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Abstract - Nowadays, mobile robots are applied to many types of jobs in different industries such as industry, logistics, service 

and some dangerous fields that replace humans, such as mine detection, oil and gas exploitation, chemical production, and 

weapons. Therefore, there is more and more research on mobile robot control. This paper proposes a new control method that 

is to use a sliding mode controller (SMC) combined with adaptive law based on radial basis function neural network (RBFNN) 

for a three-wheeled omnidirectional mobile robot (TWOMR). In the process of working, the robot will be affected by external 

disturbances and model uncertainty, so the neural network is used to approximate these components. The system is proven stable 

based on Lyapunov's theory. The system simulation results show that the proposed controller meets the desired quality criteria. 

Keywords - Sliding mode control, Three-wheel omnidirectional mobile robot, Radial basis function neural network, Adaptive 

control, External disturbances. 

1. Introduction  
TWOMR uses three Omni wheels so it can move in any 

direction without changing the wheels' direction. Because the 

wheel has a different structure and layout, the robot is suitable 

for applications in tight spaces and is increasingly used in 

research and life. Robot with a combination of rotational and 

translational motion following a predetermined trajectory in a 

short time, moving is even easier. So, when the object is lost, 

the robot can use the point rotation feature to detect it. With 

these outstanding capabilities, the robot's strengths have been 

promoted for professional robot designs that need flexibility 

and quick navigation. 

 

TWOMR

 
Fig. 1 Mobile robot using omnidirectional wheels  

0360

 
Fig. 2 Omni wheel model 

 

In recent years, many researchers have proposed methods 

to control mobile robots. When the robot works in ideal 

conditions and is not affected by model uncertainty and 

external disturbances, the authors use a classical controller to 

implement as simple as a PID controller [1]. In the document 

[2], the orbital linearization controller (TLC) is used for both 

kinematic loops (outer loop) and dynamic loops (inner loop). 

To ensure the quality when controlling the robot considering 

the nonlinear uncertainties, the Backstepping technique has 

been shown to be a possible solution [3,4]. The backstepping 

technique is capable of synthesizing a stable nonlinear control 

system based on determining the Lyapunov control function 

for the closed system. However, in the case of a high-order 

nonlinear system with a large amount of computation, it will 

take a long time due to the need to calculate the derivative in 

each iteration. When the robot is affected by external 

disturbances, a sliding mode controller (SMC) is included in 

the design [5-12]. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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SMC is used because of its stability, fast response, and 

simple control law that can be used for nonlinear systems with 

uncertain parameters and impact noise. The limitation of SMC 

is chattering. Besides, other modern controllers are also 

proposed when the dynamic equation of the robot has 

uncertain parameters, such as adaptive control [13-16]. Robust 

adaptive sliding mode control in the presence of model 

uncertainty and external disturbances [17-24]. First, the SMC 

controller is designed and then uses the adaptive law to 

estimate the uncertainty component and the upper limit of the 

external disturbances. In addition, some studies using fuzzy 

logic systems as adaptive tuning mechanisms have 

significantly improved the quality of nonlinear controllers 

[25-31]. For example, combining traditional PI control with a 

fuzzy logic system for parameter setting ensures that the 

system works with constant quality when the object changes 

and there is interference [25,26]. To improve the control 

quality of nonlinear controllers, fuzzy adaptive controllers are 

built based on the combination of nonlinear control with a 

fuzzy tuning mechanism, such as a fuzzy sliding mode 

controller [27,28]. The basic advantage of fuzzy adaptive 

controllers is that they have adopted a simple tuning 

mechanism in design and implementation. However, when 

building control rules for fuzzy controllers often depends on 

the experience of the designer. With the ability to learn and 

approximate nonlinear functions with high accuracy, many 

publications have recently used neural networks in robot 

control systems. Neural networks are often combined with 

nonlinear control algorithms to approximate uncertain 

components suitable for controlling robot motion, objects with 

high nonlinearity, containing uncertain components such as 

friction, variable load, or unknown external disturbances. 

 

Based on the study of published references in recent 

years, an adaptive sliding mode controller (ASMC) for 

TWOMR based on RBFNN is proposed for research. In which 

the SMC controller is designed first, and then RBFNN is used 

for online approximation of the model uncertainty 

components and unknown external disturbances. 

 

The structure of the paper is presented with the following 

contents: The second content builds the kinematics and 

dynamics equations of TWOMR, the third content presents the 

ASMC controller design method, and the results are 

presented. In fourth content finally, conclusions and directions 

for further research are presented in the fifth content. 

