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Abstract - The voltage control problem due to bidirectional power flows is more apparent when heterogeneous distributed 

generation systems (DGS) are integrated into the grid.  In this paper, a novel method of voltage control in distributed generation 

systems based on a reinforcement learning technique is proposed. DGS incorporating renewable energy resources are highly 

complicated nonlinear dynamic systems. There are several challenges in employing the existing control methods. The novel 

method presented in this paper entrenches the Q learning algorithm into the voltage control problem of DGS. The Q-learning 

algorithm teaches agents responsible for decision taking in controlling the voltage and award the reward if the aim is achieved. 

The IEEE 9 bus test system with DG’s integrated is used with various controlling agents connected. The results show significant 

improvement in the reliability of agent communication and the efficiency of the proposed method.  

Keywords - Distributed generation, Reinforcement learning, Voltage control. 

1. Introduction  
The significant task of the control system of a microgrid 

in the island mode is to control frequency and voltage as well 

as share the load between DGS. A microgrid has a hierarchical 

architecture of three levels, namely primary, secondary and 

tertiary control. Each microgrid comprises a minor generation 

with dissimilar capabilities and features. These are very 

difficult to control in nature. Considering the nonlinear 

dynamic behaviour of the system, the control hitch turns out 

to be multi-objective inhibited nonlinear in nature, which 

becomes very difficult to solve with the existing control 

methods. Multi-agent reinforcement learning (MARL) 

delivers a method for agents to develop active coordination 

policies without constructing a comprehensive decision 

model. MARL permits agents to discover the environment 

through trial and error and adjust their behaviors to the 

dynamics of the changeable and embryonic environment[1].  

In some studies, RL is considered for optimal protection 

coordination. Relays are viewed as autonomous agents that 

can manipulate their time dial settings to respond optimally to 

signals from their environment, i.e., the power system. [2]This 

study does not consider bidirectional power flows or DGS. 

State-coordinated voltage control in an active distribution 

network is studied in [3]. In coordinated reinforcement 

learning, agents organize both their action choice of activities 

and their parameter updates. Within the limits of our 

parametric illustrations, the agents will determine a jointly 

ideal action without considering every possible action in their 

exponentially large joint action space.[4]. In [5],  a Multi-

agent based voltage control is proposed. It uses a distribution 

feeder split into a series of overlapping line segments, each of 

which is allocated an agent. In order to adjust the voltage of 

that segment, the agent senses the voltage variables in that 

segment and develops the reactive power compensation 

required. Paramenter determination of voltage regulator is 

implement as a voltage control strategy in [6]. A study in fault 

classification using machine learning techniques and quarter-

cycle fault signatures was carried out in [7]. Current-based 

feature vectors and separate voltage- were described using 

multi-resolution analysis and input to a two-stage classifier. In 

this study, the author only concentrates on the classification of 

faults. The multi-agent modeling and simulation are employed 

in [8] with distributed reinforcement learning to voltage 

control.  In this application, DG’s are not taken into 

consideration.  Reinforcement learning has been considered 

for cyber-physical security assessment in power systems. 

[27].The proposed methodology considers transitions of the 

attackers in the network based on critical contingency pairs of 

N-2. An online Q-learning reinforcement scheme is designed 

to solve a Markov decision-making process that models 

adversarial behaviour, not for voltage control. [10], 

investigates various techniques of attack and cascading 

failures from the perspectives of the attackers while the 

protection strategies of the defenders or operators are ignored. 

Game theoretical methods are applied to attacker-defender 

games in the smart grid security area. A new approach for a 
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multistage game (also called a dynamic game) between the 

attacker and the defender based on reinforcement learning to 

establish the optimum sequences of the attack given certain 

goals (e.g., transmission line outages or loss of generation) is 

used.  

The reinforcement learning technique is a goal-directed 

computational approach where a computer learns to perform a 

task by interacting with an unknown dynamic environment. It 

is further a machine learning approach based on the interaction 

of agents with the environment and is learning what action to 

take to maximize the gain. Unlike supervised machine 

learning, where the agent is not told what action or decision to 

take but should be able to decide what actions to take to 

achieve the best reward (gain and losses).  

