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Abstract - The Gauss-Seidel and Successive over Relaxation methods are two classic methods frequently used to solve the system 

linear equation. This study has stated that the Gauss-Seidel method was a linear solver, and both iterative methods operated in 

column and row spaces, respectively.  In addition, the modification of the GS method has transformed the Successive Over 

Relaxation (SOR) thus, has improvised the iteration process in terms of iteration size and computational time.  Therefore, to 

prove those parameters of the iteration process, the first-order piecewise polynomial has been applied to the Fredholm integral 

equation of second kind (FIE) with collocation point with composited trapezoidal quadrature method in order to get the 

approximation equations of Fredholm integral. This paper has successfully derived an approximation equation of composited 

trapezoidal method with first-order piecewise polynomial through the process of discretization on the FIEs with the 

consideration of vertex-centered type on the domain solutions. As mentioned previously, the numerical experiment has been 

tested on the approximation equation of composited trapezoidal method with first-order piecewise polynomial by using the 

derived algorithm of Gauss-Seidel (GS) and Successive Over Relaxation (SOR). The results that have also been recorded 

included the Maximum absolute error (MAE) besides the iteration size (IC) and computational time (CT). 

Keywords - Collocation, SOR, GS, Piecewise, Polynomial, Trapezoidal. 

1. Introduction  
The integral equation has been playing an important tool 

and is widely used in Mathematics, Physics, Thermodynamics 

and other fields.  Many applications are widely applied in this 

study area, mainly in science and engineering. Moreover, 

there are good physical scenarios; thus, the integral equation 

is beneficial in applications. A few examples of application 

models that will be shown in this part were applied in the 

engineering field, such as medical image [1] in Fig. 1, 

wavelets [2] in Fig. 2, and mechanic quantum [3] in Fig. 3.
 
 

 

 
Fig. 1 The model of the medical image 

 Fig. 2 The model of wavelets 

 

 
Fig. 3 The model of mechanic quantum 
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The integral equations consist of several types and cases, 

which can be Volterra’s integral equation, Fredholm-volterra 

integral equation, Fredholm integral equation and many more 

[4,5,6]. A few kinds of Fredholm integral equations exist and 

are always found in any mathematic field, such as the 

Fredholm integral equation of the first kind, the Fredholm 

integral of the second kind and the Fredholm integral equation 

third kind.  

The following is the equation of the first, second and third 

kinds of FIE(s), respectively. 

∫ 𝑘(𝑥, 𝑡)𝑈(𝑡)𝑑𝑡 = 𝑔(𝑥), 𝑥 ∈ [𝑎, 𝑏],
𝑏

𝑎
          (1) 

𝑈(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑈(𝑡)𝑑𝑡 = 𝑔(𝑥), 𝑥 ∈ [𝑎, 𝑏],
𝑏

𝑎
           (2) 

𝑈(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑈(𝑡)𝑑𝑡 = 𝐴(𝜇)𝑔(𝑥), 𝑥 ∈ [𝑎, 𝑏],
𝑏

𝑎
   (3)  

      

However, this study only focuses on Fredholm's Integral 

equation (FIE) of the second kind. Referring to equation (2) 

briefly explains the characteristic of Fredholm integral 

equation of the second kind, where 𝑘(𝑥, 𝑡)  is the kernel 

function of the integral equation, 𝜆 is the lambda parameter of 

the integral function. 𝑈(𝑥)  is the unknown function and 𝑈(𝑡) 

is a known function. While 𝑎 and 𝑏 is the node point of interval 

on domain function [7, 8]. Based on the previous study, the 

solution of the integral equation is complicated and hard to 

solve by using the analytic solution. Thus the numerical 

method was introduced in solving the integral equation. 

Hence, this study is trying to solve the Fredholm integral 

equation using the numerical method. 

      

 The application that was invented initially came from 

expanding the ideas of integral equations itself. Moreover, 

there are many methods that can be used to get the 

approximation equations of integral equations, such as the 

Galerkin method, different finite methods, finite element 

method, Nystrom method, collocation method and others [9, 

10, 11,22].  This research focuses intently on how the previous 

study applied the quadrature scheme and how it works since it 

was popular among researchers in solving integral equations. 

