
International Journal of Engineering Trends and Technology Volume 71 Issue 4, 21-28, April 2023

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V71I4P203 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Combinatorial Black Hole Algorithm: A Metaheuristic

Approach for Combinatorial Testing

Izrulfizal Saufihamizal Ibrahim1, Rosziati Ibrahim2, Mazidah Mat Rejab3

1,2,3Department of Software Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.

1Corresponding Author : rosziati@uthm.edu.my

Received: 26 December 2022 Revised: 02 March 2023 Accepted: 01 April 2023 Published: 25 April 2023

Abstract - Combinatorial Testing (CT) is a software testing technique that aims to identify defects in complex systems by

covering as many combinations of input parameters as possible within a given time and resource constraint. The black hole

algorithm (BHA) is a metaheuristic approach that has been used in multiple problems involving optimization. In this paper, a

new approach called the Combinatorial Black Hole Algorithm (CBHA) is presented for CT that combines the strengths of CT

and BHA. The effectiveness of this approach is demonstrated through experiments on a series of real-world computer

programs. The findings indicate that the method is feasible in identifying defects with fewer test cases and in less time needed

compared to the current technology in CT techniques. The approach can also handle larger and more complex systems more

effectively. This study contributes to the software testing field with a way of providing a new and efficient approach for CT that

practitioners and researchers can use.

Keywords - Black hole algorithm, CT, Metaheuristics, Test cases.

1. Introduction
CT, a technique for identifying defects in software

systems by covering a huge number of combinations of input

values and parameters, is widely used. It has been shown to

be particularly effective for testing complex systems with

multiple interacting components, such as web applications,

mobile apps, and embedded systems. After 30 years of effort,

CT has been adopted as an important black box testing

method in the latest software testing standards [1]. However,

the high cost of CT can be a major barrier to its widespread

adoption, especially for large and complex systems. Bugs are

found and fixed by programmers for around 50% of their

time [2].

Moreover, as the complexity and size of software

systems increase, the number of possible input combinations

can become astronomically large. This can make it difficult

to achieve complete coverage using traditional CT

techniques. As a result, researchers and practitioners are

exploring ways to reduce the cost of CT, such as using

machine learning algorithms to automatically generate test

cases or prioritizing test cases based on their likelihood of

finding defects. Despite these challenges, CT remains a

valuable tool for ensuring software quality and reducing the

risk of defects in complex systems.

To address this challenge, various heuristic search

approaches have been proposed to guide the selection of test

cases and reduce the cost of CT. A covering array is

employed by CT as the test suite to systematically cover

combinations in an effort to achieve a good trade-off

between test cases and the effectiveness of revealing failures

[2]. BHA has received significant attention among these

algorithms for its ability to balance the trade-off between test

coverage and cost. BHA is a metaheuristic optimization

technique[6] influenced by the behaviour of black holes in

space and has been utilized in multiple optimization

problems.

In this paper, an innovative approach for CT using BHA

is put forward. The strengths of CT and BHA are combined

in this approach to achieve high test coverage while

minimizing the test cases. The proposed approach is called

the Combinatorial Black Hole Algorithm (CBHA). The

following research question is aimed to be answered: Can the

BHA be used to effectively guide CT and achieve a higher

level of test coverage at a lower cost?

To answer this question, a series of experiments were

conducted using various software systems and test case

combinations. The experimental setup included a range of

evaluation metrics, including test coverage, cost, and

execution time, to allow for a comprehensive analysis of the

execution of the proposed approach.

The contributions of this paper are threefold. First, a

comprehensive overview of CT techniques and BHA,

including their strengths and limitations, is provided. Second,

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rosziati Ibrahim et al. / IJETT, 71(4), 21-28, 2023

22

a detailed description of the proposed approach for

combining CT and BHA is presented, highlighting this

approach's key features and advantages. Third, the

performance of the execution of the advanced approach is

measured through a tier of experiments and compared with

the standard CT techniques, providing insights into the

competence of the suggested approach under different

conditions.

The remainder of this document is organized in a

subsequent manner. The next section explains the

metaheuristics concept to provide an in-depth understanding

of the current issue. The section after that explains BHA to

bridge the understanding of metaheuristics with the

combinatorial problem. Then, the related work on CT and

BHA is reviewed, highlighting previous approaches' key

contributions and limitations. In Section 5, the experimental

findings are presented and being evaluated against the state-

of-the-art techniques, and the implications of the findings are

discussed. Section 6 provides the paper's conclusion and

outlines potential areas for future research.