The RL follow the Markov decision process (MDP), 

where the agent monitors the current state 𝑠𝑡  of the 

surroundings and decide to take an action  𝑎𝑡. The 

environment then enters the new state ( 𝑠𝑡+1 ) with the 

probability of 𝑇(𝑠𝑡; 𝑎𝑡; 𝑠𝑡+1 ). Then an agent gets the reward 

of 𝑟𝑡+1 with the probability of R(𝑠𝑡; 𝑎𝑡; 𝑠𝑡+1; 𝑟𝑡+1). The RL 

algorithm depends on how well the agent can best take action 

based on the current state. The rate of captivating an action 𝑎 

in a state 𝑠 under a policy 𝜋 is anticipated to return when 

captivating the action 𝑎 in the state 𝑠 following the policy 𝜋.  

There are two different actions to be followed which are 

exploration and exploitation, which are chosen based on the 

policy 𝜋 such as 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦.  The action taken by the agent 

is expected to affect the future environment state. 

The Q value is defined as the reward function based on 

the history and the observation of the state of the environment. 

The microgrid has emerged as an alternative mode of 

operation, especially with the connection of DEG’s to the grid. 

Figure 1 shows the universal design of a microgrid control 

system. A control signal can be written as [11] 

 
{𝑥𝑖 = 𝑓𝑖 (𝑥𝑖) +  𝑘𝑖(𝑥𝑖)𝐷𝑖 + 𝑔𝑖(𝑥𝑖)𝑢𝑖}   (1) 

 

𝑦𝑖 = ℎ𝑖(𝑥𝑖)       (2) 

 

Where,  

𝑥𝑖  𝑎𝑛𝑑 𝑢𝑖 = [𝛿𝑖 𝑃𝑖 𝑄𝑖 𝜑𝑑𝑖 𝜑𝑞𝑖 𝛾𝑑𝑖 𝑖𝑙𝑑𝑖  𝑖𝑙𝑞𝑖  𝑣𝑜𝑑𝑖  𝑣𝑜𝑞𝑖 𝑖𝑜𝑑𝑖  𝑖𝑜𝑞𝑖]
𝑇 

are control signals. 𝐷𝑖 = [𝜔𝑐𝑜𝑚𝑣𝑏𝑑𝑖𝑣𝑏𝑞𝑖] and 𝑓𝑖  𝑘𝑖 𝑔𝑖  form 

internal dynamics of the DG’s. For the 𝑖𝑡ℎ DG, 𝑣𝑜𝑑𝑖 = 𝑣𝑜𝑖 =
𝑣𝑜𝑞𝑖 = 0, which yields to 𝑦′𝑖 = 𝐴𝑦𝑖 + 𝐵𝑢𝑖 + 𝑑𝑖. Where 𝑦𝑖 =

[𝑣𝑜𝑑𝑖  𝑣′𝑜𝑑𝑖]
𝑇. 𝑑𝑖 represents the disturbance in 𝑦𝑖 . Where 𝑒′𝑖 =

𝐴𝑒𝑖 + 𝐵𝑢𝑖 + 𝑑𝑖 Becomes the voltage error of the DG 

integrated into the microgrid. Figure 1 depicts a typical 

microgrid voltage control. 

 
Fig. 1 A typical voltage control for a microgrid [11] 
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The non-relationship between nodal power injections and 

nodal voltages complicates the tension control problem 

solution. Also, models that follow linearizations that prove 

incapable of handling the rapid variations in volt in large 

networks effectively, as the synchronization of multiple 

components would require comprehensive communication. 

Distributed control schemes suggest subproblems, the 

decomposition of the voltage regulation problem to ease the 

global contact requirements[12][28]. Micro-grid voltage 

control based on the distributed cooperative control of multi-

agent systems is proposed in [14][15]. The proposed 

secondary control is totally disseminated; each distributed 

generator needs only its in-formation and some neighbours ' 

information. The disseminated configuration removes the 

requirements for a central controller and network 

communication, which increases the systems' efficiency. 

