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Abstract - Review analysis greatly influences the business industry to a greater level because it expresses the notion of 

customers. Many researchers addressed this issue by classifying the sentiments with better compositionality. The main 

objective of this research work is to handle the issues of excessive content, language imperfections, and less-intensive 

emotional words which affect the performances of sentiment analysis. This paper proposes a novel framework known as a 

Co-Sensitive Fusion Graph Convolution Network (CoSFGCN), which is based on a Graph Convolutional Network (GCN). 

This framework incorporates the properties of Syntactic and Co-Sensitive Specific Semantic GCN (𝐶𝑆3𝐺𝐶𝑁) to utilise 

both the semantics and syntax of the words to provide additional weightage for graph learning. The performance analysis 

done on five benchmark datasets, LAP14, TWITTER_15, REST16, REST15, and REST14, shows better results when 

compared with the previous methods. 

 

Keywords - CoSFGCN, GCN, Graph learning, Semantic graph model, Sentiment analysis. 
 

1. Introduction 
The promotion of the business industry is greatly 

influenced by their views of it by customers. The business 

industry needs to attract customers, whether it is a shop or 

an e-commerce platform. Word of mouth or written 

reviews are the basis for this industry. Various 

stakeholders will write reviews in distinct dimensions. The 

abundance of reviews about each system is very complex 

to process. Sentiment analysis, a popular text mining 

research, helps in this research. When a person tries to buy 

pizza from a shop, he looks for the reviews. Some example 

reviews are ‘pizza was burnt’, ‘poor quality food’, and 

‘food delivery was late by 40 min’. In this case, the 

customer will hesitate to buy the pizza from that 

restaurant. At the same time, the owners can try to find a 

solution for this issue to regain the customers’ trust. 

Management reviewing, repairing, or replacing the oven, 

giving training for staff, etc., may be the remedy taken for 

solving the issue. Thus, analysis of these reviews is most 

significant to evaluate the commodity purchased for both 

customers and business owners. The incredible growth of 

communication techniques like Facebook, Twitter, 

YouTube, and personal websites aid customers in posting 

their reviews. Analysing and classifying these reviews 

based on their sentiments can help this work. This process 

is the classification of the text focusing on the positive or 

negative sentiment of the text [1]—the easiness and high 

accuracy of techniques using machine learning aid in the 

semantic analysis. Still, the huge quantity of available 

reviews makes manual processing very complex. 

Admitting the fact that the high influence of these in 

business decisions demands effective processing of this 

data, which can be satisfied by good machine learning 

frameworks. The framework should be able to process this 

huge data effectively and help in decision-making. Most of 

the traditional system finds the sentiment of review with its 

whole content representation. Hence, it lacks prediction in 

the case of a sentence that may look positive but, at the 

same time, maybe neutral. This issue can be handled by a 

technique which analyses the syntactic and semantic 

content of the opinion. 
 

2. Related Work 
Deep learning frameworks recently implemented 

sentiment analysis with promising results. A recursive 

form of neural tensor network model was designed by 

Socher et al. [2] for binary sentiment classification over a 

sentiment treebank. A Convolutional Neural Network 

(CNN) was used by Kim [3], whereword2vec word 

embeddings are concatenated as the input layer. It follows 

convolution, max pooling, and SoftMax layers. The 

convolution layers are used with different filters. CNN and 

parallel CNN were proposed by Johnson et al. [4]. They 

created feature vectors using bag-of-words model 

variation. Two or more parallel layers with convolution 

layers are used in parallel CNN. Another improvement was 

CNN with seven layers [5], which analysed the sentiment 

of movie reviews. An unsupervised algorithm named 

paragraph vectors [6] was proposed that learns variable-

length text, like paragraphs, sentences, etc., to form feature 

vectors with fixed length. A neural network model [7] was 

proposed, which captures the user information along with 

the semantics of the review. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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One layered CNN was proposed by Chen et al. [8], 

which produces 300-dimensional vectors by learning 

varying length reviews. The analysis was done in Yelp 

datasets and the Internet Movie Database (IMDB) 

embeddings. Variation in length was handled by padding. 