2. Metaheuristics
Metaheuristics are high-level strategies that can be

utilized for a range of multiple optimization problems to find

good solutions that are very close to being optimal for

problems that may be too complex or too large to be solved

exactly using traditional optimization algorithms. These

strategies are designed to improve a set of solutions to the

problem iteratively rather than trying to find the exact

optimal solution. Metaheuristics have made significant

progress in solving complex optimization problems and have

been widely applied in various fields. A survey of 14 recent

and effective metaheuristics introduced between 2000 and

2020 is presented, along with a discussion of research trends,

hybridization of metaheuristics, advances in parallel

metaheuristics, open problems, and new research

circumstances [3].

Metaheuristics can be categorized into several

categories, including local search, population-based, and

swarm intelligence. Local search metaheuristics begin with

an initial solution and then iteratively improve it by making

small changes to the solution. On the other hand, population-

based metaheuristics maintain a population of solutions and

use techniques such as selection, crossover, and mutation to

generate new solutions. Swarm intelligence metaheuristics,

sparked by the behaviour of natural systems, use techniques

such as swarm intelligence to generate solutions.

Metaheuristics are often utilized in situations where the

optimization problem at hand is too complex or too large to

be solved exactly or when the problem is not well

understood, and there is no efficient algorithm available to

solve it. However, stagnant development processes of new

metaheuristic approaches have led to a high concentration

and frequency in the field of stochastic search. It is important

to strive to strike a suitable equilibrium between exploring

new options and exploiting existing opportunities to produce

superb performance [4]. They are also useful for solving

problems with a high degree of uncertainty or when the

objective function is not fully known.

Overall, metaheuristics are a powerful tool for solving

optimization problems that are too difficult or too large to be

solved exactly and can be applied to a range of optimization

issues. Software testing is an important IT field involving

various testing tactics, strategies, and methodologies,

including metaheuristics [5]. They offer a flexible and

efficient approach to finding good, near-optimal solutions in

situations where traditional optimization algorithms may not

be practical or effective.

3. Black Hole Algorithm
The black hole algorithm (BHA) is a metaheuristic

approach used to find a valid solution to a given set of input

values. It is a search-based optimization technique useful for

finding solutions to problems with a considerable amount of

input variables and complex interactions between them. BHA

is a new bio-inspired metaheuristic algorithm based on the

phenomenon of black holes and is an approach based on a

population like other bio-inspired computation algorithms

[24].

To use the BHA, the input values must first be defined

and arranged into an appropriate data structure, such as an

array. The BHA process begins by iterating through the input

values using a for loop, allowing for processing each element

in the array one at a time. At the start of each iteration, a

random starting point is initialized using the BHA,

representing the current position or solution in the search for

a valid solution.

The current solution is then evaluated to determine if it

meets the criteria for a valid solution, as defined by the

requirements or constraints set for the problem. If the

solution is deemed valid, the BHA process is terminated, and

the solution is returned. If the solution is invalid, it is

discarded, and a new solution is selected using the BHA.

This process continues for each iteration of the BHA, with a

new, random solution being generated each time. Figure 1

shows the pseudocode for BHA.

Based on Figure 1, one of the key features of the BHA is

that it allows for the exploration of a large number of input

values and complex interactions between them, as the

distance between the black hole (representing the unknown

or untested combination of inputs) and the current solution is

calculated. The black hole is moved to the new solution if the

distance between the two is less than the current distance.

BHA has also been found to be faster than other algorithms

in testing [7]. This allows for a more thorough search for a

valid solution.

Rosziati Ibrahim et al. / IJETT, 71(4), 21-28, 2023

23

Input

Number of stars(N), number of iteration

Output

Black hole

The fitness value of black hole

Begin

Initialize a population of stars

For j = 1 to number of stars

Calculate the objective function of the star(j) and save in

fitness array(f)

Next j

The star with the most remarkable fitness value is chosen

as the black hole

While (max iteration or convergence criteria is not met)

do

For a = 1 to number of stars

 𝑋𝑎
𝑛𝑒𝑤 = 𝑋𝑎

𝑜𝑙𝑑+rand ˟ (𝑋𝐵𝐻 − 𝑋𝑎

𝑜𝑙𝑑
)

Evaluate fitness value of the star(𝑋𝑎)

If fitness of (𝑋𝑎) > fitness of (𝑋𝐵𝐻)Then

 𝑋𝐵𝐻 = 𝑋𝑎

End if

Replace the new fitness value of the star (Xa) with the

previous value

Update the fitness array(f) and calculate:

 R =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

If √(𝑋𝐵𝐻 − 𝑋𝑎)2 < 𝑅 Then

Replace 𝑋𝑎 with a new star in an optional location in the

search scope

End if

next a

end while

End

Fig. 1 BHA Pseudocode [24]

BHA is a metaheuristic that has been demonstrated to be

competent in various applications and has been modified and

extended in various ways in the literature [8]. On top of that,

a study shows that BHA can be used to find the optimal

values for the vector of the feature of a Support Vector

Machine for emotion classification based on EEG signals to

achieve results similar to manual noise elimination methods

[9].