Linearization of input–output feedback is used to transform 

secondary voltage power. The voltage control on islanded 

microgrid is studied in [16]. The microgrid is normally 

controlled by two loops with dissimilar bandwidths: the inner 

voltage control loop and the outer control loop. Here a linear 

quadratic regulator is suggested for voltage control.  A new 

distributed controller for secondary frequency and voltage 

control in microgrids is presented in [17]. The proposed 

controller uses localized information and nearest neighbour 

information exchange to do secondary control actions. 

In [18], the control method for the islanded microgrid is 

based on distributed cooperative control. A predictive control 

method applied to the secondary level of microgrids is 

suggested in [19]. It is based on droop and power transfer 

equations. These consider frequency and voltage regulation 

control objectives and consensus over the microgrid's real and 

reactive power contributions from each power unit. An 

innovative voltage control algorithm founded on peer-to-peer 

control and gossiping communication is suggested to function 

in a disseminated mode with no central coordinator[20]. The 

algorithm can be implemented asynchronously with partial 

data exchange between the agents. The control strategy 

employed in [29] uses fuzzy logic combined with a heuristic 

algorithm for coordinated Volt/Var control for the real-time 

operation of a smart distribution grid which implements 

simplicity and suitable performance for real-time application. 

Voltage regulation in an active power distribution system 

integrated with natural gas grids using distributed electric, and 

gas energy resources is presented in [22]. The new algorithm 

here is suggested for optimal real-time scheduling of power to 

gas and gas to the power unit to control over/under voltage 

issues in the active distribution system with the integration of 

renewables. Active-reactive coordinated optimization method 

is considered in [23]. A particle swarm optimization algorithm 

is presented to solve the problem of voltage deviation. 

Advanced voltage control for smart microgrids using 

distributed energy resources is suggested in [24]. The 

suggested method includes solving an optimization problem. 

Integrating distributed energy resources (DER’s), which are 

necessary to improve the network capacity and meet the power 

demand, will change the whole architecture of the network 

into a multi-source network rendering the traditional control 

method inefficient.  

Some of the contributions include the following:  

1. The introduction of a Q-learning algorithm for voltage 

control.  

2. The adoption of multi-agent reinforcement learning for a 

dynamic changing environment. 

The paper is organised as follows; Section 2 presents a 

multi-agent reinforcement learning approach. In section 3 a Q-

learning algorithm is introduced, section 4 subsequently 

discusses IEEE 9 bus with distributed energy resources, 

section 5 presents some results, and section 6 presents the 

conclusion. 

 

2. Multi-Agent Reinforcement Learning  
The multi-agent reinforcement learning technique is the 

approach in which agents are able to interact under certain 

environments through trial and error without making complete 

decisions. They can further adapt their behaviour to uncertain 

and evolving environments to better their performance. Figure 

1 shows the agent environment action. The action taken by the 

agent is expected to affect the future environment state. 

 

The goal of Q-learning is to learn a policy which tells an 

agent what action to take under what circumstances. It does 

not require a model of the environment and can handle 

problems with stochastic transitions and rewards without 

requiring adaptations. There are different algorithms which 

use MAS variants tabular Q-learning.   They are as follows; 

 

1. Markov Decision Process (MDP) 

2. Independent learner 

3. Coordinated reinforcement learning 

4. Distributed value function 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2 Agent environment interaction 
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2.1. MDP Learners 

The agent is not obliged to interact, but they must be able 

to monitor the effected joint actions and the received separate 

gain. According to [30], MDP is characterized by 

 

Number of states 𝑆 = {𝑠1, 𝑠2, … . , 𝑠𝑛} where 𝑠𝑡 is a state in S; 

Number of actions 𝐴 = {𝑎1, 𝑎2, … . , 𝑎𝑀} accessible to the 

agent per state 𝑠; 
 

Alteration dissemination 𝑇(𝑠’|𝑠, 𝑎) records a set 

comprised of a state 𝑠 and an action 𝑎 to prospect 

dissemination of state 𝑠’; 
 