2. Mathematical Model of TWOMR 
Figure 3 shows the configuration of the applied geometry 

model for TWOMR. The three omnidirectional wheels have 

the same radius r and are driven by DC motors. The center of 

displacement of the TWOMR is located at A and is assumed 

to coincide with the geometric center. 

 

The circular robot chassis is very commonly used in the 

research and manufacturing of mobile robots and control cars. 

Designed with extremely sturdy plastic, mica or metal frame, 

the Omni wheel is extremely versatile. The motor has a 

deceleration for stable operation, making this product very 

interesting in robotics research. 

 
Fig. 3 Geometric structure of TWOMR 

 

The location of the TWOMR is 𝒒 = [𝒙𝑨 𝒚𝑨 𝜶𝑨]𝑻; 

vector𝑷𝑪 = 𝑶𝑨⃗⃗⃗⃗⃗⃗ = [𝒙𝑨 𝒚𝑨]𝑻; 𝑳𝒘𝒊 ∈ ℝ𝟐×𝟏 (i=1,2,3);  

𝑯𝒘𝒊 ∈ ℝ𝟐×𝟏 (i=1,2,3). 

 

2.1. Kinematic Model  

The rotation matrix 𝑄(𝛼𝐴) is represented 

 

 
𝑄(𝛼𝐴) = [

𝑐𝑜𝑠 𝛼𝐴 − 𝑠𝑖𝑛 𝛼𝐴

𝑠𝑖𝑛 𝛼𝐴 𝑐𝑜𝑠 𝛼𝐴
] 

 

(1) 

 

The position vectors 𝐿𝑤1 , 𝐿𝑤2, 𝐿𝑤3 are calculated: 

 𝐿𝑤1 = 𝑅 [
1
0
] 

 

 

(2) 

 
𝐿𝑤2 = 𝑄 (

2𝜋

3
) × 𝐿𝑤1 

 

= [
𝑐𝑜𝑠 (

2𝜋

3
) − 𝑠𝑖𝑛 (

2𝜋

3
)

𝑠𝑖𝑛 (
2𝜋

3
) 𝑐𝑜𝑠 (

2𝜋

3
)

] × 𝑅 [
1
0
] 

 

=

[
 
 
 
 −

1

2
−

√3

2

√3

2
−

1

2 ]
 
 
 
 

× 𝑅 [
1
0
] =

𝑅

2
[
−1

√3
] 

 

 

 

 

 

 

 

(3) 

  

𝐿𝑤3 = 𝑄 (
4𝜋

3
) × 𝐿𝑤1 

 

= [
𝑐𝑜𝑠 (

4𝜋

3
) − 𝑠𝑖𝑛 (

4𝜋

3
)

𝑠𝑖𝑛 (
4𝜋

3
) 𝑐𝑜𝑠 (

4𝜋

3
)

] × 𝑅 [
1
0
] 

 

 

 

 

 

 

 

(4) 
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=

[
 
 
 
 −

1

2

√3

2

−
√3

2
−

1

2]
 
 
 
 

× 𝑅 [
1
0
] = −

𝑅

2
[

1

√3
] 

 

𝐻𝑤𝑖 vectors are calculated according to the formula: 

 
𝐻𝑤𝑖 =

1

𝑅
𝑄(𝛼𝐴) × 𝐿𝑤𝑖  

 

(5) 

 

From the above formula, we can calculate 𝐻𝑤1 

 
𝐻𝑤1 =

1

𝑅
𝑄(𝛼𝐴) × 𝐿𝑤1 

 

=
1

𝑅
𝑄 (

𝜋

2
) × 𝐿𝑤1 

 

=
1

𝑅
[
𝑐𝑜𝑠 (

𝜋

2
) − 𝑠𝑖𝑛 (

𝜋

2
)

𝑠𝑖𝑛 (
𝜋

2
) 𝑐𝑜𝑠 (

𝜋

2
)

] × 𝑅 [
1
0
] 

 

= [
0 −1
1 0

] × [
1
0
] = [

0
1
] 

 

 

 

 

 

 

 

(6) 

 

𝐻𝑤2 is calculated as follows 

 
𝐻𝑤2 =

1

𝑅
𝑄(𝛼𝐴) × 𝐿𝑤2 

 

