
International Journal of Engineering Trends and Technology                                                  Volume 71 Issue 3, 73-80, March 2023 

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V71I3P209                                         © 2023 Seventh Sense Research Group®        
             

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 
 

Reliability and Sensitivity Analysis of Membrane 

Biofilm Fuel Cell 
 

Syed Mohd Rizwan1, Kajal Sachdeva2, Noura Al Balushi3, Shabib Al Rashdi4, S. Z. Taj5 
 

1,3,4,5 College of Engineering, National University of Science and Technology, Oman. 
2Department of Mathematics, MD University, Rohtak, India. 

 
1Corresponding Author : syedrizwan@nu.edu.om 

 

Received: 19 December 2022              Revised: 27 February 2023               Accepted: 17 March 2023               Published: 25 March 2023 

 

Abstract - Oilfield wastewater is recognized as a critical resource for reusing water and saving energy. Membrane Biofilm 

Fuel Cells (MBfFC) is an advanced technology with the extraordinary ability to use living organisms' metabolic reactions to 

produce organic energy into electrical energy. However, their reliability needs to be investigated and increased to integrate 

them into transportation systems. The same can be addressed through a robust case-specific mathematical model for analyzing 

the system performance. The present article analyses a single membrane biofilm fuel cell mainly composed of a proton 

exchange membrane, anode and cathode electrodes. Different system reliability indices and profit equations are investigated 

using Markov and the regeneration process. Sensitivity analysis of the availability and the profit function have also been 

carried out to understand the effects of changing parameters. 
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1. Introduction  
The Oilfield-generated water is the organic solvent 

component that is simultaneously produced with oil from a 

producing well during routine production processes. 

Industrial effluents, oilfield gases, saltiness, suspended 

particles, and pollutants are typically present in high 

concentrations in oilfield-generated water, which is primarily 

very salty water that occurs under high pressure and 

temperatures. Oman's oilfields generate more than 1 million 

cubic meters of oil daily. Due to the effluent's poor quality, 

most water is being released into wetlands. The catalytic 

processes of microorganisms turn the chemical energy in 

organic substances into electrical power. This mechanism has 

generated a great deal of interest among different researchers 

[1- 4]. 

 

The membrane biofilm fuel cell (MBfFC) is an efficient 

method for treating oilfield wastewater while simultaneously 

producing energy. It has been identified as a promising and 

demanding energy conservation and wastewater treatment 

technology, resolving environmental issues [5, 6]. The 

MBfFC include two glass cylinders and dead-end hollow 

fiber electrodes coated with noble Pt and graphene oxide. A 

glass bridge featuring a proton exchange membrane will 

connect the cylinders. Figure 1 shows the specific parts and 

design of the membrane biofilm fuel cell (MBfFC). Voltage, 

current, and resistance measurements can all be made using 

the multimeter. Both electrodes are wired with copper to a 

multimeter and an external direct current source. It mainly 

comprises a membrane, catalyst layers (anode and cathode 

electrodes) and gas diffusion layers (anode and cathode 

electrodes)[7, 8]. These layers are the most critical elements 

of the cell. The bacteria on the anode break down organic 

material and release electrons and H+ ions. These substrates 

allow the bacteria to produce electrons, which are afterwards 

moved from the anode to the cathode by a substance 

containing a resistor, generating electric energy to power a 

device [9]. The semi-permeable membrane allows the H+ 

ions to pass through to the cathode. This process is driven by 

the electrical potential close to the anode. Pure water is 

created when oxygen is combined with electrons from the 

cathode. [10, 11]. Fowler et al. [12] examined the modes of 

failure and improvements in fuel cell stack reliability. Fuel 

cells are susceptible to several different problems.  

