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Abstract - The resting-state functional magnetic resonance imaging (rs-fMRI) is an advanced imaging method with several 

benefits compared to functional magnetic resonance imaging (fMRI) techniques. Major benefits of rs-fMRI are easy receiving 

of the signal, needs minimum effort from the patient, and good at differentiating the functional areas in patients. Resting-state 

fMRI (rs-fMRI) identifies the amount of  Blood Oxygen Level-called as BOLD. These are variations at frequencies smaller than 

0.1 Hz to identify the functional variations of the brain. Usage of this BOLD level allows viewing resting-state networks (RSN). 

RSN are distinct areas of the brain which are spatially distributed and which confirm synchronous BOLD fluctuations at rest. 

In the pipeline for fMRI data, various preprocessing steps are carried out as a normal procedure for achieving a better quality 

of data.  In this paper, these steps for preprocessing are altered/changed in the pipeline of CONN neuroimaging software, and 

its effects on graph theory outcomes are explored and discussed. 

Keywords - Resting-state functional magnetic resonance (rs-fMRI), Functional Connectivity (FC), Blood Oxygen Level 

Dependent (BOLD).   

1. Introduction 
The areas with correlated activity can form functional 

networks at rest by using rs-fMRI [1] identification of the 

temporal correlation of naturally occurring BOLD signals [2]. 

These signals are found among the brain regions. Functional 

connectivity (FC) is a measure to identify the connection 

among the regions of interest with the help of neural 

connection [3-5]. Few neuroimaging softwares are developed 

in recent years which can perform analysis.  These have been 

explored to check the brain patterns by looking out for 

functionally connected networks and thus exploring a more 

detailed examination of functional connectivity. Such studies 

are performed while the brain is at rest. They have shown the 

functional time series and coactivation levels among the brain 

areas that are functionally connected. They indicate the 

possible functional links between various brain regions at rest.  

 

The brain of a human being is a highly complex grid of 

functionally interacting brain regions. It can depict deeper 

findings of different communications in the neural areas. It 

establishes a way to evaluate the connectivity patterns that are 

functionally linked and information that reveals human 

behavior and how these connections might have been altered in 

neurological disorders [4][5]. fMRI data needs to be 

preprocessed, which involves several steps for achieving a 

better quality of signal and Signal to Noise ratio. Available 

Neuroimaging softwares has many steps for achieving 

preprocessing of the acquired signal. In this paper, one tries to 

explore the different steps sequence. Generally, a pipeline is 

suggested by the software. However, which step sequence 

following would lead to a better outcome is not explored much. 

Section 1 is the introductory part. Section 2 describes the 

fundamentals of rs-fMRI. Section 3 explains all the methods 

available for determining the functional correlations. Section 4 

explains the workflow for fMRI data. Section 5 describes the 

steps of alteration carried out in the pipeline for preprocessing 

the data, and the results are discussed. 

 

2. Fundamentals of rs-fMRI 
Signal frequency variations are generated at the level 

below 0.1Hz in the rs-fMRI due to neural activity [1]. During 

the process of acquisition, several situations can occur. One 

such example is when a subject undergoes rs-fMRI, he/she can 

have possible movement of his/her head. This movement can 

trigger misleading outcomes during the processing of data 

[5][6]. These false results and other things can be corrected 

through the preprocessing steps involved in any neurological 

software for analysis. Thus, preprocessing and its steps are 

essential pre-requisite to the processing and analysis of the 

collected fMRI data.   
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For the processing and analysis of the collected fMRI data 

[6] data, several alternative methods are available. Each 

method has its pros and cons. 

  

A summary of the steps involved in preliminary 

processing is elaborated in detail. Additionally, the methods 

applied for measuring this functional connectivity are 

discussed. Several programs like Analysis of Functional 

Neuro Images (AFNI), Free Surfer, Statistical Parametric 

Mapping (SPM), Free Surfer, DPABI Surf, CONN 

(Functional Connectivity Toolbox), and Configurable 

Pipeline for the Analysis of Connectomes (CPAC) are 

available for analysis. These listed softwares can process and 

improve acquisition quality by motion correction and noise 

removal. [7,8,9] 

 

3. Methods for Determining the Functional 

Correlation 
  A signal coming just from a specific voxel or cluster of 

voxels is known as the seed or ROI, which is used as a source 

voxel to determine associations with other brain voxels. 