The quadrature scheme consists of several degrees of order, 

such as first-order, second-order, third-order, and to fifth-

order. There were called as Trapezoidal method, 1/3 

Simpson’s method, 3/8 Simpson’s method, Boole’s method 

and Weddle’s method, respectively. This quadrature scheme 

basically helps to improve the computational calculation 

method to get an excellent approximation solution [12].  

Those characteristics within the quadrature method allow 

them to get excellent performance in the iteration process, 

time and maximum absolute error [13]. How to achieve 

efficient performance as an end approximation solution 

depends on the convergence rate of the iterative method 

picked in that study.  

The introduction of polynomial piecewise also has 

inspired this research to increase the method's accuracy. The 

polynomial piecewise basically uses to find the approximate 

points within the domain solutions, where it calculates the 

coordinates on the corresponding curve. 

Hence, based on what has been explained, this study is 

eager to determine the efficiency of the Fredholm integral 

equation of the second kind by generating the linear system 

equation through the discretization process using the first-

order piecewise polynomial with collocation point with 

composited trapezoidal quadrature method. Then, formulate 

and carry out the research using the iterative method to get the 

approximate solutions on that generated linear system [15,30]. 

This will be discussed in the next part.  

 

2. The Piecewise Polynomial Collocation on FIE 

second kind with full-sweep case 
This section will review a few definitions of functions 

introduced in this research as this study applied the first-order 

piecewise polynomial with collocation with first-order 

quadrature on the Fredholm integral equation of the second 

kind. The definition of the quadrature method will be 

discussed in this part. 

Before starting to derive an approximation equation of the 

proposed problem, its solution domain 𝐼 = [𝑎, 𝑏]    needs to 

be uniformly divided into n subintervals. Whereas all node 

points of  𝑥𝑖 𝑖 = 0,1,2,3, … , 𝑛 − 1, 𝑛  the solution domain can 

be stated as 

𝑎 = 𝑥0, 𝑥1, 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏. 
     

To construct a grid network of these node points, let us 

give the definition of ℎon the solution domain, which is called 

the length size of its subinterval on the interval [a, b] . For 

nodes of equal step size, the length,  h of subinterval of the 

I = [a, b]  can be given as 

                     ℎ =
𝑏−𝑎

𝑛
                                      (4)                              

 

𝑈(𝑥0), 𝑈(𝑥1), ⋯ , 𝑈(𝑥𝑛) In this subsection, this study also 

discusses establishing the formulation of the first-order full-

sweep quadrature method, namely full-sweep Composite 

Trapezoidal (FSCT), which is mainly applied to discretise an 

integral term of the problem (2). To do this matter, firstly, let 

us consider {𝑥0, 𝑥1, 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛} be (𝑛 + 1)  real 

abscissas and 𝑈(𝑥0), 𝑈(𝑥1), ⋯ , 𝑈(𝑥𝑛),  represent their 

corresponding values, respectively. The grid network of these 

node points 𝑥𝑖 𝑖 = 0,1,2,3, … , 𝑛 − 1, 𝑛   of type can be 

illustrated in Fig. 4. As we derived the first-order piecewise 

polynomial collocation with first-order quadrature 

approximation equations of the problem (2), a set of the node 

points of type is the main part that needs to be highlighted as 

it makes the derivation of the first-order quadrature 

approximation equation is easier by identifying these node 

points.  
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Fig. 4  Full-sweep interval domain of 𝑰 = [𝒂, 𝒃] on Fredholm integral 

equation of the second kind 

 

Referring to Fig. 4, the full-sweep grid network has been 

displayed all node points of type on the whole interval [a, b]  
that have been treated as collocation node points for the full-

sweep case. By applying the full-sweep case, consider the 

distribution of node points with  𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 =
0,1,2, ⋯ , 𝑛 − 1, 𝑛. ,  with edge-vertex type. 

 

To establish the formulation of the first-order quadrature 

method based on the collocation node points, let us consider 

Fig. 5, which shows a clear overview of the first-order 

quadrature method.  

 

 
Fig. 5 The function of first-degree quadrature (Trapezoidal scheme) 

 

Based on the collocation node points as depicted in Fig. 