A Recurrent Neural Network (RNN) was used to extract 

the temporal data. Naïve Bayes classifier and decision tree 

classifier were used by Callen Rain [9] for categorising 

reviews. Different machine learning algorithms like naive 

Bayes and perceptron algorithms were analysed by XuYun 

et al. [10] to predict the review rank by doing cross-

validation. Multinomial Naive Bayesian [11] network was 

used for analysing sentiment from customer reviews as a 

model for business. A semantic role labelling task was 

done by Ronan Collobert [12] et al. Using CNN to avoid 

more operation-oriented engineering characterisation.   

 

A semantic orientation calculator [13] was proposed 

for predicting sentiment. They used polarity-annotated 

word dictionaries annotated with their corresponding 

strength. A lexicon-based algorithm [14] by combining 

sentiment normalisation, sentiment terms, and evidence-

based combination function was proposed. Domain-

specific terms, emotions, and modifiers are integrated by 

Asghar et al. [15] for sentiment analysis of the comments 

made by users. A Unigram Mixture Model (UMM) [16] 

based work was proposed for weakly-labeled and properly 

labelled emotion text. A package of RTextTools and 

LIWC2015 lexicon [17] was proposed as a machine 

learning package for analysing sentiment based on the 

lexicon. WKWSCI [18], a sentiment lexicon, was 

proposed by Khoo and John. Chinese microblog [19] based 

sentiment classification was done with sentiment lexicons 

of negative words, the lexicon of words in the network, 

and an added degree adverb lexicon. Lexicons and corpus 

[20] were used to construct the adaptive sentiment 

vocabulary of Weibo. A graph with two levels of layer 

model [21] was designed with the help of the sentiment of 

candidate words and emoji. Another work based on CNN 

[22] was proposed to analyse the polarity of the sentiment 

using the n-gram feature input and the statistical features 

of the word co-occurrence properties in the tweet. A 

Target-dependent Convolutional Neural Network (TCNN) 

[23], which uses the correlation of the target word with the 

surrounding words, was proposed by Hyun et al. for 

learning the effect of neighboring words on the target 

words.  

 

An individual word’s polarity may affect the emotion 

of a sentence in different ways. To acquire this, attention 

mechanisms were introduced by researchers. Some 

features will be dominant, and others will be recessive. For 

combining these two features, an extended LSTM [24] was 

proposed with the name Sentic LSTM. An output gate is 

inserted separately in the model unit to add concept-level 

input and token-level memory. MLSTM [25] was another 

model proposed for imparting attention implemented based 

on memristor. Bid et al. [26] proposed a combined 

algorithm where RNN is used for locating, and CNN is 

used for capturing the long-term dependencies. A divide-

and-conquer method [27] was proposed, where a sequence 

model based on a neural network was used for classifying 

the sentences, and CNN was used for sentiment 

classification by inputting each set of sentences. The 

LSTM model, along with a keyword vocabulary, was 

proposed by Hu et al. [28] for doing attention-based 

sentiment classification of short texts. 

 

Graph Neural Networks (GNN) [29, 30] was 

introduced as a tool for extracting the co-occurrence 

between the words. This network preserves structured 

information globally. The relational structure of GNN will 

be rich enough to preserve it and utilise graph embeddings 

for classification. This concept was further used for the 

classification of texts [31]. Graph Convolutional Network 

(GCN) [32] proposed a new model based on GNN, which 

is used for constructing a single large graph. The nodes of 

this network contain words and documents from an entire 

corpus that captures neighbourhood information in high 

order. The edges are formed by co-occurrence information 

of words. In the same way, the frequency of word and 

word documents is used to form the edge between word 

and document nodes. 