A reward function 𝑅: 𝑆 × 𝐴 × 𝑆 → 𝑅  provides the 

probable reward when the agent builds the alteration from 

state 𝑠 to state 𝑠’ via action 𝑎. 𝑟𝑡  represents the instant scalar 

reward gained at time 𝑡, where 

 

𝑟𝑡 = 𝑅(𝑆𝑡+1 = 𝑠
′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) = 𝐸{𝑟𝑡|𝑠𝑡+1 = 𝑠

′, 𝑠𝑡 =
𝑠, 𝑎𝑡 = 𝑎                                          (1) 

 

The dissemination of resulting states and rewards is 

autonomous of the history through the present state and action, 

such that 

 

𝑇(𝑠𝑡+1|𝑠𝑡𝑎𝑡) = 𝑇(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡 , … . . , 𝑠1𝑎1)                (2) 

 

The action selection mechanism in MDP is 𝑝𝑜𝑙𝑖𝑐𝑦 𝜋: 𝑆 ×
𝐴 → [0,1] that stipulates a prospect of choosing 𝑎 in an exact 

𝑠. The probable return in a state 𝑠. 
 

𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠] = 𝐸𝜋[∑ 𝛾𝑡∞
𝑡=0 . 𝑟𝑡|𝑠𝑡 = 𝑠]  (3) 

 

where 𝛾 is the discount factor and 𝑅𝑡 signifies the gain.  

𝑉𝜋 is the gain of an agent resulting in the policy 𝜋. The action 

value function for policy 𝜋, 𝑄𝜋(𝑠, 𝑎), is the anticipated gain 

when acquiring action 𝑎 in state 𝑠 under the policy 𝜋.  

 

Therefore 𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. The MDP’s 

goal is to discover the preeminent policy 𝜋∗ That exploits the 

probable gain. The optimal 𝑠𝑣𝑎𝑙𝑢𝑒for any state 𝑖𝑠 𝑉
∗(𝑠) =

𝑚𝑎𝑥𝜋𝑉
𝜋(𝑠). 

 

Strategies used to find optimal policies, i.e. classification 

criterion for reinforcement learning approach, are as follows; 

𝑉𝑎𝑙𝑢𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 updates each iteration according to   the 

policy-given value function such that the current value 

function updates to intuitive 

 

𝑉𝑡+1
𝜋 (𝑠) = max

𝑎∈𝐴
∑ 𝑇(𝑠′|𝑠, 𝑎)𝑆′∈𝑆 (𝑅(𝑠′|𝑠, 𝑎) + 𝛾. 𝑉𝑡

𝜋(𝑠′))   (4) 

 

Policy reiteration progresses the feature of the policy 

𝜋 over after assessing the value function 

𝑉𝜋 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑙𝑖𝑐𝑦 𝜋. 
 

Direct policy search. Here there, it is not necessary to 

realize the value function. 

 

For independent learning 

𝑄𝑖(𝑠, 𝑎𝑖) = 𝑄𝑖(𝑠, 𝑎𝑖) + 𝛼[𝑅𝑖(𝑠, 𝑎) +
𝛾𝑚𝑎𝑥 𝑎′𝑖  𝑄𝑖(𝑠

′, 𝑎′𝑖) − 𝑄𝑖(𝑠, 𝑎𝑖)      (5) 

In this case, the agent overlooks the actions and gains of 

other agents. 

 

For coordinated reinforcement learning, the agent must 

harmonize its action with a few agents and acts self-

sufficiently within the environment. 

 

𝑄𝑖(𝑠𝑖 , 𝑎𝑖) = 𝑄𝑖(𝑠𝑖 , 𝑎𝑖) + 𝛼[𝑅(𝑠, 𝑎) +
𝛾max 𝑎′  𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]            (6) 

 

This method is disseminated and generates enormous 

storage and computational savings in the action space. 