Establishing the connections between various brain 

regions at rest requires a comprehensive understanding of the 

regions in the brain (for example, which seeds are 

functionally related). For computing functional correlation 

[6], several model-based and model-free approaches are 

involved in detecting the alterations in the human brain 

observed in rs-fMRI BOLD signals [3].  

The model-based methods listed here are Seed Based on 

Connectivity and Region of Interest to Region of Interest. 

(ROI-ROI). The model-free techniques covered include 

clustering approaches, Graph Theory techniques, 

Independent Component Analysis, and Principal Component 

Analysis. 

3.1. Model-Dependent Methods 

3.1.1. Seed-Based Analysis 

The first and simplest way is seed-based analysis, in 

which a seed is chosen as a reference and mapped with another 

seed (voxel) throughout the entire brain to produce a seed-

based connectivity map. This is the simplest method; its 

implementation makes it the most popular approach for rs-

fMRI. 

The initial technique used by Biswal[1] et al. to identify 

the resting state networks was seed-based analysis. A seed-

based analysis is simple, easy, and can give broad results. The 

seed-based approach focuses on selecting a seed region and 

attempting to connect it to the other seeds across the remainder 

of the brain. The Seed selection needs to be selected by an 

expert resource as the results depend on the seed choice. As 

shown in Figure 1, seed-based connectivity is observed in the 

brain map. 

 
Fig. 1 Seed-Based Connectivity–Software used CONN [17] platform 

 

 
Fig. 2 Connectivity matrix with ROI to ROI   implemented in CONN 

[17]   Software 

3.1.2. Region of Interest to Region of Interest (ROI –ROI 

Analysis) 
 ROI-to-ROI connectivity measures the connectivity 

among all groups of ROIs between a set of regions in the 

brain. The RRC matrix shown below in Figure 2 represents 

the level of functional connectivity amongst each pair of 

ROIS. When the simultaneous study of the entire network 

of connections is needed, such a method will be quite 

promising. [10] 
 

3.2. Model-free Methods 

3.2.1. Principal Component Analysis (PCA) 

 Calculating the principal components and using them to 

make changes based on the data is known as principal 

component analysis (PCA). Sometimes, only the top few 

principal components are used, and the remaining ones are 

ignored. The principal components are sorted out using mutual 

orthogonality between signal and noise to separate the fMRI 

data into signal and noise subspaces. It works on how to 

maximize the difference. Generally, a few directions where 

most of the variation occurs are interesting for analysis. [3] 
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3.2.2. Independent Component Analysis (ICA) 

 The ICA method is another most popular and widely used 

method, which uses a mathematical technique to get the 

statistical choice within its components [11]. As a result, 

various reliable resting-state networks are discovered in 

numerous distinct individual investigations employing ICA on 

rs-fMRI data. It focuses on maximizing the statistical 

impartiality among its components to detect functional 

connectivity. It is proven to give consistent results with good 

accuracy. 

 

3.2.3. Graph Theory Processing 

The graph method uses the nodes and edge theory, where 

the network behaves like node (ROI) sets with edges that 

reflect association among ROIs.[12] It works as an alternative 

approach for seed-based connectivity [13]. For Graph theory 

[11], the node in the brain corresponds to a region of interest, 

and the edges represent the association between them. The 

graph theory displays parameters like global efficiency, local 

efficiency, degree, cost, and many others. This network's 

overall information transfer efficiency is gauged by its global 

efficiency. Local efficiency is inversely proportional to the 

average path length between all neighbors. The length of the 

nodes' paths is what is referred to as the average path length. 