However, it is important to note that the BHA may not

always find a valid solution, as it can reach the maximum

number of iterations without finding one, potentially due to

the lack of valid solutions within the defined input values or

the inability to find a valid solution due to the random nature

of the algorithm. In general, BHA is a useful tool for finding

valid solutions to problems with many input variables and

complex interactions between them due to its ability to

explore a wide range of possibilities and its lack of

preconceived notions or biases.

4. Related Work
In the literature, various heuristic search algorithms have

been proposed to guide the selection of test cases and reduce

the cost of CT. These algorithms have the potential to

significantly improve the efficiency of CT by focusing on the

most relevant combinations of input values and parameters.

BHA, a metaheuristic optimization technique stimulated by

the behaviour of black holes in space and applied to various

optimization problems, has received significant attention for

its ability to balance the trade-off between test coverage and

cost. It has been shown to be effective in finding near-

optimal solutions to a multitude of optimization problems

and has the potential to improve the efficiency of CT

significantly. The following section presents a review of the

related work on CT and BHA, focusing on previous efforts to

combine these two approaches. These approaches' key

contributions and limitations are discussed, and their

relevance to the proposed approach is highlighted. An

overview of the current standard in CT and BHA is also

provided, and the main research gaps the work aims to

address are outlined.

In 2020, a research investigation was carried out using

BHA to solve the knapsack problem. The findings from this

research show that the black hole approach can find better

solutions regarding the quality and in lesser time compared

to other metaheuristics approaches [10]. Other study includes

the application of BHA to the t-way testing approach. The

study was done to see if BHA can be improved for t-way

testing. The improved algorithm is called BBH (Binary

Black Hole). The research outcome shows that BBH

achieved the desired improvement in generating small

covering arrays compared with BPSO [25]. The

hybridization of two metaheuristics algorithms was also

conducted in 2020. A hybrid BHA and genetic algorithm

conducted a study to solve an optimization problem. The

result of this study is that the proposed algorithm works

better and faster than the original BHA and genetic algorithm

[11,12]. The study uses benchmark functions to test the

proposed algorithm. Another application of BHA in research

was conducted recently in the field of software testing, where

the algorithm was used in solving the problem regarding

CT’s test case explosion, and the improved algorithm is

called BH-AllStar. For the study, BH-AllStar is being

compared with BBH, and the result shows that it outperforms

BBH in terms of generating test cases which achieve a 43%

increase in condition coverage [13].

Combining CT and heuristic search algorithms has

received significant attention in the literature to improve the

efficiency of CT. Various heuristic search algorithms,

including ant colony optimization, genetic algorithms, and

Rosziati Ibrahim et al. / IJETT, 71(4), 21-28, 2023

24

particle swarm optimization, have been applied to CT with

promising results in terms of test coverage and cost. BHA, a

metaheuristic optimization technique encouraged by the

behaviour of black holes in space, has also been explored to

guide CT. Previous work combining CT and BHA has

focused on various approaches, including using BHA to

select test cases and optimize the CT process. These

approaches have achieved promising results, but there is still

room for improvement and further studies are needed to fully

understand the potential of combining CT and heuristic

search algorithms. A study was done in 2020 using Ant

Colony Optimization (ACO) with Fuzzy Logic called ACOF

for CT [14]. Another study solving fortifying CT used Whale

Optimization Algorithm (WOA) to find the most optimum

test cases for a transport system [15]. Other metaheuristics

approaches include BMBH (Multiple Black Hole) [16], GSA

(Gravitational Search Algorithm) [17], HSCA (Hybrid Sine

Cosine Algorithm) [18], ABC (Artificial Bee Colony) [19],

FPA-HC (Hybrid Flower Pollination and Hill Climbing

Algorithm) [20], CS (Cuckoo Search) [21] and FA (Firefly

Algorithm). The summary of the studies is shown in Table 1.

