work, the results demonstrate the positive 

effect of low gust frequency impulse (i.e. 0.25π) in the 

incompressible flow in terms of narrowing down the wake 

region behind the cylinders. It is also to be noted that the 

values of CL and CD with gusty impulse flow are a little lower 

than that of uniform flow with the same Re.    

Abbreviations  
USC Upstream Single Cylinder 

DUC           Downstream Upper Cylinder 

DLC           Downstream Lower Cylinder  

DSC Downstream Single Cylinder 

UC Upper Cylinder 

Low-Re Low Reynolds Number 

CD Drag force coefficient  

CL Lift force coefficient 

St Srouhal Number 

W Angular Gust Frequency  
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