Due to its structure and functions, the membrane is the 

essential component. Its failure mechanisms fall into three 

categories: mechanical (inhibit the production and crack 

growth), thermal (clean out and skin patch), and chemical 

degradation [8]. Balushi et al. [41] developed a noble fouling-

resistant membrane. The second most crucial element is the 

catalyst layers. They are made up of cathode and anode 

electrodes. A catalyst layer-covered carbon support is visible 

on the cathode side, where the oxygen reduction is visible. 

Carbon monoxide (CO) poisoning primarily causes anode-

side degradation. On the catalyst particle surfaces, CO 

accumulates fast. As a result, sites for hydrogen adsorption 

and subsequent oxidation are no longer accessible. Gas 
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Diffusion Layers connect bipolar plates and catalyst layers. 

They are often constructed from fabric or carbon paper. The 

corrosion of the carbon paper directly impacts the cell's 

lifespan since it supports the catalyst. To address such 

challenges and understand the impacts of degradations on the 

important components of the membrane biofilm fuel cell, the 

reliability analysis of MBfFC is of great importance. Thus, 

reliability is one of the critical issues that must be tackled 

before membrane biofilm fuel cells (MBfFC) can be 

successfully industrialized. Reduced reliability entails higher 

maintenance costs and a greater reliance on overpriced 

electrical energy backup resources. It is related to operational 

and safety concerns as well. Adopting new technology, such 

as fuel cells, could become unappealing due to these reasons. 

Therefore, fuel cell reliability needs to be established and 

proven. Sensitivity analysis [42] will further be a value 

addition for determining whether a parameter significantly 

impacts the derived measures.  

 

Researchers have focused on the reliability aspects 

of industrial systems in the past where the continuous casting 

plant [15-19], the desalination plant [20, 21, 25, 28], the PLC 

system along with other industrial systems [22, 23, 24], the 

wastewater treatment plant [26, 27], desalinated water 

pumping station system [29], the rodding anode plant of an 

aluminuim industry [30-34] and the cable manufacturing 

plant [35-40] have been analysed under different operating 

and the failure conditions. Therefore, the reliability analysis 

of technological systems is an essential requirement to assess 

the overall system performance to align effective 

maintenance practices and avoid frequent failures.  

However, the reliability analysis of MBfFC is yet to be 

investigated. Thus, the current research focuses on estimating 

the performance degradation of MBfFC components. This 

article examines the reliability of a single membrane biofilm 

fuel cell (MBfFC), and detailed sensitivity analysis has been 

carried out. The article is structured as follows: 

Section 2 outlines the assumptions and description of the 

system. Section 3 includes the system states, probabilities, 

and mean stay times. In Sections 5-7, various system 

effectiveness metrics, such as MTSF, system availability, 

busy period, and the number of replacements, have been 

assessed to determine the system's profitability. Measures are 

evaluated in Section 8 by assuming specific values of 

parameters. Section 9 performs the sensitivity analysis of the 

profit function and availability. Finally, Section 10 provides 

some insightful findings. 

 

2. Assumptions and System Description  
The assumptions and descriptions employed in the 

analysis of the system under consideration are as follows: 

1. A single-unit Membrane Biofilm Fuel Cell (MBfFC) is 

considered. It mainly comprises a proton exchange 

membrane, anode and cathode electrodes. 

2. The repairman examines the cell to determine which 

component of the MBfFC has degraded. As a result, 

failure is identified. 

3. The MBfFC may deteriorate due to the degradation of the 

membrane, catalyst, or gas diffusion layer. 

4. The membrane may deteriorate due to mechanical, 

thermal, or chemical failure.  

5. The degradation of the catalyst or gas diffusion layers 

may occur on the cathode or anode side. 

6. If the MBfFC fails, the only option is to replace it. 

7. All the transition time distributions have been taken in 

general.  