The clustering coefficient measures how closely nodes in a graph 

typically cluster together. (neighboring node connections) [16] 

These graph theory attributes help provide some statistical data 

for calculating the association among the nodes [15]. These 

metrics of graph theory, as listed above, like Global Efficiency 

and Local Efficiency, help to calculate the capability of a 

network to communicate information at the global and local 

levels, respectively.[16] 

 

Global Efficiency 
In a graph, say G (N, K), the global efficiency is defined as 

where N are vertices and K are edges connecting the pair 

vertices. 

𝐺𝐸𝑖
=

∑
1

𝐹𝑖,𝑗
𝑗≠𝑖

𝑁−1
                 (1)         

where GEi is global efficiency, F is the shortest path distance 

matrix, N is the number of nodes. 

 

Local Efficiency 
 Local Efficiency is a metric that helps to calculate the 

average efficiency of information transfer within local 

subgraphs or neighborhoods. It is measured with respect to 

the shortest average path length within adjacent neighbors. 

 

Clustering Coefficient 
 The clustering coefficient in graph theory measures how 

closely connected nodes in a graph tend to be. It measures the 

fraction of a node’s neighbors. Here, considering   then the 

equation for clustering coefficient Cci is 

 

Cci       
= ∑

Aj,k
(i)

di(di-1)j,k∈ Ti
           (2) 

where d is the degree of a node, and A is the 

adjacency matrix. 
 

Cost 

On a graph, the total cost of the edges that make up a path 

represents the path's cost. The cheapest path between two 

nodes in the path between them has the lowest cost. Network 

cost is an imperative metric that succinctly combines with 

network efficiency. This measures how expensive it is to build 

a network. 
 

Average Path Length 

 The average distances between node i and every other 

node are what is known as the average path length.  

 L =
∑ Li i∈N

n
                       (3) 

Degree 

In theory, for graph study, the degree of a vertex is 

determined by how many edges connect it. 

          3.2.4. Clustering Methods 

This method performs division in the brain within a set of 

groups or regions based on functional connectivity linkage. 

Such methods are acceptable for determining the linkage in 

the distinct regions in the brain. [16] 

 

These methods can describe the active regions and find 

networks in the brain and fMRI data proficiently without the 

need for previous data about activation arrays or trials. 

 

 
Fig. 3 Cluster-based results 

 

4. fMRI Workflow 
The general steps involved in this fMRI analysis pipeline-

means the steps involved for preprocessing the data, are 

summarized in the following chart. The steps involved in 

preprocessing fMRI are illustrated in Figure 4. 
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                               Fig. 4 fMRI Pipeline Workflow 
 

Steps involved in preprocessing fMRI are: 

4.1. Functional Realignment 

Functional data is realigned, and it is unwrapped in this 

step. By using b-spline interpolation, all the given images are 

coregistered, and a reference template is used for resampling. 

The step focuses on the vulnerability of disturbances in images 

triggered by interactive movements. This is done by 

approximating the outcomes of the distortion zone concerning 

the motion of the head. Further, the resampling is performed 

on functional data to equalize the distorted area of the original 

template image. [17] 

 

4.2. Slice-Timing Correction 

Time-based dislocation among diverse portions of the 

functional data fetched via the fMRI capturing methods 

serially is extracted by using the slice-timing correction (STC) 

process., This is done as we keep moving the functional data 

on the timeline and for repeat sampling. 

 

4.3. Outlier Identification 

Here the representative data is identified, probably out of 

specification from the gathered universal BOLD signal and the 

number of scanned subject motions. The BOLD signal 

received above the time greater than five seconds and 

displacement per frame greater than 1.0 mm are termed 

probable out-of-specification data. 

 

4.4. Segmentation in a Direct Manner and Normalization 

The brain images obtained during rs-fMRI have images 

in functional and anatomical forms. Both are standardized into 

the regular template like Montreal Neurological Institute 

(MNI space). This is a standard template. Here, the brain is 

divided further into areas like white, grey regions, and CSF 

tissue using SPM software. It performs the classification of 

tissues, subsequent tissue approximation, and probability 

maps (TPMs) of the standard functional/anatomical image 

from the intensity values and registration iteratively. Thus, it 

helps to estimate the nonlinear three-dimensional conversion 

best resembling the next image. 