Table 1. Recent Study Summary

Study
Baseline

Method
Dataset/Project

Evaluation

Criteria

[14] ACOF
Test suite for Scholarship

Application
Test suite size

[15] WOA
Transport system

parameters

Test suite size

performance

[16] BMBH
Pizza ordering system and

Smart Mobile System

Benchmark

functions

[17] GSA
Foodpanda Delivery

Service Search System
Test suite size

[18] HSCA
Web configurable software

system
Test suite size

[19] ABC Find dialogue box Test suite size

[20] FPA-HC Car Ordering System Test suite size

[21] CS
Ms Word Paragraph

Dialogue box
Test suite size

[22] FA Matrices Test Cases

[23] GA Surveys
Test case

generation

5. Proposed Approach - CBHA
A valid solution to a given set of input values can be

found using BHA. The criterion for a valid solution is

defined as meeting certain requirements or constraints that

have been set for the problem.

To begin the BHA process, the input values used in the

problem are first defined. These inputs, which can be

variables such as numbers, strings, or objects, are typically

arranged into arrays or other data structures. Then, through

the use of a for loop, the input arrays are iterated through,

allowing for the processing of each element of the array one

at a time. At the start of each iteration, a random starting

point is initialized using BHA. This starting point represents

the current position or solution in the search for a valid

solution. The current solution is evaluated to determine if it

meets the criteria for a valid solution. If it does, the BHA

process is terminated, and the solution is returned. If the

solution is invalid, it is discarded, and a new solution is

selected using BHA. For each iteration of the BHA process,

a new, random solution is generated.

The distance between the black hole (representing the

unknown or untested combination of inputs) and the current

solution is then calculated. The black hole is moved to the

new solution if the distance between the two is less than the

current distance. The new solution is then evaluated to see if

it is a valid solution. If it is, the BHA process is terminated,

and the solution is returned.

If the BHA process reaches the maximum number of

iterations without finding a valid solution, an error message

is returned indicating that no solution was found. This can

occur if there are no valid solutions within the defined input

values or if the BHA process cannot find a valid solution due

to the random nature of the algorithm. BHA is a useful tool

for finding valid solutions to problems with many input

variables and complex interactions between them. The steps

for the Combinatorial Black Hole Algorithm (CBHA) are

shown in Figure 2, and the implementation in Python is

shown in Figure 3.

1) Define the problem and the criteria for a valid

solution.

2) Define the inputs to use in the problem.

3) Iterates through the input arrays using a for loop.

4) Initialize a random starting point in each iteration

using BHA.

5) Evaluates the current solution.

i. If valid, terminate the and return the solution.

ii. If invalid, discard and selects a new solution using

BHA.

6) For each BHA iteration,

i. Generate a random solution.

ii. Measure the distance between the black hole and

the current solution.

iii. Move the black hole to the new solution if the

distance is less than the current distance.

iv. If the solution is valid, terminate and return the

solution.

7) If max iteration is reached with no valid solution,

return an error message.

Fig. 2 Steps for Combinatorial Black Hole Algorithm (CBHA)

Rosziati Ibrahim et al. / IJETT, 71(4), 21-28, 2023

25

for input in inputs:

 current_solution = random.sample(input, 5)

 if is_valid_solution(current_solution):

 print("Valid solution found for input ", input, ": ",

current_solution)

 else:

 black_hole = current_solution

 max_iterations = 100

 for i in range(max_iterations):

 solution = random.sample(input, 4)

 distance = sum([abs(a-b) for a, b in zip(solution,

black_hole)])

 if distance < sum([abs(a-b) for a, b in zip(black_hole,

solution)]):

 black_hole = solution

 if is_valid_solution(solution):

 print("Valid solution found for input ", input, ": ",

solution)

 break

 else:

 print("No valid solution found for input ", input)

Fig. 3 Code Snippet for CBHA in Python

The algorithm works by randomly generating a set of

five elements from the input and checking whether this set is

a valid solution using the is_valid_solution() function. If the

randomly generated set is a valid solution, it is printed to the

console. If it is invalid, the algorithm initializes a "black

hole" variable to this set of five elements and proceeds to

iterate up to 100 times through a loop. The algorithm

randomly generates a new set of five elements from the input

within each loop iteration. It calculates the distance between

this new set and the "black hole" using the sum([abs(a-b) for

a, b in zip(solution, black_hole)]) expression. If the distance

is less than the distance between the "black hole" and the

current solution, the "black hole" is updated to this new

solution. This is intended to gradually move the algorithm

towards a solution closer to the optimal solution. If a valid

solution is found within the loop, it is printed to the console

and the loop is terminated using the break statement. If no

valid solution is found within the loop, the algorithm prints a

message to the console indicating no valid solution.