Fig. 1 Membrane Biofilm Fuel Cell (MBfFC)
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Fig. 2 System Failure Description 

 

3. Nomenclature  
The following are the notations used in the modelling 

MBfFC: Membrane Biofilm Fuel Cell 

dc(t): probability density function of MBfFC degradation 

ic(t): probability density function of inspection time to detect 

the cause of MBfFC degradation 

g
k

(t): probability density function of MBfFC degradation 

time due to some fault in layer ‘k=cl/m/gl’. 

hk(t): probability density function of MBfFC replacement 

time due to layer ‘k’. 

p
k
: the probability of MBfFC degradation due to some fault 

in layer ‘k’. 

p
cla

(p
gla

)/p
clc

(p
glc

): probability of MBfFC failure due to 

failure detection in the anode/cathode side of the catalyst 

layer (gas diffusion layer). 

p
mm

/p
mt

/p
mc

: the probability of MBfFC failure due to 

membrane mechanical/thermal/chemical failure. 

Ai
c(t): the probability of MBfFC in upstate at time t, given 

that it is in state i at t = 0. 

Bi
c(t): the probability that the repairman is busy for 

inspection at time t, given that it is in state i at t = 0. 

Bi
k(t): the probability that the repairman is busy for failure 

detection in layer ‘k’ of MBfFC at time t, given that it is in 

state i at t = 0. 

Ri
k(t): expected number of replacements of MBfFC due to 

failure in layer ‘k’ up to time t, given that it is in state i at t =

0. 

Here, k = catalyst layer (cl), membrane (m), gas diffusion 

layer (gl).  

4. System Modelling 
The description of the states of the system are: 

State 0 (OFC)  : Operative Fuel Cell (MBfFC) 

State 1 (Di)  : Degraded cell under inspection 

State 2 (CLd)  : Catalyst layer degradation 

State 3 (Md) : Membrane degradation 

State 4 (GLd)  : Gas diffusion layer degradation 

State 5 (Fcla)  : Anode side failure in the catalyst layer 

State 6 (Fclc)  : Cathode side failure in the catalyst layer 

State 7 (Fmm)  : Mechanical failure of membrane 

State 8 (Fmt)  : Thermal failure of membrane 

State 9 (Fmc)  : Chemical failure of membrane 

State 10 (Fgla)  : Anode side failure in the gas diffusion 

     layer 

State 11 (Fglc)  : Cathode side failure in the gas diffusion 

     layer 

The transition between various system states is shown in 

Figure 3. The operative state spaces are O= {0}, the degraded 

state spaces are D= {1, 2, 3, 4}, and the failed state spaces are 

F= {5, 6, 7, 8, 9, 10, 11}. The state space comprises 

regenerative states, S= {0, 1, 2, ..., 11}. 

 

4.1. Transition Densities 

The transition densities q
ij
(t) are: 

q
01

(t) = dc(t) 

q
12

(t) = p
cl

ic(t) 

q
13

(t) = p
m

ic(t) 

q
14

(t) = p
gl

ic(t) 

q
25

(t) = p
cla

g
cl

(t) 

q
26

(t) = p
clc

g
cl

(t) 

q
37

(t) = p
mm

g
m

(t) 

q
38

(t) = p
mt

g
m

(t) 

q
39

(t) = p
mc

g
m

(t) 

q
4,10

(t) = p
gla

g
gl

(t) 

q
4,11

(t) = p
glc

g
gl

(t) 

q
50

(t) = hcl(t) 

q
60

(t) = hcl(t) 

q
70

(t) = hm(t) 

q
80

(t) = hm(t) 

q
90

(t) = hm(t) 

q
10,0

(t) = hgl(t) 

q
11,0

(t) = hgl(t)(1-18) 

The probability 

p
ij
 =lim

s→0
q

ij
* (s)can be evaluated. 