=
1

𝑅
𝑄 (

𝜋

2
) × 𝐿𝑤2 

 

=
1

𝑅
[
𝑐𝑜𝑠 (

𝜋

2
) − 𝑠𝑖𝑛 (

𝜋

2
)

𝑠𝑖𝑛 (
𝜋

2
) 𝑐𝑜𝑠 (

𝜋

2
)

] ×
𝑅

2
[
−1

√3
] 

 

=
1

2
[
0 −1
1 0

] × [
−1

√3
] = −

1

2
[√3

1
] 

 

 

 

 

 

 

 

(7) 

 

𝐻𝑤3 is calculated as follows 

 

 

 

 

 

 

 

 

𝐻𝑤3 =
1

𝑅
𝑄(𝛼𝐴) × 𝐿𝑤3 

 

=
1

𝑅
𝑄 (

𝜋

2
) × 𝐿𝑤3 

 

=
1

𝑅
[
𝑐𝑜𝑠 (

𝜋

2
) − 𝑠𝑖𝑛 (

𝜋

2
)

𝑠𝑖𝑛 (
𝜋

2
) 𝑐𝑜𝑠 (

𝜋

2
)

] × (−
𝑅

2
) [

1

√3
] 

= −
1

2
[
0 −1
1 0

] × [
1

√3
] =

1

2
[√3
−1

] 

 

 

 

 

 

 

 

 

(8) 

In the global coordinate system, 𝑃𝑖  and 𝑉𝑖 are calculated as 

follows: 

 𝑃𝑖 = 𝑃𝐴 + 𝑄(𝛼𝐴) × 𝐿𝑤𝑖  

 

𝑉𝑖 = 𝑃̇𝐴 + 𝑄̇(𝛼𝐴) × 𝐿𝑤𝑖  

 

𝑉𝑖
𝑇 = 𝑃̇𝐴

𝑇 + 𝑄̇𝑇(𝛼𝐴) × 𝐿𝑤𝑖
𝑇  

 

 

(9) 

   

From the above expressions, we can calculate the angular 

velocity of the wheels. 

 
𝜔𝑖 =

1

𝑟
𝑉𝑖

𝑇 × 𝑄(𝛼𝐴) × 𝐻𝑤𝑖  

 

=
1

𝑟
[𝑃̇𝐴

𝑇 × 𝑄(𝛼𝐴) × 𝐻𝑤𝑖] 

 

+
1

𝑟
[𝐿𝑤𝑖

𝑇 × 𝑄̇𝑇(𝛼𝐴) × 𝑄(𝛼𝐴) × 𝐻𝑤𝑖] 

 

 

 

 

(10) 

 

The kinematic equation of TWOMR is written as follows 

[5,6]: 

 
[

𝜔1

𝜔2

𝜔3

] 

=
1

𝑟

[
 
 
 
 

− 𝑠𝑖𝑛(𝛼𝐴) 𝑐𝑜𝑠(𝛼𝐴) 𝑅

− 𝑠𝑖𝑛 (
𝜋

3
− 𝛼𝐴) − 𝑐𝑜𝑠 (

𝜋

3
− 𝛼𝐴) 𝑅

𝑠𝑖𝑛 (
𝜋

3
+ 𝛼𝐴) − 𝑐𝑜𝑠 (

𝜋

3
+ 𝛼𝐴) 𝑅]

 
 
 
 

 

× [

𝑥̇𝐴

𝑦̇𝐴

𝛼̇𝐴

] 

 

 

 

 

 

 

 

 

 

(11) 

 

2.2. Dynamic Model  

The dynamic equation of the robot [5,6]: 

 𝑀(𝑞)𝑞̈ + 𝑀(𝑞)𝑞̇ + 𝜏𝑑 = 𝑢 (12) 

In there: 

𝑀 = [

𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

] 

𝐶 = 𝑎 [
0 −𝛼𝐴 0
𝛼𝐴 0 0
0 0 0

] 

 

𝑚1 = 𝑚2 = 𝑀𝑟 +
3𝐼𝑤
2𝑟2

 

 

𝑚3 = 𝐼𝑟 +
3𝐼𝑤𝑅2

𝑟2
 

 

𝑎 =
3𝐼𝑤
2𝑟2

; 𝑢 = 𝐵𝜏 

𝐵 =
1

𝑟

[
 
 
 
 − 𝑠𝑖𝑛(𝛼𝐴) − 𝑠𝑖𝑛 (

𝜋

3
− 𝛼𝐴) 𝑠𝑖𝑛 (

𝜋

3
+ 𝛼𝐴)

𝑐𝑜𝑠(𝛼𝐴) − 𝑐𝑜𝑠 (
𝜋

3
− 𝛼𝐴) − 𝑐𝑜𝑠 (

𝜋

3
+ 𝛼𝐴)

𝑅 𝑅 𝑅 ]
 
 
 
 

 



Le Thi Hoan et al. / IJETT, 71(5), 9-17, 2023 

 

12 

3. Design Controller 
3.1. Sliding Mode Controller (SMC) 

The SMC method is increasingly used in applications. 