5, we attempt to present the FSCT scheme in which this idea 

of the FSCT scheme can be one of the Newton-Cotes types 

[16]. Using the same steps to get the formulation of the full-

sweep  Trapezoidal scheme being imposed to a function 𝑓(𝑥)   

at any subinterval [𝑥𝑖 , 𝑥𝑖+1]  can be stated as follow 

∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

2

𝑥𝑖+1

𝑥𝑖
[𝑓𝑖 + 𝑓𝑖+1], 𝑖 = 0,1,2,3, ⋯ 𝑛,                 (5) 

 

Generally, the formulation of the Full Trapezoidal schemes 

at any subinterval [𝑥𝑖 , 𝑥𝑖+𝜎]  can be stated as follows 

∫ 𝑓(𝑥)𝑑𝑥 =
(𝜎ℎ)

2

𝑥𝑖+𝜎

𝑥𝑖
[𝑓𝑖 + 𝑓𝑖+𝜎],                                    (6)                                    

 𝑖 = 0,1𝜎, ⋯ , 𝑛 − 𝜎, 𝑛 

 

Where, the value of represents 𝜎 = 1  the full-sweep. 

 

By referring to Fig. 5 and Eq. (5), it clearly,ℎ  is a 

subinterval of a finite sum for the solution domain, [𝑎, 𝑏]  The 

following discussion is the expansion integration of the full-

sweep Trapezoidal scheme (5) over the interval, [a, b]. 
Consequently, we can generalize to discretise an integral term 

of the problem (2) over the interval [a, b]  by using the full-

sweep Composite Trapezoidal (FSCT) scheme into the finite 

sum of 𝑛 as follows  

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑥1

𝑥0

𝑏

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥1
+ ⋯ +

∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑛

𝑥𝑛−1
  … (7) 

 

Substitute Eq. (5) into Eq. (6), we get the FSCT scheme 

that can be rearranged to make it simpler as   ∫ 𝑓(𝑥)𝑑𝑥 =
𝑏

𝑎
(ℎ)

2
(𝑓0 + 𝑓1) +

(ℎ)

2
(𝑓1 + 𝑓2) + ⋯ +

(ℎ)

2
(𝑓𝑛−1 + 𝑓𝑛)  … (8)     

                                                                                                 

Then, Eq. (8) is formulated by using the finite sum of n 

∴ ∫ 𝑓(𝑥)𝑑𝑥 =
(ℎ)

2

𝑏

𝑎
(𝑓0 + 2 ∑ 𝑓𝑖 + 𝑓𝑛

𝑛−1
𝑖=1 )        (9)    

                                                                                                  

The recent section has wisely explained how the 

collocation method works on the Fredholm integral equation 

of the second kind. Systematically, the first-order piecewise 

polynomial approximation needs to be generated before 

applying the combination of the first-order quadrature method 

and the collocation scheme on the interval  I = [a, b] . Let us 

start to define the first-order piecewise polynomial 

approximation function based on the full-sweep case over the 

solution domain, [a, b]  which can be stated as follows 

𝑈(𝑥) = ∑ 𝐻𝑖(𝑥). 𝛿𝑖(𝑥)𝑛
𝑖=0 , 𝑥 ∈ [𝑎, 𝑏],                              (10) 

 

where the function of 𝐻𝑖(𝑥)  and 𝛿𝑖(𝑥) ,  𝑖 =
0,1,2,3, … , 𝑛 − 1, 𝑛  is specifically defined as 

𝐻𝑖(𝑥) = {
𝑁1(𝑥)𝑈𝑖−1 + 𝑁2(𝑥)𝑈𝑖 , 𝑥𝑖−1 < 𝑥 < 𝑥𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     

and  

 𝛿𝑖(𝑥) = {
1, 𝑥𝑖−1 < 𝑥 < 𝑥𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑠
 

 

In fact, the function 𝐻𝑖(𝑥),  i = 0,1,2, ⋯ , n-1, n.  is known 

as a piecewise linear function, and the function of 𝑁𝑝(𝑥), p =

1,2,  is a linear function that can be defined as 

𝑁1(𝑥) =
(𝑥 − 𝑥𝑖−2)

2ℎ
, 

and 

𝑁2(𝑥) =
(𝑥𝑖 − 𝑥)

2ℎ
, 

respectively. 
 