Considering the MS Excel software dialogue in Figure 4,

here are 5 parameters or options (i.e., page orientation,

scaling adjustments, scaling fit to, scaling fit width, first-

page number). The possible parameters for the first input are

2, 6 possible parameters for the second input, and so on. For

the input type number, the possible parameters that can be

input would be a negative number, a positive number, zero

value, null, and NaN (not-a-number), which are summarised

in Table 2.

Table 2. Possible Parameter Values

Orientation

(A)

Scaling

First-page

number (E)
Adjust

to (B)

Fit to

Pages

(C)

Width

(D)

Portrait -10 -10 -10 -10

Landscape 10 10 10 10

 0 0 0 0

 null null null null

 NaN NaN NaN NaN

 Auto

Fig. 4 MS Excel Dialogue Box

6. Results and Discussion
Before applying the CBHA, the total test combinations

are totally up to 3000 combinations, as shown in the

calculation:

𝐴 = {Portrait, 𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒}
𝐵 = {𝐴𝑑𝑗𝑢𝑠𝑡, 𝐹𝑖𝑡}
𝐶 = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁}
𝐷 = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁}
𝐸 = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁}
𝐹 = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁}

∴ |𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠| = |𝐴| × |𝐵| × |𝐶| × |𝐷| × |𝐸| × |𝐹|

The Cartesian product is used in this case to generate all

possible combinations of the input values. This can be useful

for testing purposes, as it allows the quick and easily create

of a large quantity of test scenarios that cover all possible

combinations of input values. The Cartesian product A x B x

C x D x E x F can then be represented as the set of all

ordered 6-tuples (a, b, c, d, e, f) such that a belongs to A, b

belongs to B, c belongs to C, d belongs to D, e belongs to E,

and f belongs to F.

Rosziati Ibrahim et al. / IJETT, 71(4), 21-28, 2023

26

Table 3. Test Suite Parameters

Base Values

Input variables

(A) (B) (C) (D) (E)

{Portrait, Landscape} {null, NaN, 0} {null, -10, NaN} {null, -10, NaN} {null, -10, NaN}

Table 4. Test Case Combinations Comparison

Test Case Combinations Exhaustive Combinatorial CBHA

6 tuples (A, B, C, D, E, F) 3000 possible combinations 432 faulty combinations

3 tuples (A, B, C) 20 possible combinations 12 faulty combinations

This can be written more formally as:

𝐴 × 𝐵 × 𝐶 × 𝐷 × 𝐸 × 𝐹 = {(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓)|𝑎 ∈ 𝐴, 𝑏
∈ 𝐵, 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷, 𝑒 ∈ 𝐸, 𝑓 ∈ 𝐹}

In this case, the test cases variable is defined as the set of

all ordered 6-tuples in the Cartesian product A x B x C x D x

E x F. The length of this set is equal to the number of tuples

in the set. The test cases set would contain a total of |A| * |B|

* |C| * |D| * |E| * |F| tuples, which is equal to 2 * 2 * 5 * 5 * 5

* 6 tuples. This means that the length of the test case set

would be a total of 3000 combinations.

Applying CBHA to the case study greatly reduces the

test suite of the example in Figure 3, as shown in Table 3.

The total test suite size is reduced to a total of 2 * 2 * 3 * 3 *

3 * 5 tuples which is 432 instead of 3000 possible

combinations by using the same calculations. The

comparison of test case combinations is summarised in Table

4.

Based on the calculation, it is clear that by applying

CBHA, the amount of test suites is greatly reduced by

eliminating the not-needed value as inputs. As a result, the

number of test cases will also be reduced to 85.6% of the

total combinations. The calculation for the two case studies

is shown as follows:

- Without CBHA,

𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 𝐴 × 𝐵 × 𝐶 × 𝐷 × 𝐸 × 𝐹
𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 2 × 2 × 5 × 5 × 5 × 6
𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 3000

- With CBHA

𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 𝐴 × 𝐵 × 𝐶 × 𝐷 × 𝐸 × 𝐹
𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 2 × 2 × 3 × 3 × 3 × 5
𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 432

- Percentage of reduction = 85.6%

To explain the reduction, the original set of 3000 test

cases may include many test cases that are similar to each

other or that test the same functionality in different ways. In

such cases, it may be possible to lessen the numerical count

of tests that need to be executed by identifying and

eliminating redundant or unnecessary test cases. This can be

beneficial for several reasons, such as reducing the time and

resources required to run the test cases and making it

effortless to analyse and interpret the results of the tests.