Because of the robustness of the SMC, it is especially suitable 

for working objects affected by disturbance. 

 

In this section, we use SMC to design a clinging controller 

for TWOMR; the target is the trajectory of the robot moving 

in the reference trajectory. From the dynamic equation (12), 

we put the matrix 

 

𝑀(𝑞) = 𝑀1(𝑞) + 𝛥𝑀; 𝐶(𝑞) = 𝐶1(𝑞) + 𝛥𝐶 

 

We have: 

 [𝑀1(𝑞) + 𝛥𝑀]𝑞̈ + [𝐶1(𝑞) + 𝛥𝐶]𝑞̇ = 𝑢 − 𝜏𝑑 

𝑀1(𝑞)𝑞̈ + 𝐶1(𝑞)𝑞̇ 

 
= 𝑢 − 𝜏𝑑 − 𝛥𝑀𝑞̈ − 𝛥𝐶𝑞̇ = 𝑢 − 𝐷(𝑞) 

 

 

(13) 

 

The materials 

 

 𝑞̈ = 𝑀1
−1(𝑞)[𝑢 − 𝐷(𝑞) − 𝐶1(𝑞)𝑞̇] 

= 𝑀1
−1(𝑞)𝑢 − 𝑀1

−1(𝑞)𝐷(𝑞) − 𝑀1
−1(𝑞)𝐶1(𝑞)𝑞̇ 

= 𝑀1
−1(𝑞)𝑢 − 𝐺(𝑞) − 𝐸(𝑞)𝑞̇ 

 

(14) 

The materials 

 𝐺(𝑞) = 𝑀1
−1(𝑞)𝐷(𝑞) 

𝐸(𝑞) = 𝑀1
−1(𝑞)𝐶1(𝑞) 

 

(15) 

 

Uncertainty is approximately equal to RBFNN. In SMC, 

assuming these components are zero, the dynamic equation of 

TWOMR: 

 𝑞̈ = 𝑀1
−1𝑢 − 𝐸𝑞̇ (16) 

 

The problem is to control TWOMR to follow the 

reference trajectory with tracking error 𝑒𝑞 = 𝑞𝑑 − 𝑞 → 0 

 

The sliding surface is defined as: 𝑠 = 𝑒̇𝑞 + 𝜆𝑒𝑞; 𝜆 is a 

positive definite matrix. 

 𝑠̇ = 𝑒̈𝑞 + 𝜆𝑒̇𝑞 = 𝑞̈𝑑 − 𝑞̈ + 𝜆𝑒̇𝑞 

= 𝑞̈𝑑 + 𝜆𝑒̇𝑞 − 𝑀1
−1(𝑞)𝑢 + 𝐸(𝑞)𝑞̇ 

= −𝑘1𝑠 − 𝑘2 𝑠𝑔𝑛(𝑠) 

 

 

(17) 

  

𝑠𝑔𝑛(𝑠𝑖) = {

𝑠𝑖

‖𝑠𝑖‖
; wℎ𝑒𝑛 ‖𝑠𝑖‖>0 

0;  wℎ𝑒𝑛 ‖𝑠𝑖‖=0  
 

 

 

(18) 

 

The SMC controller is designed as follows: 

 
𝑢 = 𝑀1 [

𝑘1𝑠 + 𝑘2 𝑠𝑔𝑛(𝑠)

+𝜆(𝑞̇𝑑 − 𝑞̇) + 𝑞̈𝑑 + 𝐸𝑞̇
] 

(19) 

 

We see that the control signal of the SMC has a sign 

function, and there is a chattering of oscillation states around 

the sliding surface. Therefore, in the next section, use RBFNN 

to replace the equivalent control component in the sliding 

control. 