 

Distributed value functions  

𝑄𝑖(𝑠𝑖 , 𝑎𝑖) = (1 − 𝛼)𝑄𝑖(𝑠𝑖 , 𝑎𝑖) +
𝛼[𝑅𝑖(𝑠, 𝑎) 𝛾 ∑ 𝑓(𝑖, 𝑗)max 𝑎′𝑖𝑗∈(𝑓(𝑖,𝑗)≠0                                                                                  

(7) 

 

3. Q-Learning Algorithm 

{
 
 
 
 

 
 
 
 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑄 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑉 𝑣𝑎𝑙𝑢𝑒𝑠
𝑂𝑏𝑠𝑒𝑟𝑣𝑒 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 𝑠𝑡
𝑆𝑒𝑙𝑒𝑐𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡  𝑎𝑛𝑑 𝑡𝑎𝑘𝑒 𝑖𝑡

𝑂𝑏𝑠𝑒𝑟𝑣𝑒 𝑡ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟(𝑠𝑡 , 𝑎𝑡)

𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑑𝑜 𝑛𝑜𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑄 − 𝑣𝑎𝑙𝑢𝑒𝑠

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼)𝑄𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛼𝑡(𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛽𝑉𝑡(𝑠𝑡+1))

𝑉𝑡+1(𝑠) ← 𝑚𝑎𝑥𝑎𝑄𝑡(𝑠, 𝑎)
𝑟𝑒𝑝𝑒𝑎𝑡 
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4. The IEEE 9 bus with Distributed Energy 

Resources 
Consider the IEEE 9 bus with distributed energy 

resources where several agents have to be coordinated in order 

to be able to achieve one goal, which is to solve the problem 

of voltage deviation in the power system. 

 
The voltage at a node in a network can be presented as a 

function of 𝑃 𝑎𝑛𝑑 𝑄. That is 𝑉 = 𝑓(𝑃, 𝑄) where 𝑃 and 𝑄 are 

the active and reactive power flow on the network.  

 

𝑃𝑖 = ∑ 𝑉𝑖
𝑁
𝑘=1 𝑉𝑘𝑌𝑖𝑘cos (𝛿𝑖 − 𝛿𝑘 − 𝛿𝑖𝑘)   (8) 

 

𝑄𝑖 = ∑ 𝑉𝑖 − 𝑉𝑘 − 𝑌𝑖𝑘
𝑁
𝑘=1 cos(𝛿𝑖 − 𝛿𝑘 −𝛿𝑖𝑘)   (9) 

 

𝑉𝑖 𝑎𝑛𝑑 𝛿𝑖 is the amount of voltage and angle at node i; 

𝑉𝑘 𝑎𝑛𝑑 𝛿𝑘 is  the amount of voltage  and angle at node 

𝑘;  𝑌𝑖𝑘 𝑎𝑛𝑑 𝛿𝑖𝑘 is the magnitude and argument of the element 

(𝑖, 𝑘) in the network’s admittance matrix[5] 

 

Let the optimal power flow 𝑃(𝑖, 𝑢) for a pair of (𝑖, 𝑢) with 

𝑖 ∈ 𝑆 𝑎𝑛𝑑 𝑢 ∈ 𝐴(𝑖) be presented as 

 

𝑃(𝑖, 𝑢) = ∑ 𝑞(𝑖, 𝑢, 𝑗)𝑗∈𝑆 [𝑔(𝑖, 𝑢, 𝑗 + 𝑅∗(𝑗)],  (10) 

 

𝑅∗(𝑖) = 𝑚𝑖𝑛(𝑢∈𝐴(𝑖))∑ 𝑞(𝑖, 𝑢, 𝑗)[𝑔(𝑖, 𝑢, 𝑗) + 𝑅∗(𝑗)]∀𝑖𝑗∈𝑆   

   (11) 

 

Where 𝑔(𝑖, 𝑢, 𝑗) is the reward gained in the alteration from 

state 𝑖 to state 𝑗 under action 𝑢. Equating (10) and (11) 

 

𝑅∗(𝑖) = 𝑚𝑖𝑛𝑢∈𝐴(𝑖)𝑃(𝑖, 𝑢)∀𝑖.    (12) 