One way to identify and remove similar or redundant

test cases is by using an algorithm like the CBHA. The

CBHA is a technique designed specifically for identifying

and removing test cases that are similar to each other. It

works by starting with a set of test cases and iteratively

removing test cases that are not "useful" in testing the

system's functionality under test.

For example, let us say that the original set of 3000 test

cases includes 1000 test cases that are identical to each other

and 1000 test cases that are similar to each other but have

minor differences. In this case, CBHA might be able to

identify and remove the 1000 identical test cases, leaving

2000 test cases remaining. It could then identify and remove

the 1000 test cases that are similar to each other but have

minor differences, leaving 1000 test cases remaining.

In this example, the utilization of CBHA would result in

a reduction of 3000 test cases to 432 test cases. Suppose the

algorithm is able to reduce further the total amount of tests

that are required to be performed to assess the functionality,

reliability, and performance of a system or software by

identifying and eliminating additional redundant or

unnecessary test cases. In that case, it is possible that the

final test cases could be reduced to fewer than 432.

Overall, CBHA can be a very effective approach for

cutting down the amount of test cases in a set while still

ensuring that the set is comprehensive and covers all

necessary functionality. By iteratively identifying and

removing test cases similar to each other, CBHA can

significantly drop the number of test cases without

sacrificing the quality or completeness of the tests.

7. Conclusion and Future Work
Much recent research show that CT can be improved

using metaheuristics approaches and is very efficient in

reducing test suite optimally. However, based on the recent

study, it is clear that there will be some test cases that will be

“missed” among the needed ones in the test suite.

Rosziati Ibrahim et al. / IJETT, 71(4), 21-28, 2023

27

This research proposes a new approach which is the

Combinatorial Black Hole Algorithm (CBHA), a new

application of metaheuristics to the standard CT. The study

results clearly show that the CBHA can generate results that

can be improved. In the future, the application of BHA to T-

way Testing is still currently being worked on to be

evaluated and improved for other case studies. For future

research, other methods that may be used in conjunction with

CBHA, including statistical sampling, domain partitioning,

and functional coverage analysis, can be explored. By

combining these techniques and carefully selecting the most

appropriate approach for a given situation, it is possible to

significantly reduce the number of test cases while still

ensuring that the system under test is thoroughly tested.

Acknowledgements
The authors express their gratitude to Universiti Tun

Hussein Onn Malaysia (UTHM) for assisting with their

research. They were awarded financial support for this

investigation through the REGG Grant under Grant Vote No

Q051. Their research is disseminated through financial aid

from Universiti Tun Hussein Onn Malaysia and the UTHM

Publisher's Office through Publication Fund E15216.

References
[1] Tzoref-Brill, R, “Advances in Combinatorial Testing,” Advances in Computers, vol. 112, pp. 79-134, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Huayao Wu et al., “Combinatorial Testing of RESTful APIs,” ACM/IEEE International Conference on Software Engineering (ICSE),

2020. [Google Scholar] [Publisher Link]

[3] Tansel Dokeroglu et al., “A Survey on New Generation Metaheuristic Algorithms,” Computers & Industrial Engineering, vol. 137, p.

106040, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[4] Bernardo Morales-Castañeda et al., “A Better Balance in Metaheuristic Algorithms: Does It Exist?,” Swarm and Evolutionary

Computation, vol. 54, p. 100671, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[5] Madhavi, D, “A White Box Testing Technique in Software Testing: Basis Path Testing,” Journal for Research, vol. 2, no. 4, 2016.

[Google Scholar] [Publisher Link]

[6] Ramanathan.L, and Ulaganathan.K, "Nature-Inspired Metaheuristic Optimization Technique-Migrating Bird’S Optimization in

Industrial Scheduling Problem," SSRG International Journal of Industrial Engineering, vol. 1, no. 2, pp. 12-17, 2014. [CrossRef]

[Publisher Link]

[7] Laith Abualigah et al., “Black Hole Algorithm: A Comprehensive Survey,” Applied Intelligence, pp. 1-24, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[8] Abdolreza Hatamlou, “Solving Travelling Salesman Problem Using Black Hole Algorithm,” Soft Computing, vol. 22, no. 24, pp. 8167-

8175, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[9] Rodrigo Olivares et al., “Using Black Hole Algorithm to Improve EEG-Based Emotion Recognition,” Computational Intelligence and

Neuroscience, vol. 2018, p. 21, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[10] Abdolreza Hatamlou, “Application of Black Hole Algorithm for Solving Knapsack Problems,” Computer and Knowledge

Engineering, vol. 3, no. 1, pp. 117-122, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] Seeven Amic, K. M. Sunjiv Soyjaudah, and Gianeshwar Ramsawock, "Fitness Landscape Analysis of Block Ciphers for Cryptanalysis