 

3.2. Structure of RBFNN 

RBF neural network is considered one of the artificial 

neural networks with many advantages to solve the problem 

of approximation of the uncertain component. RBF neural 

network has been interesting in research, and there have been 

quite a few RBF network training algorithms applied in 

practical applications showing very positive results. 

 

The RBF neural network in the study has 3 layers: an input 

layer, a hidden layer and an output layer. With simple structure 

but high efficiency, such as fast online learning ability and a 

good approximation of nonlinear functions [32-34]. 

 

The structure of the RBF consists of three layers, as shown 

in Figure 4. 

 
Fig. 4 Structure of RBFNN 

 

Input layer 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 

 

 

 

 

𝛿𝑗 = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑐𝑗‖

2

2𝑏𝑗
2 ) ; 𝑗 = 1,2,3, . . . , 𝑚 

 

(20) 

 

The output layer of RBFNN is calculated as follows: 

 

 𝑓(𝑥) = 𝑊𝑇𝛿 + 𝜀 (21) 

 

𝑊 is the weight vector of RBFNN. 

 

When the model has uncertain components and external 

disturbances, the sliding mode control law is written as 

follows: 

 
𝑢 = 𝑀1(𝑞) [

𝑘1𝑠 + 𝑘2 𝑠𝑔𝑛(𝑠) + 𝜆(𝑞̇𝑑 − 𝑞̇)

+𝑞̈𝑑 + 𝐸𝑞̇ + 𝐺
] 

 

= 𝑀1[𝑘1𝑠 + 𝑘2 𝑠𝑔𝑛(𝑠) + 𝑓(𝑥)] 

 

 

(22) 

In there 

 𝑓(𝑥) = [𝜆(𝑞̇𝑑 − 𝑞̇) + 𝑞̈𝑑 + 𝐸𝑞̇ + 𝐺] (23) 
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We use RBFNN to approximate f(x), and then we have: 

 

 𝑢(𝑡) = 𝑀1(𝑞)[𝑘1𝑠 + 𝑘2 𝑠𝑔𝑛(𝑠) + 𝑓(𝑥)] (24) 

 

 𝑓(𝑥) = 𝑊̂𝑇𝛿 (25) 

Where 𝑊̂𝑇 is the weight matrix of the updated RBFNN 

and the approximate error of the function is calculated as 

follows: 

 𝑓 = 𝑓 − 𝑓  

= 𝑊𝑇𝛿 + 𝜀 − 𝑊̂𝑇𝛿 = 𝑊̃𝑇𝛿 + 𝜀 (26) 

 𝑊̃ = 𝑊 − 𝑊̂  

 

From expression 𝑓(𝑥), input states of RBFNN are chosen 

as: 𝑥 = [𝑒𝑞 𝑒̇𝑞 𝑞 𝑞̇]𝑇 

 

Weights RBFNN are updated as follows: 𝑊̇̂ = 𝜅𝛿𝑠 

The proposed control structure is shown in Figure 5 

 

 
Fig. 5 ASMC control architecture based on RBFNN 

 

3.3. Stability Analysis 

The Lyapunov method is used to evaluate the stability of 

any higher-order nonlinear system. Besides this method is also 

used to analyze and design nonlinear controllers. There is no 

specific method to determine the Lyapunov function. 

Depending on the specific application, it is possible to choose 

based on the experience and practical meaning of the system. 

For systems in mechanics or engineering, the Lyapunov 

function can be chosen as the energy function. 

Choose the Lyapunov function: 

 

 
𝑉 =

1

2
𝑠𝑇𝑠 +

1

2
tr(𝑊̃𝑇𝜅−1𝑊̃) 

(27) 

 

 

The time derivative of V is obtained as the following: 

 𝑉̇ = 𝑠𝑇 𝑠̇ + tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

= 𝑠𝑇(𝑒̈𝑞 + 𝜆𝑒̇𝑞) + tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

 

 

 

 

= 𝑠𝑇(𝑞̈𝑑 − 𝑞̈ + 𝜆𝑒̇𝑞) + tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

 

= 𝑠𝑇 [
𝑞̈𝑑 − 𝑀1

−1𝑢

+𝑀1
−1𝐷 + 𝐸𝑞̇ + 𝜆𝑒̇𝑞

] 

 

+tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

 

= 𝑠𝑇 [
𝑞̈𝑑 − 𝑀1

−1𝑢
+𝐺 + 𝐸𝑞̇ + 𝜆𝑒̇𝑞

] 

 

+tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

 