 

This work proposes a novel algorithm for analysing 

the review. The framework was implemented based on   

Graph CNN with VADER [33] based polarity extraction to 

refine the GCN. Further, the model is improved by using 

an attention scheme. 

 

3. Proposed Co-Sensitive Fusion Graph 

Convolution Network (CoSFGCN)  
This work proposes a novel framework for review 

analysis based on GCN [32]. The proposed Co-Sensitive 

Fusion Graph Convolution Network (CoSFGCN) is a 

fusion of Syntactic sand Co-Sensitive Specific Semantic 

GCN (𝐶𝑆3𝐺𝐶𝑁) Models which utilise both syntax and 

semantics of the words while considering a sentence.  

Problem Definition: Let 𝑆 =  {𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛} be 

the sentence with n words used for the review. This 

proposed work aims to classify 𝑆 as positive, negative or 

neutral feedback. The sentence is applied to embedding 

(𝔈) and BiLSTM (ℬ). This output is fed into three parallel 

frameworks. 

 

 𝑆𝑦𝑛𝐺𝐶𝑁, 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐴𝑡𝑡) 𝑚𝑜𝑑𝑒𝑙, 𝑎𝑛𝑑 𝑆3𝐺𝐶𝑁.  

 

These outputs are merged to form the final feature 

vector,  𝐹, by using equation (1). 

 

𝐹 =  𝑂(𝑆𝑦𝑛𝐺𝐶𝑁) + 𝑂(𝐴𝑡𝑡) +  𝑂(𝐶𝑆3𝐺𝐶𝑁)   M           (1) 

 

𝐹 is used for classifying the review. Softmax 

classification is used for finding the output as in equation 

(2). 

𝑅𝑒𝑣 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐹) (2) 

GCN: GCN is a technique for learning graphs by 

semi-supervised learning. An example for GCN (𝓖) with ɳ 
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nodes is given in Fig 1. Let 𝐸𝑖𝑗  be the edge formed 

between 𝑖𝑡ℎ and 𝑗𝑡ℎnodes. The adjacency matrix𝑀𝑖𝑗 gives 

the availability of edge 𝐸𝑖𝑗 . The information from the 

immediate neighbors is encoded, and syntactic constraints 

are generated using convolution operations. This work 

creates a dependency graph by using. 𝐸𝑖𝑗  based on which 

adjacency matrix 𝑀 is calculated.  

 

𝒢 will have many layers, with layer 𝑙 having the 

hidden output of the ith node as 𝑜𝑖
𝑙 output for individual 

nodes in that layer.ʮ be the nonlinear function (Relu), 𝑡𝑙 

be the weight for transformation and 𝑏𝑙be the layer 𝑙 bias. 

Then 𝑜𝑖
𝑙 can be calculated as in equation (3).  

 

𝑜𝑖
𝑙 =  ʮ(∑ 𝑀𝑖𝑗𝑡

𝑙𝑜𝑖
𝑙−1𝑛

𝑗=1 + 𝑏𝑙)            (3) 

 

The proposed 𝐶𝑆3𝐺𝐶𝑁 model addresses the noises 

caused by the information and imperfect parsing. This can 

also gather information about disconnected words. Fig 2 

gives the proposed architecture.  

 
Fig. 1 A GCN example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2 Proposed architecture of Co-Sensitive fusion GCN 
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3.1. Bidirectional LSTM Brach 

Consider a sentence, 𝑆 =  {𝑤1 , 𝑤2, 𝑤3, . . . , 𝑤𝑛}, which 

has 𝑛 words. The embedding of the words is used for 

gathering the relationships between the words in an 

effective manner. Every word (𝑤𝑖) in the sentence 𝑆 is fed 

into the embedding block to get the embedded real-valued 

vector (𝔈 ∈ ℝ|𝑁| 𝑋 𝑑𝑖𝑚𝑒). 𝑑𝑖𝑚𝑒has a lower dimension than 

that of the word in the sentence with vocabulary size |N|. 