 

4.5. Functional Smoothing 

The BOLD signal-to-noise ratio is improved by 

smoothing, using a three-dimensional convolution method 

that applies a Gaussian kernel with a dimension of 8mm full-

width half maximum (FWHM). This, in turn, helps to decrease 

the effect of remaining roughness in functional and gyral 

composition among subjects. 

 

Several neuroimaging Softwares like AFNI, FSL, Free 

surfer, fMRIprep, and CONN [17] are available for 

performing these predefined steps like functional 

rearrangement and unwarp, improvement in slice-timing, 

identification of probable out-of-specification images, direct 

segmentation and normalization and functional smoothing of 

the images [18]. 

5. Experimentation Results 
The acquired fMRI data must be processed to achieve a 

better Signal Noise Ratio (SNR). These processing steps are 

performed one after another to achieve a better output of the 

fMRI images. While using CONN [17] software, a default 

pipeline is specified in processing the output. In this paper, 

various results achieved on CONN software are displayed.  

 

Figure 5 below shows the selection of the default pipeline- 

the sequence of processing the images -the standard steps that 

are followed for processing the fMRI images. 

 
After selecting this option, the default pipeline is 

implemented, and processing is carried out as stated in the 

fMRI Workflow in Figure 4. 

 

 
Fig. 5 Example of CONN’s preprocessing GUI [17] 

 

Run subjects for fMRI scans 

Anatomical and Functional data acquisition 

Preprocessing data steps  

1. Input-raw fMRI data series 

2. Slice Timing 

3. Realignment 

4. Functional and Structural Co-registration 

5. Normalization 

6. Smoothing 

1st Level Analysis for a Single Subject Seed Based type 

2nd level Analysis or Group Level for multiple subjects 

Statistical Result maps 



Deepa Nath et al. / IJETT, 71(3), 168-174, 2023 

 

172 

 
Fig. 6 CONN’s [17] default pipeline SBC connectivity maps by using 

Default pipeline direct normalization method by using Strategy A. 

Figure 6 demonstrates the results achieved by 

implementing the default pipeline; results are displayed with a 

certain p-value from CONN GUI [17] with a threshold value 

of 0.3,1st level analysis results obtained, as shown in Figure 

6. Results show functional connectivity achieved using seed-

based connectivity. 
 

5.1. Different Strategies using Sequence Alterations 

Different strategies [19] (preprocessing steps sequence as 

shown in Figure 4, fMRI workflow diagram, block 3) were 

applied to the same subject to see the effect of 

alteration/change of sequence of preprocessing steps on the 

measurement metrics to graph theory measures. 

5.1.1. Strategy A 

In this pipeline method, the realignment step is performed 

first, followed by slice timing correction. Direct segmentation 

and normalization are applied in this step. 

 

5.1.2. Strategy B 

Here, in this pipeline, the slice timing step is performed 

first, followed by the realignment step. The sequence of 

execution is altered. 

 

5.1.3. Strategy C 

In this step, first, realignment is done, followed by slice 

timing like Strategy A. However, indirect segmentation and 

normalization are applied. Indirect segmentation and 

normalizations mean that the functional and anatomical 

datasets use the same non-linear transformation, estimated 

using only the structural data. 

 
Fig. 7 Sequence of steps altered in CONN [17] default pipeline- SBC 

connectivity maps by using Strategy B 

 

Experimentation is done in the above-mentioned 

strategies and tried altering the step sequences for evaluating 

the performance. 

 

Strategy A output, when done on CONN [17], as shown 

in Figure 6, is with the standard default pipeline steps 

followed. 
 

Normally in default pipeline steps, firstly, functional 

realignment is performed. However, here in Strategy B- 

firstly, the slice-timing correction is done, followed by the 

functional realignment step.  