Equating (10) and (12) gives  

 

𝑃(𝑖, 𝑢) = ∑ 𝑞(𝑖, 𝑢, 𝑗)[𝑔(𝑖, 𝑢, 𝑗) +𝑗∈𝑆

𝑚𝑖𝑛𝑣∈𝐴(𝑗) 𝑃(𝑗, 𝑣)]∀(𝑖, 𝑢).       (13) 

 

𝑃(𝑖, 𝑢) ← (1 − 𝛾)𝑃(𝑖, 𝑢) + 𝛾[𝑔(𝑖, 𝑢, 𝑗) + 𝑚𝑖𝑛𝑣𝜖𝐴𝑗𝑃(𝑗, 𝑣) 

      (14) 

 
The average reward is approximated on the one-time 

scale and the active power on the other. 

 

If 𝑃𝑥 is the vector of P-values at the 𝑥𝑡ℎ iteration. Let 𝑒𝑥 

be the sequence of states visited in the simulation till 𝑥𝑡ℎ. 

 
𝑃𝑥+1(𝑖, 𝑢) = 𝑃𝑥(𝑖, 𝑢) + 𝛼(𝑚(𝑥, 𝑖, 𝑢))[𝑔(𝑖, 𝑢, 𝑒𝑖𝑢

𝑥 +

𝑚𝑖𝑛𝑣𝑄
𝑘(𝑒𝑖𝑢

𝑥 , 𝑣) − 𝑞𝑥 − 𝑃𝑥(𝑖, 𝑢)]𝐼((𝑖, 𝑢) = ∅𝑥   

   (15) 

 
Fig. 3 A modified IEEE 9 bus 
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𝑞𝑥+1 = (1 − 𝛽(𝑘)𝑞𝑥 + 𝛽(𝑘)
[(𝐽(𝑘)𝑞𝑥+𝑔(𝑖,𝑢,𝑒𝑖𝑢

𝑥 )

𝐽(𝑥+1)
  (16) 

 

𝐽(𝑥) is the number of state transition up to 𝑥𝑡ℎ iteration, 

∅ = (∅1, ∅2, … . . ) is the process of state action pairs tried in 

the learning process. 

 

4.1. Primary Control 

Adjusts the frequency and amplitude of the voltage 

reference provided to the inner current and voltage control 

loops, Simulates the behavior of a synchronous generator, and 

reduces the frequency when the active power increases using 

the 𝑃/𝑄 droop method. 

ѡ = ѡ ∗ −𝐺𝑝(𝑠) ∙ (𝑃 − 𝑃 ∗) (17) 

 

𝐸 = 𝐸 ∗ −𝐺𝑄(𝑠) ∙ (𝑄 − 𝑄 ∗) (18) 

 

Where 𝜔 is the frequency and E amplitude of the output 

voltage, 𝜔 ∗ and 𝐸 ∗ the respective references, 𝑃 active and 𝑄 

reactive power, 𝑃 ∗ and 𝑄 ∗ the power references, and 𝐺𝑃(𝑠) 
and 𝐺𝑄(𝑠) the respective transfer functions.  

𝐺𝑝 (𝑠)  =  𝑚 (19) 

 

𝑚 =  𝛥𝜔/2𝑃𝑚𝑎𝑥        (20) 

 

𝐺𝑄(𝑠)  =  𝑛 (21) 

 

𝑛 =  𝛥𝑉/2𝑄𝑚𝑎𝑥 (22) 

 

𝛥𝜔, 𝛥𝑉, Pmax and Qmax are the maximum values for 

frequency, voltage, and active and reactive power delivered by 

the inverter, respectively. 

Using power electronics, the output impedance depends 

on the controller, and the control droops (17), (18) can be 

modified according to Park’s transformation determined by 

the impedance angle θ. 