Now to proceed with the process of discretization, 

substitute Eq. (10) into Eq. (2) as we want to construct the 

corresponding approximation equation as follows: 

𝑈(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) ∑ 𝐻𝑗(𝑥). 𝛿𝑖(𝑥)𝑑𝑡 = 𝑔(𝑥),𝑛
𝑗=0

𝑏

𝑎
                (11) 

To make it simple, we simplify Eq. (11), which can easily 

be understood as  

𝑈(𝑥) + 𝜆 ∑ ∫ 𝑘(𝑥, 𝑡). 𝐻𝑗(𝑥)𝛿𝑖(𝑥)𝑑𝑡 = 𝑔(𝑥)
𝑏

𝑎
,𝑛

𝑗=0                 (12) 
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As explained in the previous part, the collocation scheme 

is one of the important processes in getting the approximation 

equation. Now, impose all the collocation node points by 

using the edge-vertex approach into Eq. (12) to get 

𝑈𝑖 + 𝜆 ∑ 𝐻𝑗𝑖 ∫ 𝑘(𝑥𝑖 , 𝑡). 𝛿𝑗𝑖𝑑𝑡 = 𝑔𝑖
𝑏

𝑎 𝑖

𝑛
𝑗=0                               (13) 

 

for i = 0,1,2, ⋯ , n-1, n. ,  
where  

𝑈𝑖 = 𝑈(𝑥𝑖), ,)( jiij HxH = 𝛿𝑗(𝑥𝑖) = 𝛿𝑗𝑖, 𝑔(𝑥𝑖) = 𝑔𝑖 . 

 

By referring to Eq. (5), start applying the first-order 

quadrature method, namely FSCT, in the discretization 

process of an integral term in Eq. (13).  Before applying the 

FSCT scheme, let us rewrite Eq. (5) in the following equation 

               ∫ 𝑅(𝑡)𝑑𝑡 = ∑ 𝐴𝑗𝑅(𝑡𝑗) + 𝜀𝑛(𝑅)𝑛
𝑗=0

𝑏

𝑎
                    (14) 

Where  𝐴𝑗 , 𝑗 = 1,2,3,4, … 𝑛.   are the quadrature weights of 

the quadrature method and 𝑡𝑖 = 𝑎 + 𝑖ℎ,  i = 0,1,2, … , n-1, n.  
is pointed as a coordinate of partition over the interval 

integration of the [a, b] . Below is the quadrature weight 

function Aj that does not rely on the function of  𝑅(𝑡) and 

satisfies the following relation       

𝐴𝑗 = {
ℎ, 𝑗 = 0, 𝑛
2ℎ, 𝑜𝑡ℎ𝑒𝑟𝑠

                                                         (15) 

 

By substituting Eq. (15) into Eq. (13), the general form of 

the FSCT piecewise linear collocation approximation 

equation to approximate the problem (2) can be constructed as 

         𝑈𝑖 + ∑ 𝐴 𝐺𝑗 𝑗𝑖𝑈𝑗 = 𝑔𝑖
𝑛
𝑗=0                                  (16) 

 

for i = 0,1,2, … , n-1, n. ,  
where 

𝑘𝑖,𝑗 = 𝑘(𝑥𝑖 , 𝑡𝑗)  and  𝐺𝑖,𝑗 = 𝜆 ∫ 𝑘(𝑥𝑖 , 𝑡)𝐻𝑗(𝑥𝑖). 𝛿𝑗(𝑥𝑖)
𝑥𝑖

𝑥𝑖−1
𝑑𝑡. 

 

Regarding the truncation error of , it has no problem not 

to pay attention to the truncation error to get the dense and 

linear system generated by the first-order polynomial 

piecewise collocation with first-order quadrature 

approximation equations. The development of the linear 

system has been generated after the substitution of Eq. (15) 

into Eq. (16) as follows 

  FU = g        (17) 

where,    

𝐹 = [

1 + 𝐺(𝑥0, 0) 𝐺(𝑥0, 1) ⋯ 𝐺(𝑥0, 𝑛)
𝐺(𝑥1, 0) 1 + 𝐺(𝑥1, 1) ⋯ 𝐺(𝑥1, 𝑛)

⋮ ⋮ ⋱ ⋮
𝐺(𝑥𝑛 , 0) 𝐺(𝑥𝑛 , 1) ⋯ 1 + 𝐺(𝑥𝑛 , 𝑛)

]

(𝑛×𝑛)

, 

𝑈 = [𝑈0 𝑈1 ⋯ 𝑈𝑛], 

𝑔 = [𝑔0 𝑔1 ⋯ 𝑔𝑛]. 

Clearly, it can be found that the key feature of the 

coefficient matrix F of the linear system (17) is a large-scale 

and dense matrix. However, applying the first-order piecewise 

polynomial with the collocation scheme, the key feature of its 

dense coefficient matrix is due to the FSCT discretization 

scheme for the integral term of the problem (2).  
 