 

4.2. Mean Sojourn Time 

Using the definition of mean sojourn time (μ
i
), i.e., stay 

time in state i, we get: 

μ0 = ∫ t dc(t)dt
∞

0
,  μ1 = ∫ t ic(t)dt

∞

0
, 

μ2 = ∫ t gcl(t)dt
∞

0
,  μ3 = ∫ t gm(t)dt

∞

0
, 
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μ4 = ∫ t ggl(t)dt
∞

0
,  μ5 = ∫ t hcl(t)dt

∞

0
, 

μ6 = ∫ t hcl(t)dt
∞

0
,  μ7 = ∫ t hm(t)dt

∞

0
, 

μ8 = ∫ t hm(t)dt
∞

0
,  μ9 = ∫ t hm(t)dt

∞

0
, 

μ10 = ∫ t hgl(t)dt
∞

0
,  μ11 = ∫ t hgl(t)dt

∞

0
  

Defining mij=∫ t
∞

0
qij(t)dt, impact to mean sojourn time, 

given as: 

m01 = μ0,   m12 + m13 + m14 = μ1, 

m25 + m26 = μ2,   m37 + m38 + m39 = μ3, 

m4,10 + m4,11 = μ4,  m50 = μ5, m60 = μ6 

m70 = μ7,   m80 = μ8, m90 = μ9, 

m10,0 = μ10,   m11,0 = μ11. 

Several system profitability metrics are established in the 

following sections. 

4.2.1. Availability of MBfFC 

We have the following recurrence relations based on the 

definition of Aci(t) (given in Section 3) and the transitions 

that occur throughout the period. 

 

A0
c (t) =  M0(t) +  q01(t)©A1

c (t) 

A1
c (t) =  q12(t)©A2

c (t) +  q13(t)©A3
c (t) +  q14(t)©A4

c (t) 

A2
c (t) =  q25(t)©A5

c (t) +  q26(t)©A6
c (t) 

A3
c (t) =  q37(t)©A7

c (t) +  q38(t)©A8
c (t) +  q39(t)©A9

c (t) 

A4
c (t) =  q4,10(t)©A10

c (t) +  q4,11(t)©A11
c (t) 

A5
c (t) =  q50(t)©A0

c (t) 

A6
c (t) =  q60(t)©A0

c (t) 

A7
c (t) =  q70(t)©A0

c (t) 

A8
c (t) =  q80(t)©A0

c (t) 

A9
c (t) =  q90(t)©A0

c (t) 

A10
c (t) =  q10,0(t)©A0

c (t) 

A11
c (t) =  q11,0(t)©A0

c (t) 

(19-30) 

Applying Laplace Transformation on the above 

equations and solving for A0
c∗(s), we get 

 

A0
c∗(s) =

N1
∗ (s)

D1
∗ (s)

                 (31) 

The system’s steady state availability is: 

A0
c = lim

s→0
s A0

c∗(s) =
N1

∗(0)

D1
∗′(0)

=
N1

c

D1
c  

where, 

N1
c = μ0; 

 

 

Fig.  3 State Transition Diagram 
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D1
c = μ0 + μ1 + pclμ2 + pmμ3 + pglμ4 + pclpclaμ5 +

pclpclcμ6 + pmpmmμ7 + pmpmtμ8 + pmpmcμ9 +
pglpglaμ10 + pglpglcμ11                                                  (32)  

 

4.2.2. Expected Fraction of Busy Period and Number of 

Replacements of MBfFC 

Using the definitions of B0
c, B0

cl, B0
m and B0

gl
 (specified in 

section 3) and the similar steps mentioned in the preceding 

section, the estimated time a repairman spends examining or 

identifying a fault in MBfFC is as follows: 

B0
c =

N2
c

D1
c  

B0
cl =

N3
c

D1
c  

B0
m =

N4
c

D1
c  

B0

gl
=

N5
c

D1
c(33-35) 

where, 

N2
c = μ1 

N3
c = pclμ2 

N4
c = pmμ3 

N5
c = pglμ4(36-39) 

 

Furthermore, based on the definitions of R0
cl, R0

m and R0

gl
 

(described in section 3), the expected number of replacements 

of MBfFC in steady-state are: 

R0
cl =

N6
c

D1
c  

R0
m =

N7
c

D1
c  

R0

gl
=

N8
c

D1
c(40-42) 

where, 

N6
c = pcl 

N7
c = pm 

N8
c = pgl(43-45) 

D1
c is the same as mentioned earlier in Section 5. 