 

𝜔 =  𝜔 ∗  − 𝐺𝑃 (𝑠) [(𝑃 −  𝑃 ∗ ) 𝑠𝑖𝑛 𝜃 −  (𝑄 −
 𝑄 ∗ ) 𝑐𝑜𝑠 𝜃]                                                                   

(23) 

 

𝐸 =  𝐸 ∗  − 𝐺𝑄(𝑠) [(𝑃 −  𝑃 ∗ ) 𝑐𝑜𝑠 𝜃 + (𝑄 
−  𝑄 ∗ ) 𝑠𝑖𝑛 𝜃] 

(24) 

 

The output voltage depends on the virtual output-

impedance transfer function ZD(s) 

𝑣𝑜
∗  =  𝑣𝑟𝑒𝑓  −  𝑍𝐷(𝑠)  ·  𝑖𝑜 (25) 

 

𝑣𝑟𝑒𝑓  =  𝐸 𝑠𝑖𝑛(𝜔𝑡) (26) 

 

𝑍𝐷(𝑠) = 𝐿𝐷
2𝑘1𝑠

2

𝑠2 + 2𝜀𝜔1𝑠 + ω1
2

+ 𝑅𝑖
2𝑘𝑖𝑠

𝑠2 + 2𝜀𝜔𝑜𝑠 + ω𝑜
2
 

 (27) 

 

Where 𝑘𝑖 is the filter's coefficient for every harmonic i 

term, 𝐿𝐷 inductive and 𝑅𝑖 resistive impedance values, 

respectively. 

4.2. Coordinated Secondary Voltage Control  

Voltage control in power systems has three levels with 

different response times. In the secondary voltage control 

level, the objectives are to attain better voltage regulation and 

improvement of power system voltage stability for various 

system conditions. When a disturbance occurs in power 

systems, the area and intensity of the disturbance must keep as 

small as possible  

Secondary control is proposed to solve the voltage 

deviation problem. The voltage level in the MG vMG is 

sensed and compared with the voltage reference v∗MG, and 

the error processed through a compensator is sent to all the 

units 𝛿𝑣𝑜 to restore the output voltage.  

The multiagent system with 11 agents (buses) and Two 

static compensators STATCOMs are assigned to nodes 7 and 

9 in figure 3.  

 

The secondary control ensures that the frequency and 

voltage deviations are compensated. The frequency and 

amplitude levels in the MG, ωMG and EMG are sensed and 

compared with the references ω∗ MG and E∗ MG; the errors 

processed through the compensators 𝛿𝜔 and 𝛿𝐸 are sent to all 

the units to restore the output-voltage frequency and 

amplitude. The limit for the frequency deviation is defined as 

+-0.1 or 0.2 Hz. 

𝑑𝑃 = −𝛽 ∙ 𝐺 −
1

𝑇𝑟
∫𝐺𝑑𝑡 

(28) 

  

 
Fig. 4 Microgrid voltage control [26] 
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δP is the output set point, β is the proportional gain, Tr is 

the time constant, and G is the area control error (ACE), 

calculated in 5- to 10-s intervals. 

𝐺 =  𝑃𝑚𝑒𝑎𝑠 − 𝑃𝑠𝑐ℎ𝑒𝑑 + 𝐾𝑟𝑖(𝑓𝑚𝑒𝑎𝑠 − 𝑓0) (29) 

 

Pmeas is the measured active power transferred at the PCC, 

Psched is the resulting exchange program, Kri is the proportional 

factor, fmeas is the instantaneous measured system frequency, 

and f0 is the set-point desired frequency.  

δω =  kpω (ω ∗  MG −  ωMG)  

+  kiω ∫(ω ∗  MG 

−  ωMG) dt  +  ΔωS 

(30) 

 

δE =  kpE (E ∗  MG −  EMG)  

+  kiE∫(E ∗  MG −  EMG) dt   

(31) 

𝑘𝑝𝜔, 𝑘𝑖𝜔, 𝑘𝑝𝐸, and 𝑘𝑖𝐸 are the control parameters of the 

secondary-control compensator, and 𝛥𝜔𝑆 is a synchronization 

term which remains equal to zero when the grid is not present. 