3. Computational Experiments on Fredholm 

Equation of Second Kind 
3.1. Iterative Method  

According to the linear system (17), clearly, this study 

needs to solve the linear system iteratively to get its 

approximation solution. This paper uses the Gauss-Seidel 

(GS) as the control method. The Gauss-Seidel method is one 

of the classic iterative methods often used, as the algorithm 

itself was inspired by the Jacobi iterative method. However, 

the Gauss-Seidel method performs better than the Jacobi 

method but is slower than the Successive over Relaxation 

method (SOR) but has difficulty finding the optimal relaxation 

parameter since it has expensive computational calculations 

[17].  

 

The derivation of Gauss-Seidel will be shown as follows: 

Referring to Eq. (17), consider the linear system of 𝐹𝑈 = 𝑔, 

𝐹 ∈ 𝑀𝑎𝑥𝑛𝑥𝑛,𝑏 ∈ ℜ
𝑛

,  and let  

𝐹 = 𝐷 − 𝐿 − 𝑉                                                             (18) 

 

as decomposition of F, where Dis the diagonal matrix, 𝐿 is 

lower triangular and 𝑉 is the upper triangular matrix.  

The vector form of Gauss-Seidel is generated in Eq. 

(19) by applying the decomposition of Eq. (18) into the linear 

system of Eq. (17) 

𝑈(𝑘+1) = (𝐷 − 𝐿)−1𝑉𝑈(𝑘) + (𝐷 − 𝐿)−1𝑔                            (19) 

 

In order to get the SOR vector form, consider the 

relaxation factor of parameter 𝜔 [18].  

The derivation can be done by taking into account the 

factor by applying into Eq. (17) and rewrite as  

          𝜔𝐹𝑈 = 𝜔𝑔                                                             (20) 

 

Note that the parameter’s range of SOR to get the optimal 

value is [1,2).  

The formula of the SOR iterative method is stated in 

vector form as follows: 

𝑈(𝑘+1) = (𝐷 − 𝜔𝐿)−1[(1 − 𝜔)𝐷 + 𝜔𝑉]𝑈(𝑘) + 𝜔(𝐷 −

𝜔𝐿)−1𝑔                                                                          … (21) 

 

In the process of numerical experiment, when the 

parameter’s value is 1 or 𝜔 = 1, the result is that printed out 

was for the Gauss-Seidel method value. As to improve the 

approximation solution, the range of the relaxation factor must 

be followed within the stated range. Thus, it can increase the 

performance of the numerical experiment of SOR iteration.  
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4. Algorithms of the SOR Iterative Method 
i. Set up the initial value of𝑈(0) ← 0, 𝜀 ← 10−10. . 

Assign the optimum value of 𝜔. 

ii. For 𝑘 = 0,1,2, ⋯ 𝑛 , execute 

a. For 𝑖 = 0,1, ⋯ , 𝑛  , calculate 

𝑈(𝑘+1) = (𝐷 − 𝜔𝐿)−1[(1 − 𝜔)𝐷 +

𝜔𝑉]𝑈(𝑘) + 𝜔(𝐷 − 𝜔𝐿)−1𝑔 Examine the 

convergence test  

|𝑈𝑖
(𝑘+1) − 𝑈𝑖

(𝑘)| ≤ 𝜀 = 10−10 

 If it fits the convergence test, proceed to step 

iii. Otherwise, redo step ii. 

iii. Show the approximate solutions of |Ui
(k+1). 

 

5. Results and Discussion 
5.1. Computational Experiment 

 This section will portray how the derived algorithms of 

GS and SOR were implemented on the Fredholm integral 

equation of the second kind. To run the computational 

calculation, need to consider a few parameters, which are the 

iteration size (IC), computational time (CT) and maximum 

absolute error (MAE) [14,19,20]. We chose five size grid 𝑁 =
256,512,1024,2048,4096 

 

The following equations are three selected examples in this 

paper: 

Example 1 [21]: 

𝑦(𝑥) = 𝑥 + ∫ 4𝑥𝑡 − 𝑥2𝑦(𝑡)𝑑𝑡
1

0
                           (22) 

 

Exact solution of (22) is given as 

𝑦(𝑥) = 24𝑥 − 9𝑥2.                                                     (23) 