 

4.2.3. Profit Analysis 

A profit function is a mathematical relationship between 

a system's entire output and the total expenditure. In steady-

state, profit functions are as follows: 

Pc = RcA0
c − C1B0

c − C2B0
cl − C3B0

m − C4B0
gl

− C5R0
cl −

C6R0
m − C7R0

gl
(46) 

where, 

Rc  = Revenue generated by the system 

C1= Cost per unit up time for which the repairman is busy for 

inspection. 

C2/C3/C4= Cost per unit up time for which repairman is busy 

 for failure detection in catalyst layer/ membrane/ gas 

 diffusion layer. 

C5/C6/C7= Cost per replacement of MBfFC due to failure in 

 catalyst layer/ membrane/ gas diffusion layer. 

 

5. Results and Discussion 
This section provides numerical illustrations of the 

system characteristics determined in sections 5-7. Assume all 

distributions have exponential distributions and the following 

probability density functions: 

dc(t) = λ0e−λ0t, ic(t) = γ0e−γ0t, gcl(t) = αcle
−αclt 

gm(t) = αme−αmt, ggl(t) = αgle
−αglt, hcl(t) = βcle

−βclt, 

hm(t) = βme−βmt, hgl(t) = βgle
−βglt                              (47) 

 

Let us assume particular values of parameters as: 

λ0 = 0.000015, γ0 = 1.5, αcl = 0.001, 

αm = 0.04, αgl = 0.025,  βcl = 0.0024, 

βm = 0.002, βgl = 0.0025,  pcl = 0.3, 

pm = 0.5, pgl = 0.2,  pcl = 0.3,  pm = 0.5 

pgl = 0.2, pcla = 0.4,  pclc = 0.6, pmm = 0.3, 

pmt = 0.4, pmc = 0.3,  pgla = 0.4, pglc = 0.6, 

Rc = 1000,  C1 = 200,  C2 = 150,  C3 = 175, 

C4 = 130,  C5 = 40000, C6 = 40000, 

C7 = 40000     (48) 

 

Using these fixed values of parameters, we get the values 

of system effectiveness measures as 

A0
c   = 0.9885, 

B0
c  = 9.8849× 10-6, 

B0
cl  = 0.0044, 

B0
m  = 1.8534×10-4, 

B0

gl
  = 1.1862×10-4, 

R0
cl  = 4.4482× 10-6, 

R0
m  = 7.4137× 10-6, 

R0

gl
  = 2.9655× 10-6.                (49-56) 

 

Figure 4 depicts the impact of failure rate on fuel cell 

availability. It has been observed that availability declines as 

fuel cell failure rates increase. 

 

 
Fig.  4 Change in availability (𝐀𝟎

𝐜 ) w.r.t. failure rate (𝛌𝟎) 
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Fig.  5 Change in profit (Pc) w.r.t.revenue (Rc) for different  

values of pcl 

 

 
Fig.  6 Change in profit (Pc) w.r.t. C1 for different value of failure rate 

(𝛌𝟎) 

 

Figure 5 shows the impact of revenue generated and the 

probability of MBfFC degradation due to some fault in the 

catalyst layer on profit function. As the pcl decreases, profit 

increases with an increase in revenue. Also, the revenue 

cutoff points with a fixed value of pcl for system profitability 

are interpreted from Figure 3.  
 

• If Rc> 1.367 and pcl = 0.3, Pc > 0.  

• If Rc> 1.842 and pcl = 0.5, Pc > 0.  

• If Rc>2.493 and pcl = 0.7, Pc > 0. 
 