This work uses Global Vectors for Word Representation 

(GloVe) [34] for embedding, which utilises the co-

occurrences of words. Embedded words are converted to 

hidden vectors (ℬ) using the biLSTM model [35, 36]. 

 

3.2. Syntactic Graph Convolutional Network (SynGCN) 

Encoding syntactic information of the input as graph 

representation is done in 𝑆𝑦𝑛𝐺𝐶𝑁 module. The hidden 

vectors of BiLSTM output (ℬ) are fed into Syntactic GCN 

as initial node form. This 𝑆𝑦𝑛𝐺𝐶𝑁 model utilises the 

adjacency matrix with the help of dependency sparser in 

the form of graph mode. The syntactic representation (ℬ𝑠) 

formed from ℬ using the equation 3, it can be denoted as 

ℬ𝑠= {𝑏1
𝑠, 𝑏2

𝑠, … , 𝑏𝑛
𝑠 , }.Each 𝑏𝑖

𝑠 gives the representation of 

𝑖𝑡ℎ node.  

 

3.3. Co-Sensitive Specific Semantic GCN (𝑪𝑺𝟑𝑮𝑪𝑵) 

The proposed model improves the strength of the 

review opinion detection, along with syntactic features and 

semantic features, especially opinion-sensitive related 

semantic learning is, introduced in the name of  

𝐶𝑆3𝐺𝐶𝑁. It consists of three sections of the process: (i) 

Sensitive Dependency Graph Parser, (ii) Co-Sensitive 

Weighting and (iii) Dependency and Co-Sensitive 

Masking. The following section provides a full description 

of the model. Let the sentence be 𝑆. The direct link (DL) 

and sensitivity are used for calculating long-range 

dependencies. The priority of the words in contributing 

importance is gathered by using this process.  

 

𝑆 =  {𝑤1, 𝑤2, 𝑤3, . . , 𝑤𝑛}                   (4) 

 

The GCN is formed with the help of the adjacency 

matrix, which is estimated with the help of a dependency 

graph parser. In this proposed model and the traditional 

Dependency Graph, additional sensitive-based edges are 

included for GCN learning.  

3.3.1. Sensitive Dependency Graph Parser (SDGP) 

Consider the fig. 3 (a), which shows the dependency 

of words. If there is a dependency between one word and 

the other, a link is formed between both words. Based on 

this link, a dependency graph is formed. For this 

calculation, word 1 has a dependency on word 4, and word 

7 has a dependency on word 10. The corresponding 

dependency can be denoted in the dependency (adjacency) 

matrix as in Fig 3 (b) and the Dependency Graph Vector 

(𝐷𝐺𝑉)in Fig 3(c). 
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 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

W1 0 0 0 1 0 0 0 0 0 0 

W2 0 0 0 0 0 0 0 0 0 0 

W3 0 0 0 0 0 0 0 0 0 0 

W4 1 0 0 0 0 0 0 0 0 0 

W5 0 0 0 0 0 0 0 0 0 0 

W6 0 0 0 0 0 0 0 0 0 0 

W7 0 0 0 0 0 0 0 0 0 1 

W8 0 0 0 0 0 0 0 0 0 0 

W9 0 0 0 0 0 0 0 0 0 0 

W10 0 0 0 0 0 0 1 0 0 0 

W2 W3 W9 
W1 

W8 W7 W6 W5 W4  W10 
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(c) 

Fig. 3 Dependency Graph Formulation (a) Dependency Level (b) Corresponding Dependency graph, and (c) Dependency Graph Vector (DGV) 

 

Fig 3 (b) shows the graph available between the nodes 

dependent on each other. The sensitivity of the words 

should also be incorporated for a better understanding of 

the importance of words. VADER [33] is used in this work 

for calculating sentiment scores. This is calculated by 

mapping the lexical characters to sentiment scores. It will 

have a dictionary with sentiment scores with VADER’s 

sentiment lexicon available in [34]. Each term will have a 

sensitive score (𝑺𝒄𝒊 ), either positive or negative. When the 

lexicon score of the word is greater than +0.6 or lesser than 

-0.3, they are considered more sensitive. Based on this, a 

sensitive vector is formed. Suppose the positive polarity is 

greater than 0.6 or the negative polarity is lesser than -0.3. 