 

Example 2 [31]: 

𝐲(𝐱) = 𝐱 + ∫ (𝐱𝐭𝟐 + 𝐭𝐱𝟐)𝐲(𝐱)𝐝𝐭,
𝟏

𝟎
                            (24)       

 

Exact solution of (24) is given as 

𝑦(𝑥) =
80

119
𝑥2 +

180

119
𝑥.                                     (25) 

 

Example 3 [23]: 

𝑦(𝑥) = 𝑠𝑖𝑛( 2𝜋𝑥) + ∫ 𝑐𝑜𝑠( 𝑥)𝑦𝑑𝑡,
1

0
        (26) 

 

Exact solution of(26) is given as 

𝑦(𝑥) = 𝑠𝑖𝑛( 2𝜋𝑥).                                                       (27) 
 

The recorded results are displayed in Tables 1 to 3. By 

overserving the iteration size, computational time (in seconds) 

and maximum absolute error (MAE), this study can develop 

valid assumptions on the outcomes of three proposed methods 

over the problem (2). As we observe, Table 1 up to 3 shows 

that the iteration size and computational time of the SOR 

iterative method are shorter than the GS iterative method. 

However, the maximum absolute error of these iterative 

methods is increasing with respect to the increase in grid size 

N. 

According to a recent study [27], the formulation of 

reduction percentage was introduced to compare the 

performance of three presented iterative methods. This 

formula explained how to compare the significant differences 

in the outcomes based on iteration size and computational time 

(in seconds). To make comparisons, we define the reduction 

percentage of the SOR method, 𝜁 which can be formulated as  

𝜁 =
(𝐺𝑆 − 𝑆𝑂𝑅)

𝐺𝑆
⁄ × 100                    (28) 

 

By applying the formula in Eq. (28) overall recorded 

results, we collect the reduction percentage SOR method in 

Table 4. 

 

5.2. Definition [24, 25] 

There are vector norm and matrix norm that we often refer 

to because it plays an important role in numerical analysis. 

 

Definition 5.2.1 

A norm on a vector space ℜ𝑚×𝑛 is a mapping that 

associates with each vector 𝑥, a real number ‖𝑥‖ called the 

norm of 𝑥, such as the following properties are satisfied for all 

vectors 𝑥 and  𝑦 all scalars 𝛼: 

 

I. ‖𝑥‖ ≥ 0and ‖𝑥‖ = 0 if and only if 𝑥 = 0       
(positive definiteness) 

 

II. ‖𝛼𝑥‖ = |𝛼|‖𝑥‖for all 𝑥 ∈ ℜ𝑛, 𝛼 ∈ ℜ 

(absolute homogeneity) 

 

III. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖                     

 (triangle inequality) 

A matrix norm ℜ𝑚×𝑛is a mapping that associates with each 

𝑚 × 𝑛 matrix 𝐴, a real number ‖𝐴‖, called the norm of 𝐴, such 

that the following properties are satisfied for all 𝑚 ×
𝑛matrices 𝐴 and 𝐵 all scalars 𝛼: 

 

Definition 5.2.2 
I. ‖𝑨‖ ≥ 𝟎and ‖𝑨‖ = 𝟎 if and only if 𝑨 = 𝟎    

 (positive definiteness) 

  

II. ‖𝜶𝑨‖ = |𝜶|‖𝑨‖for all 𝑨 ∈ 𝕽𝒏, 𝜶 ∈ 𝕽        

 (absolute homogeneity) 

 

III. ‖𝑨 + 𝑩‖ ≤ ‖𝑨‖ + ‖𝑩‖                            

  (triangle inequality) 

 

5.3. Results 

According to Table 1 to Table 3, the results portrayed a 

good iteration size, computational time and maximum 

absolute error. The SOR family's iteration size and 

computational time are smaller than GS as the SOR method is 

modified by the GS formula with faster convergence speed in 

the iteration process compared to the GS method. 
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Table 1. The iteration size (IC) for all examples of FIE of the second 

kind 

Example N 
Iteration Size (IC) 

GS SOR 

1 

256 213 43 (w=1.546) 

512 217 44 (w=1.553) 

1024 220 44 (w=1.551) 

2048 223 45 (w=1.552) 

4096 226 45 (w=1.551) 

2 

256 22 14 (w=1.121) 

512 23 14 (w=1.121) 