Figure 6 shows the impact of failure rate and cost C1 on 

profit function. As the C1 and λ0decreases, profit increases. 

As figure 3 reveals the cutoff points for system profitability, 

here from Figure 4, we get the cutoff point of C1 as 
 

• If C1<1.759and λ0 = 0.01, Pc > 0.  

• If C1< 1.195 and λ0 = 0.0105, Pc > 0.  

• If C1<0.384 and λ0 = 0.011, Pc > 0.  
 

Other rates and cost effects on profit function can be 

analyzed similarly. 

5.1. Sensitivity Analysis 

Sensitivity analysis is a method for determining whether 

a parameter significantly impacts the derived measurements. 

Relative sensitivity analysis is carried out to differentiate the 

impacts of varied parameters due to the extensive range of 

numerical values for various parameters. A normalized 

variant of a sensitivity function is a relative sensitivity 

function. 
 

The relative sensitivity analysis of availability and profit 

function for different parameters is shown in Table 1 and 

Table 2, respectively. 
 

Table 1. Sensitivity Analysis of Availability w.r.t. Different Rates 

Parameter 

𝐤 

Sensitivity 

Analysis 

δk
c =

∂(A0
c )

∂k
 

Relative 

Sensitivity 

Analysis 

∆k
c = δk

c
k

A0
c  

λ0 -758.4044 -0.0115 

αcl 4.3970 0.0044 

αm 0.0046 1.8614 × 10−4 

αgl 0.0047 1.1887 × 10−4 

βcl 0.7634 0.0019 

βm 1.8321 0.0037 

βgl 0.4690 0.0012 
 

It is observed that the availability and profit are most 

affected by failure rate and revenue compared to any other 

parameter, respectively. 
 

Furthermore, the order in which input variables affect 

availabilities (A0
c ) and profit functions (Pc ) are 

 

Table 2. Sensitivity Analysis of Profit Function w.r.t. Different 

Rates/Costs 

Parameter 

𝐤 

Sensitivity 

Analysis 

dk
c =

∂(Pc)

∂k
 

Relative 

Sensitivity 

Analysis 

Dk
c = dk

c
k

Pc
 

λ0 −8.4474 × 105 -0.0128 

αcl 5.0584 × 103 0.0051 

αm 5.3850 2.1820 × 10−4 

αgl 5.3008 1.3424 × 10−4 

βcl 762.3596 0.0019 

βm 1.8297 × 103 0.0037 

βgl 468.3938 0.0012 

Rc 0.9885 1.0013 

C1 −9.8849 × 10−6 −2.0027 × 10−6 

C2 -0.0044 −6.6857 × 10−4 

C3 −1.8534 × 10−4 −3.2856 × 10−5 

C4 −1.1862 × 10−4 −1.5621 × 10−5 

C5 −4.4482 × 10−6 −1.8024 × 10−4 

C6 −7.4137 × 10−6 −3.0040 × 10−4 

C7 −2.9655 × 10−6 −1.2016 × 10−4 

-2

-1

0

1

2

3

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

P
c

Rc
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Availability (A0
c ): 

λ0, αcl, βm, βcl, βgl, αm, αgl 

Profit Function (Pc): 
Rc, λ0, αcl, βm, βcl, βgl, C2, C6, αm, C5, αgl, C7, C3, C4, C1 

 

6. Conclusion 
A single membrane biofilm fuel cell that consists of a 

proton exchange membrane, anode and cathode electrodes 

has been studied in this paper. Various system performance 

measures and profit functions are examined. It has been 

observed that as fuel cell failure rates rise, availability and 

profit both decline. Sensitivity analysis shows that the profit 

and the system availability are more sensitive to revenue 

generated and the failure rate, respectively, compared to other 

parameters. Future research will validate the proposed model 

using real-time data once the membrane biofilm fuel cells are 

operationally industrialized.  
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