In that case, those terms(words) are also considered to 

build edges between those sensitive words, even though 

they have a connection with other terms by the normal 

dependency parser or not.   The sensitive words are 

mapped to 1 in the dependency graph.  

In this work, since the word 5 has a sentiment score of 

+0.7 and the word 9 has a sentiment score of -0.4, they are 

assigned value 1 in the dependency graph. If three terms or 

words attain the specified sensitive score means, it will 

generate a link between all three terms in all combinations, 

such as term1 to term2, term1 to term3, and term2 to term3 

in bidirectional mode if any word is a dependency vertex 

in the normal dependency graph. So, the new link will not 

be created with those words because the vertex is present 

already. In this example, for the sensitivity score values 

shown in Fig 4 (a), the sensitive dependency graph can be 

drawn as Fig 4 (b) and its corresponding sensitive 

dependency graph vector is shown in Fig 4(c). 
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Fig. 4 Sensitivity Evaluation. (a): Sensitivity Score Vector (b) Sensitive Dependency Graph Adjacency Matrix (c):  Sensitive Dependency Graph 

Vector 
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3.4. Attention Mechanism (Att) 

Hidden state vectors are produced using the attention 

mechanism as𝑂(𝐴𝑡𝑡). These features are relevant to words 

for each context word based on attention weights. For the 

sentence 𝑆, consider ѵ𝑖 be the vector associated with every 

word. ѵ𝑖 will give the word embedding required for each 

word with dimension 𝑑. This forms a sentence 𝑆𝑣 with 

𝑛 𝑋 𝑑 dimension. The dependency between these 

sequences of words is required for extracting the attention 

between those words. For this, Bi-LSTM (Bi-directional 

LSTM) is used as in equations (7) and (8). 

ℎ𝑖
⃗⃗  ⃗ =  𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ѵ𝑖 , ℎ𝑖−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )           (7) 

 

 ℎ𝑖
⃖⃗ ⃗⃗⃗ =  𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (ѵ𝑖 , ℎ𝑖−1

⃖⃗ ⃗⃗⃗⃗ ⃗⃗⃗)          (8) 

 

ℎ𝑖 = ℎ𝑖
⃗⃗  ⃗ +  ℎ𝑖

⃖⃗⃗⃗            (9) 

 

Both ℎ𝑖
⃗⃗  ⃗ and ℎ𝑖

⃖⃗⃗⃗  are concatenated as ℎ𝑖(hidden state). 

Each LSTM state has a hidden unit number as 𝑢. The 

hidden vector, 𝐻 of LSTM, is calculated in equation (10) 

with size 𝑛 𝑋 2𝑢. 

 

𝐻 = (ℎ1, ℎ2, … , ℎ𝑛)         (10) 

 

Self-attention is applied to ѵ𝑝𝐻 to get the output 

vector with weight 𝑤𝑔. A vector ѵ𝑝 with size𝑑𝑤𝑔 and a 

weight matrix, 𝑤𝑠 having size 𝑎𝑠  𝑑𝑤𝑔  𝑋 2𝑢. 𝑑𝑤𝑔 will be 

having an arbitrary size. 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is used to ensure the 

sum of the weights is 1. 𝑤𝑔 𝑖𝑠 calculated using the 

equation (11). 

 

𝑤𝑔 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑠(tanh ѵ𝑝𝐻
𝑇))          (11) 

LSTM hidden states, 𝐻 are taken as input and 

combined to get the output vector, 𝑉. This vector gives a 

set of dependent words reflecting specific semantic-based 

words. Overall, semantics are represented by all 𝑉s. If we 

extract multiple hops of data, it will extract more attention-

specific information. Sentences with 𝑟hops of attention 

need to be done for the sentence, and then equation (12) is 

used to calculate the annotation matrix, 𝑀 with 2-layered 

MLP without bias. 