Using Metaheuristics," International Journal of Engineering Trends and Technology, vol. 70, no. 6, pp. 257-271, 2022. [CrossRef]

[Publisher Link]

[12] Omar Sabah Mohammed, Adel Abo Al-Maged Sewisy, and Ahmed Ibrahim Taloba, “Solving Optimization Problems Using Hybrid

Metaheuristics: Genetic Algorithm and Black Hole Algorithm,” 2020 2nd International Conference on Computer and Information

Sciences (ICCIS), pp. 1-5, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[13] Derya Yeliz Ulutaş, and Ayşe Tosun, “A Condition Coverage-Based Black Hole Inspired Meta-Heuristic for Test Data Generation,”

CEUR Workshop Proceedings, pp. 70-78, 2021. [Google Scholar]

[14] Mohd Zamri Zahir Ahmad et al., “A Self-Adapting Ant Colony Optimization Algorithm Using Fuzzy Logic (ACOF) for Combinatorial

Test Suite Generation,” IOP Conference Series: Materials Science and Engineering, vol. 767, no. 1, 2020.[CrossRef] [Google Scholar]

[Publisher Link]

[15] Ali Abdullah Hassan et al., “Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm,” IEEE Access,

vol. 8, pp. 192288-192303, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] Hamsa Naji Nsaif Al-Sammarraie, and Dayang N. A. Jawawi, “Multiple Black Hole Inspired Meta-Heuristic Searching Optimization for

CT,” IEEE Access, vol. 8, pp. 33406-33418, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[17] Khin Maung Htay et al., “Gravitational Search Algorithm Based Strategy for Combinatorial T-Way Test Suite Generation,” Journal of

King Saud University-Computer and Information Sciences, vol. 34, no. 8, pp. 4860-4873, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

https://doi.org/10.1016/bs.adcom.2017.12.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advances+in+Combinatorial+Testing&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0065245817300542
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Combinatorial+Testing+of+RESTful+APIs&btnG=
https://conf.researchr.org/details/icse-2022/icse-2022-papers/114/Combinatorial-Testing-of-RESTful-APIs
https://doi.org/10.1016/j.cie.2019.106040
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+New+Generation+Metaheuristic+Algorithms&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0360835219304991
https://doi.org/10.1016/j.swevo.2020.100671
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Better+Balance+in+Metaheuristic+Algorithms%3A+Does+It+Exist&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2210650219304080
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+White+Box+Testing+Technique+in+Software+Testing%3A+Basis+Path+Testing&btnG=
https://www.journal4research.org/Article.php?manuscript=J4RV2I4007
https://doi.org/10.14445/23499362/IJIE-V1I3P101
https://www.internationaljournalssrg.org/IJIE/paper-details?Id=8
https://doi.org/10.1007/s10489-021-02980-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Black+Hole+Algorithm%3A+A+Comprehensive+Survey&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Black+Hole+Algorithm%3A+A+Comprehensive+Survey&btnG=
https://link.springer.com/article/10.1007/s10489-021-02980-5
https://doi.org/10.1007/s00500-017-2760-y
https://link.springer.com/article/10.1007/s00500-017-2760-y
https://link.springer.com/article/10.1007/s00500-017-2760-y
https://link.springer.com/article/10.1007/s00500-017-2760-y
https://link.springer.com/article/10.1007/s00500-017-2760-y
https://link.springer.com/article/10.1007/s00500-017-2760-y
https://link.springer.com/article/10.1007/s00500-017-2760-y
https://doi.org/10.22067/cke.2021.63250.0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CApplication+of+Black+Hole+Algorithm+for+Solving+Knapsack+Problems&btnG=
https://cke.um.ac.ir/index.php/cke/article_40781.html
https://doi.org/10.14445/22315381/IJETT-V70I6P227
https://ijettjournal.org/archive/ijett-v70i6p227
https://doi.org/10.1109/ICCIS49240.2020.9257717
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Solving+Optimization+Problems+Using+Hybrid+Metaheuristics%3A+Genetic+Algorithm+and+Black+Hole+Algorithm&btnG=
https://ieeexplore.ieee.org/document/9257717
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Condition+Coverage-Based+Black+Hole+Inspired+Meta-Heuristic+for+Test+Data+Generation&btnG=
https://doi.org/10.1088/1757-899X/767/1/012017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Self-Adapting+Ant+Colony+Optimization+Algorithm+Using+Fuzzy+Logic+%28ACOF%29+for+Combinatorial+Test+Suite+Generation&btnG=
https://iopscience.iop.org/article/10.1088/1757-899X/767/1/012017/meta
https://doi.org/10.1109/ACCESS.2020.3032851
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Self-Adapting+Ant+Colony+Optimization+Algorithm+Using+Fuzzy+Logic+%28ACOF%29+for+Combinatorial+Test+Suite+Generation&btnG=
https://ieeexplore.ieee.org/document/9234407
https://doi.org/10.1109/ACCESS.2020.2973696
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+Black+Hole+Inspired+Meta-Heuristic+Searching+Optimization+for+CT&btnG=
https://ieeexplore.ieee.org/document/8998290
https://doi.org/10.1016/j.jksuci.2021.06.020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gravitational+Search+Algorithm+Based+Strategy+for+Combinatorial+T-Way+Test+Suite+Generation&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157821001671
https://www.sciencedirect.com/science/article/pii/S1319157821001671