The phase between the grid and the MG will be 

synchronized with a conventional phase-locked loop PLL, in 

which the output signal 𝛥𝜔𝑆 will be added to the secondary 

control and sent to all the modules to synchronize the MG 

phase, connected to the main grid through a static bypass 

switch.  

4.3. Tertiary Control 

It changes the phase in the steady state by adjusting the 

frequency and amplitude to obtain the desired waveform; by 

measuring the P/Q through the static bypass switch, PG and 

QG can be compared with the required P∗ G and Q∗ G. The 

control laws PIP and PIQ are given as; 

ω𝑀𝐺
∗ =  kpP (P ∗  G −  PG) +  kiP ∫(P ∗  G −

 PG) dt      
(32) 

 

E𝑀𝐺
∗ =  kpQ (Q ∗  G −  QG)  

+  kiQ∫(Q ∗  G −  QG) dt  

(33) 

5. Results and Analysis 

5.1. Time Domain Evaluation 

Three different types of Power System Stabilizers (PSS), 

Multi-Band PSS (MBPSS), Generic Delta Omega PSS, and 

Generic Delta Pa PSS, are installed in each generator PSS was 

once utilised to address issues with vibration stability. The 

improved performance and functionality of PSS have been 

proven over the past few decades in numerous references and 

real-world applications. Therefore, PSS models are an 

essential component of any instrument used for power system 

modelling. 

 
Fig. 5 The G9’s active power at the NE9bus with or without PSSs. 

 

Fig. 6 G3 at NE9bus speed with or without PSSs. 

It is simulated that a three-phase fault would resolve at t 

= 5 s after 6 cycles without damaging equipment. After t=12 

seconds, the test system loses synchrony in the absence of PSS 

(No PSS). 

 
Fig. 7 Wind turbine voltage and current after control at agent bus 7 

(230kV) 
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Table 1. System data for RL model. 

 rlDDPGAgent rlDDPGAgent_1 rlDDPGAgent_2 

Status Training finished Training finished Training finished 

Episode number 2 2 2 

Episode reward -10 -10 10 

Episode steps 10 10 10 

Total agent steps 20 20 20 

Average reward -10 -10 -10 

Average steps 10 10 10 

Episode Q0 -47163824 -6759870 -0.162031292915 

Averaging window length 5 5 5 

Training stopped by MaxEpisodes MaxEpisodes MaxEpisodes 

Training stopped at Episode 2 Episode 2 Episode 2 

 

 
Fig. 8 Episode reward for NE9bus2_PQ with rIDDPGAgent_1 

 
Fig. 9 Episode reward for NE9bus2_PQ with rIDDPGAgent_2 



Tlotlollo S Hlalele et al. / IJETT, 71(2), 186-196, 2023 

 

194 

5.2. Output from reinforcement learning for last N episodes 2 

 
Fig. 10 Episode reward for NE9bus2_PQ with rIDDPGAgent 

 
Fig. 11 Episode reward for NE9bus2_PQ with rIDDPGAgent_1 

 
Fig. 12 Episode reward for NE9bus2_PQ with rIDDPGAgent 

 

The output of the reinforcement learning from the 

episodes suggests that the agent took the incorrect decision at 

some point as the reward was negative. The positive reward 

indicates that the correct decision was taken by the agent in 

the environment, thereby indicating that adequate control is 

achieved. 

6. Conclusion 
The voltage control problem is exploited with multi-agent 

reinforcement learning (MARL). MARL offers an appealing 

method for agents to evolve applicable synchronisation of 

policies without explicitly building a complete decision 

model. MARL allows agents to discover the environment 

through trial and error and adapt their behaviours to the 

dynamics of the changeable environment. Q-learning 

algorithm is shown and applied to a voltage control problem. 

The main benefit of the proposed solution is that the agents 

can solve the voltage control problem without any central 

controller's interference and only by contact between 

neighbouring agents. The algorithm eliminates the potential 

for conflict between the agent's control behaviour and reduces 

the effect of communication failure to boost the control 

method's robustness. The reward is awarded once the aim is 

achieved. 
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