= 𝑠𝑇[𝑓(𝑥) − 𝑀1
−1(𝑞)𝑢(𝑡)] 

+tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

 

 

 

 

 

 

 

 

(28) 

 

 

Substituting expression (24) into (28), we have: 
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𝑉̇ = 𝑠𝑇 {

𝑓(𝑥) − 𝑀1
−1(𝑞)𝑀1(𝑞)

× [𝑘1𝑠 + 𝑘2 𝑠𝑔𝑛(𝑠) + 𝑓(𝑥)]
} 

+tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

 

= 𝑠𝑇[𝑓(𝑥) − 𝑘1𝑠 − 𝑘2 𝑠𝑔𝑛(𝑠) − 𝑓(𝑥)] 

+tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

 

= 𝑠𝑇[𝑓(𝑥) − 𝑘1𝑠 − 𝑘2 𝑠𝑔𝑛(𝑠)]

+ tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

= 𝑠𝑇[𝑊̃𝑇𝛿 + 𝜀 − 𝑘1𝑠 − 𝑘2 𝑠𝑔𝑛(𝑠)] 

+tr (𝑊̃𝑇𝜅−1𝑊̇̃) 

= 𝑠𝑇[𝜀 − 𝑘1𝑠 − 𝑘2 𝑠𝑔𝑛(𝑠)] 

+tr𝑊̃𝑇 (𝜅−1𝑊̇̃ + 𝛿𝑠𝑇) 

 

 

 

 

 

 

 

 

 

 

(29) 

   

Where 𝑘1, 𝑘2 are positive definite matrices. Then we 

have: 𝑊̇̃ = 𝑊̇ − 𝑊̇̂ = −𝑊̇̂. 

 

Expression (29) is written as follows: 

 

 𝑉̇ = 𝑠𝑇𝜀 − 𝑘1𝑠
𝑇𝑠 − 𝑘2‖𝑠‖ 

+tr𝑊̃𝑇 (−𝜅−1𝑊̇̂ + 𝛿𝑠𝑇) 

 

(30) 

We put 

 𝑉̇1 = 𝑠𝑇𝜀 − 𝑘1𝑠
𝑇𝑠 − 𝑘2‖𝑠‖ 

≤ ‖𝜀‖𝑠𝑇 − 𝑘1𝑠
𝑇𝑠 − 𝑘2‖𝑠‖ 

≤ 𝜀𝑁‖𝑠‖ − 𝑘1𝑠
𝑇𝑠 − 𝑘2‖𝑠‖ ≤ 0 

 

 

(31) 

⇒ 𝑉̇ ≤ 0 deduce the system is stable. 

4. Simulation Results 
Simulation on Matlab-Simulink software. The parameter 

table of TWOMR is given: 
 

Table 1. Symbol of TWOMR 

Symbol Value Measure 

r 0.06 m 

R 0.2 m 

Mp 5 kg 

  

 At t=0, the actual position of the Omni robot is the origin 

of the global reference system. TWOMR at coordinates (0,0) 

will be controlled to run in a circle centered at the origin O of 

the global reference system, radius 5m. 

Sample trajectory: 

{

𝑥 = 5cos(0.1𝑡)

𝑦 = 5sin(0.1𝑡)

𝛷 = 0.1𝑡 +
𝜋

2

 

 
Fig. 6 Trajectory tracking of TWOMR 

 
Fig. 7 Tracking error x-axis 

 
Fig. 8 Tracking error y-axis 
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Fig. 9 Tracking error in direction angle 

 

 
Fig. 10 Error of tracking speed of wheel 1 

 

 
Fig. 11 Error of tracking speed of wheel 2 

 

 
Fig. 12 Error of tracking speed of wheel 3 

 Remark: From the simulation results of Figures 

6,7,8,9,10,11,12, we see that the controller gave very good 

grip quality. The actual trajectory of the robot has followed 

the reference trajectory; the tracking error is almost zero. 

5. Conclusion  
 This paper presents the design method of the adaptive 

sliding mode controller for TWOMR. In which the SMC is 

designed so that the robot tracks the reference trajectory, The 

adaptive rule based on the RBFNN is introduced to 

approximate the model uncertainty component, the unknown 

external disturbances. The stability of the whole closed-loop 

system is proven based on the Lyapunov theory. Simulation 

results have shown the effectiveness of the proposed method. 

The next research direction will put the installation algorithm 

for the actual model. 
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