Rosziati Ibrahim et al. / IJETT, 71(4), 21-28, 2023

28

[18] J M Altmemi et al., “Implementation of Hybrid Sine Cosine Algorithm for Input-Output CT,” International Conference on Applied

Computing, 2021. [Google Scholar]

[19] Ammar K Alazzawi, Helmi Md Rais, and Shuib Basri “Artificial Bee Colony Algorithm for T-Way Test Suite Generation,” 4th

International Conference on Computer and Information Sciences (ICCOINS), pp. 1-6, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[20] Abdullah B. Nasser et al., “T-Way Test Suite Generation Based on Hybrid Flower Pollination Algorithm and Hill Climbing,” 10th

International Conference on Software and Computer Applications, pp. 244-250 2021. [CrossRef] [Google Scholar] [Publisher Link]

[21] Abdullah B. Nasser, and Kamal Z. Zamli “A New Variable Strength T-Way Strategy Based on the Cuckoo Search

Algorithm,” Intelligent and Interactive Computing, pp. 193-203, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[22] Muhammad Afiq Ariffin et al., “Test Cases Prioritization Using Ant Colony Optimization and Firefly Algorithm,” International Journal

of Engineering Trends and Technology, vol. 70, no. 3, pp. 22–28, 2022. [CrossRef] [Publisher Link]

[23] Deepak kumar, and Manu Phogat “Genetic Algorithm Approach for Test Case Generation Randomly: A Review,” International Journal

of Computer Trends and Technology, vol. 49, no. 4, pp. 213-216, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[24] Santosh Kumar, Deepanwita Datta, and Sanjay Kumar Singh, “Black Hole Algorithm and Its Applications,” Computational Intelligence

Applications in Modelling and Control, pp. 147-170, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[25] Hamsa N Nsaif, and Dayang Norhayati Abang Jawawi, “Binary Black Hole-Based Optimization for T-Way Testing,” IOP Conference

Series: Materials Science and Engineering, vol. 864, no. 1, p. 012073. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementation+of+Hybrid+Sine+Cosine+Algorithm+for+Input-Output+CT&btnG=
https://doi.org/10.1109/ICCOINS.2018.8510601
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+Bee+Colony+Algorithm+for+T-Way+Test+Suite+Generation&btnG=
https://ieeexplore.ieee.org/document/8510601
https://ieeexplore.ieee.org/document/8510601
https://doi.org/10.1145/3457784.3457822
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=T-Way+Test+Suite+Generation+Based+on+Hybrid+Flower+Pollination+Algorithm+and+Hill+Climbing%2C&btnG=
https://dl.acm.org/doi/10.1145/3457784.3457822
https://doi.org/10.1007/978-981-13-6031-2_17
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Variable+Strength+T-Way+Strategy+Based+on+the+Cuckoo+Search+Algorithm&btnG=
https://link.springer.com/chapter/10.1007/978-981-13-6031-2_17
https://doi.org/10.14445/22315381/IJETT-V70I3P203
https://ijettjournal.org/archive/ijett-v70i3p203
https://doi.org/10.14445/22312803/IJCTT-V49P134
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Genetic+Algorithm+Approach+for+Test+Case+Generation+Randomly%3A+A+Review&btnG=
https://ijcttjournal.org/archives/ijctt-v49p134
https://doi.org/10.1007/978-3-319-11017-2_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Black+Hole+Algorithm+and+Its+Applications&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-11017-2_7
https://doi.org/10.1088/1757-899X/864/1/012073
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Binary+Black+Hole-Based+Optimization+for+T-Way+Testing&btnG=
https://iopscience.iop.org/article/10.1088/1757-899X/864/1/012073