Further steps like outlier identification, direct 

segmentation and normalization, and functional smoothing are 

kept as the standard ones. While doing so, no significantly 

different results could be seen.  

The results are displayed in Figure 7. If we try comparing 

Figure 6 and Figure 7, the results look the same.  
 

For Strategy C, one major change deployed is the indirect 

normalization step. The functional and anatomical data are 

normalized independently, each using its own non-linear 

transformation for data from its origin to a common MNI-

space in a direct normalization procedure.  

On the other hand, in an indirect normalization procedure, 

both the functional and anatomical datasets use the same non-

linear transformation, which is estimated using only the 

structural data. 

Table 1.  Average values of different parameters for different preprocessing steps 

Method Global efficiency Local efficiency Cost Average Path Length Degree Clustering Co-efficient 

Strategy -A 0.496933 0.764214 0.247444 1.759636 40 0.530746 

Strategy- B 0.477607 0.772052 0.222086 1.784774 36 0.549282 

Strategy- C 0.512849 0.758258 0.143149 2.205747 23 0.526241 
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Fig. 8 Output Results by implementing indirect normalization in   CONN 

[17] by using Strategy C 

This is significantly better in terms of resolution and 

improved contrast of tissues. Rest all the further pipeline steps 

are the same as the default one. The only important pre-

condition for implementing this method is that high-quality 

Field maps(fmaps) are necessary. Field maps(fmaps) 

information is related to the static magnetic field distribution 

for getting precise geometric distortion in MRI. These fmaps 

are needed for susceptibility distortion correction during the 

functional realignment & unwarp step. 

 

The important point to note in Strategy C is that after 

maintaining the same threshold (p-value) at 0.3 for the same 

subject and the same seed- Connectivity varies significantly 

with Indirect Normalization [20]. Results implemented by 

Strategy C are shown in Figure 8. 

 

In Figure 6,7, we cannot see many variations in the output; 

however, in Figure 8, we can see a significant difference is 

attained by implementing Strategy C. Apart from the 

connectivity differences observed, graph theory statistical 

measures also differ for the three strategies applied. 

 

5.2. Graph Theory Results 

Here dataset is taken from the open-neuro forum for 

resting-state fMRI analysis. The average of 46 subjects' data 

is compared in the given table on the parameters of graph 

theory like global efficiency, clustering coefficient, average 

path length, local efficiency, cost and degree. 

Based on data in Table 1 derived from the graph theory 

results using CONN software, it is observed that the 

parameters like Global Efficiency, Local Efficiency, Cost, 

Average Path length, Degree, and Clustering Coefficient in 

different strategies applied by changing the preprocessing 

step sequence, shows statistically significant different 

outcomes. Values vary significantly. In the case of Strategy C 

–Global efficiency seems to be improved, while in the case of 

Strategy, A Average path length is lesser, and the degree is 

higher in the same method. These results need to be further 

validated with clinical evidence for further inferences. The 

future scope for this research is validating the results obtained 

using CONN [17] from an expert neurosurgeon. Further, 

these results with the help of machine learning.[21] for fMRI 

can be made easier for the classification of neurological 

diseases. 

6. Conclusion  
While performing preprocessing steps on the fMRI images, 

generally, the method followed is applying normalization in a 

direct manner. Indirect normalization seems to be a better 

alternative approach which is used to get significant outcomes 

as compared to the direct method [19] when done through 

visualization. They all were implemented on CONN [17] 

software. This approach can be used for checking the resting 

state networks for different neurological diseases like Epilepsy, 

Alzheimer’s, Parkinson and other brain disorders[22]. To 

summarize both Direct and Indirect Normalization methods 

with different strategies, preprocessing steps sequences were 

altered. To further continue unique method was tried to 

implement, and substantial differences in measuring 

parameters of the brain through graph theory results were 

observed. From Table 2, global efficiency changed by 3% in 

Strategy Cover the direct method Strategy A. Similarly, the 

Degree metric seems to be altered by 40%, and the Cost metric 

also looks altered by 2%. The same needs to be further 

clinically validated. 
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