 

𝑀 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑠(tanh ѵ𝑝𝐻
𝑇))            (12) 

 

The annotation matrix 𝑀 is multiplied with hidden 

states 𝐻 to get the sentence embedding matrix (equation 

(13)). 

𝑇 = 𝑀 ∗ 𝐻              (13) 

4. Experimental Results and Analysis 
4.1. Datasets and Experimental Setup 

The performance of the proposed work is done by 

using five datasets such as TWITTER_15 [37], LAP_14 

[38], REST_16 [39], REST_15 [40], and REST_14 [38]. 

SemEval 2014 [38] is used to get LAP_14 and REST_14. 

SemEval 2015’s [40] task 12 is used to get REST_15. Task 

5 of SemEval 2016 [39] is used to get REST_16. 

Restaurant and laptop-based reviews are used for getting 

these datasets. TWITTER_15 [37] take the posts from 

Twitter. Datasets and their information are listed in Table 

1. All the data are initially pre-processed with the concept 

of case conversion into lower case, removing URLs, 

special characters, non-English words, stop words, and 

non-alphabetic first letters, replacing emoij into 

corresponding text, Lemmatization and Tokenization. 

Parameter Settings: The learning rate is scheduled by 

deploying Adam optimise (learning rate 0.001) with 32 

batch sizes and 50 Epochs in 6GB graphics card-enabled 

device with PyTorch.  

      
Table 1.  Datasets with class wise samples 

Dataset Category REST_16 REST_15 REST_14 LAP_14 TWITTER_15 

Train 

Positive Samples 1240 912 2164 994 1561 

Negative Samples 439 256 807 870 1560 

Neutral Samples 69 36 637 464 3127 

Test 

Positive Samples 912 326 728 341 173 

Negative Samples 256 182 196 128 173 

Neutral Samples 36 34 196 169 346 
 

4.2. Results 

The performance of the proposed CoSFGCN model is 

analysed with the help of the following metrics: accuracy 

and F1-Score. Below are the formulas used for evaluation 

metrics. 

Accuracy (Acc) = (T P + T N)/ (T P + T N + F P + F N) 

(14) 

 

Precision (Pre)= TP / (TP + F P)       (15) 

 

Recall (Rec) = TP / (TP + F N)         (16) 

 

F1-Score(F1s) = (2 * Pre * Rec) / (Pre+Rec)       (17) 

The performance based on the above metrics 

Accuracy and F1-Score of the proposed model and the 

existing models is shown in Table 2. 

From table 2, it is found that accuracy is the proposed 

better result for the dataset TWITTER_15, LAP_14, 

REST_14, REST_15 and REST_16, with the highest score 

achieved by the methods. The proposed CoSFGCN 

achieves +1.16% more accuracy than DualGCN [55] for 

the TWITTER_15 dataset. For the LAP_14 dataset, the 

proposed approach attains +0.31% more than the BERT 

SDGCN [48]. Similarly, +0.28% more than BERT RGAT 

[47] for the REST-14 dataset, +0.28% more than BERT 

ASGCN [54] for the REST_15 dataset and+0.49% more 

than DualGCN[55]for the REST_16 dataset. 
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Table 2.  Accuracy and F1-Score analysis with existing models 