1024 23 14 (w=1.121) 

2048 23 14 (w=1.121) 

4096 24 14 (w=1.121) 

3 

256 71 27 (w=1.361) 

512 73 27 (w=1.361) 

1024 74 28 (w=1.361) 

2048 75 28 (w=1.361) 

4096 76 28  (w=1.361) 

 

Table 2. The computational time (CT) for all examples of FIE of the 

second kind 

Example N 
Computational time (CT) 

GS SOR 

1 

256 0.8004 0.5657 

512 2.5426 2.5425 

1024 10.6353 10.5422 

2048 46.7145 46.4116 

4096 263.9749 252.4253 

2 

256 0.74362 0.5990 

512 2.5984 2.5568 

1024 10.7259 10.5866 

2048 46.6486 46.5324 

4096 263.2550 262.1220 

3 

256 0.6379 0.6360 

512 2.7905 2.7732 

1024 11.2601 8.9257 

2048 50.2371 49.6225 

4096 277.1251 275.8081 

Table 3. The Maximum absolute error (MAE) for all examples of FIE of 

the second kind 

Example N 
Max. abs. error (MAE) 

GS SOR 

1 

256 3.96E-04 3.96E-04 

512 9.90E-05 9.90E-05 

1024 2.48E-05 2.48E-05 

2048 6.19E-06 6.19E-06 

4096 1.55E-06 1.55E-06 

2 

256 3.09E-06 3.09E-06 

512 7.72E-07 7.72E-07 

1024 1.93E-07 1.93E-07 

2048 4.82E-08 4.82E-08 

4096 1.20E-08 1.20E-08 

3 

256 2.11E-11 1.68E-12 

512 1.12E-11 1.70E-12 

1024 8.20E-12 9.16E-13 

2048 5.93E-12 9.20E-13 

4096 4.26E-12 9.21E-13 

 

Table 4. The reduced percentage of SOR for all examples 

Example 
Iteration size (IC)  

% 

Computational time (CT)  

% 

1 

79.3722 

- 

79.8122 

0.0039 

- 

29.3228 

2 

36.3636 

- 

39.1304 

0.2491 

- 

19.4373 

3 

61.9718 

- 

63.1579 

0.2837 

- 

20.7316 

 

Additionally, by seeing Table 4, the reduction percentage 

of iteration size and computational time of SOR shows that the 

SOR method has a good significant difference. It is seen that 

the reduction percentage of iteration size obtained by 

examples 1, 2 and 3 of SOR shows huge significant 

differences with 79.3722%- 79.8122%, 36.3636%-39.1304%, 

61.9718%-63.1579%, respectively. Meanwhile, the 

computational time obtained by examples 1, 2 and 3 shows a 

reduction percentage with slight significant differences with 

0.0039%-29.3228%, 0.2491%-19.4373%, and 0.2837%-

20.7316%, respectively. Overall, the results of the proposed 

SOR iterative method are more efficient than GS iterative 

methods. 
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Fig. 6 Iteration size and computational time of GS and SOR for Problem 1 

 
Fig. 7 Iteration size and computational time of GS and SOR for Problem 2 

 
Fig. 8 Iteration size and computational time of GS and SOR for Problem 3
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6. Conclusion  
Therefore, this study concludes that based on the results, 

the first-order piecewise polynomial with collocation scheme 

in solving Fredholm integral equation of second kind with a 

full-sweep case of SOR is better in terms of iteration size, 

computational time due to the better speed of converge in 

iteration process with less of operational complexity. These 

results show that the previous study of the first-order 

piecewise polynomial and quadrature trapezoidal method 

improved the speed of convergence in terms of time and 

increased the accuracy of max absolute error. This is matched 

what has been explained in the literature review.  

In summary, this study has proven that the SOR iteration 

is smaller than the GS iteration. Besides, the rate of 

convergence of the SOR iteration is faster than the GS 

iteration. This verifies that the SOR iteration has the best 

performance in solving the first-order polynomial piecewise 

on the Fredholm integral of the second kind.  

 

Hence, future work for the SOR family has the potential 

to improve due to the benefits of the iterative method itself, 

that have weighted parameter. The study can expand the 

research of the SOR family by expanding the implementation 

of the improved quadrature method together with the SOR 

method on Fredholm integral equation of second kind [26, 27, 

28, 29] beside the composited trapezoidal with SOR iterative 

method.  
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