Model 
TWITTER_15 LAP_14 REST_14 REST_15 REST_16 

Acc. F1S Acc. F1S Acc. F1S Acc. F1S Acc. F1S 

SVM [37] 63.4 63.3 70.49 N/A 80.16 N/A N/A N/A N/A N/A 

LSTM [42] 69.56 67.7 69.28 63.09 78.13 67.47 77.37 55.17 86.8 63.88 

MemNet [43] 71.48 69.9 70.64 65.17 79.61 69.64 77.31 58.28 85.44 65.99 

AOA [44] 72.3 70.2 72.62 67.52 79.97 70.42 78.17 57.02 87.5 66.21 

IAN [45] 72.5 70.81 72.05 67.38 79.26 70.09 78.54 52.65 84.74 55.21 

TNet-LF [41] 72.98 71.43 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43 

ASCNN [54] 71.05 69.45 72.62 66.72 81.73 73.1 78.47 58.9 87.39 64.56 

DT ASGCN [54] 71.53 69.68 74.14 69.24 80.86 72.19 79.34 60.78 88.69 66.64 

DG ASGCN [54] 72.15 70.4 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48 

BASEBERT [46] - - 79.73 75.5 82.74 73.73 82.16 64.96 89.43 74.2 

PTBERT [53] - - 78.89 75.89 85.92 79.12 - - - - 

BERT RGAT [47] - - 80.94 78.2 86.68 80.92 - - - - 

BERT SDGCN [48] - - 81.35 78.34 83.57 76.47 - - - - 

BERT SKGCN [50] - - 79 75.57 83.48 75.19 83.2 66.78 87.19 72.02 

BERT DGEDT [49] - - 79.8 75.6 86.3 80 84 71 91.9 79 

BERTCDM LCF [51] - - 80.3 76.85 86.28 80.24 83.83 69.97 90.62 76.93 

BERTCDW LCF [51] - - 79.73 76.07 86.16 80.12 83.77 69.03 91 77.1 

BERTCDM LCFS [52] - - 79.99 76.51 86.31 80.32 83.4 68.81 90.81 75.86 

BERTCDW LCFS [52] - - 80.25 76.72 86.43 80.84 84.07 69.67 90.35 76.28 

BERT ASGCN [54] - - 79.83 75.89 84.76 77.94 84.22 72.9 91.05 77.05 

DualGCN[55] 75.43 74.24 78.37 76.33 84.20 78.24 83.03 73.46 93.18 79.40 

CoSFGCN 76.59 75.39 81.66 80.2 86.96 81.66 84.5 75.57 93.67 80.86 

 

 
Fig. 5  F1-score for Twitter_15 dataset Analysis 
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Fig. 6 F1-score for LAB_14 dataset analysis 

 
Fig. 7 F1-score for REST_14 dataset analysis 
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Fig. 8 F1-score for REST_15 dataset analysis 

 
Fig. 9 F1-score for REST_16 dataset analysis 
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The above Figures clearly show the better 

performance of the proposed method for TWITTER_15, 

LAP_14, REST_14, REST_15 and REST_16. The 

proposed CoSFGCN gives better results in terms of F1-

Score, +1.15% better than the DualGCN [55] approach for 

TWITTER_15 dataset, similarly in terms of F1-score the 

proposed model attains +1.86% more than BERT SDGCN 

[48] for LAP_14 dataset +0.74% more than BERT RGAT 

[47] for REST_14, +2.11% better than DualGCN [55] for 

REST_15 dataset and +1.46% higher than DualGCN [55] 

for REST_16 dataset. 

 

5. Conclusion  
The proposed CoSFGCN: Co-Sensitive Fusion Graph 

Convolution Network model utilises both syntax and 

semantics of the words in a sentence, and the sentiment 

classification accuracy is improved than the existing 

algorithms. Incorporation of the sensitive-based 

dependency graph model improves semantic learning, 

which provides an effective polarity classification model. 

The graph hidden node selection for further graph layer is 

fine-tuned by the attention mechanism. The fusion of the 

Syntactic and Sensitive Specific Semantic graph model 

improves the performance of review analysis from various 

social media sources. The proposed CoSFGCN model 

achieves an 84.676% average accuracy, including all the 

datasets and 78.736% in terms of F1-Score. The future, 

along with the text rating concept, can be included 

additionally to improve the sentiment classification 

performance. 
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