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Abstract - Lung Disease (LD) is the leading factor of increasing death rates across the world and incorporates tuberculosis 

diseases, pneumonia, COVID-19, and pneumothorax. Prompt and early diagnosis of LD can probably reduce the risk of death 

and improve the patient's quality of life. Current medical image modalities and imaging tests seem to be effective tools that can 

help medical practitioners detect different conditions. Computed Tomography (CT) and Chest X-ray (CXR) radiographic images 

usually use image modalities. These diagnostic tools allow clinicians to look at the internal structure of the body without the 

need for cutting. Recently, Convolutional Neural Networks (CNNs) have become the potential technique of Computer Vision 

(CV) and have reached promising outcomes in medical image diagnosis. This study designs an Automated Lung Disease 

Detection Using Sea Lion Optimization with Deep Convolutional Recurrent Neural Network (SLO-DCRNN) technique on CXR 

images. In the presented SLO-DCRNN model, the DL and hyperparameter tuning process can be employed for automated LD. 

At the initial stage, the SLO-DCRNN model uses the Adaptive Weiner Filter (AWF) technique to eliminate the noise level that 

exists in the images. Next, the SLO-DCRNN method exploits the Neural Architectural Search Network (NASNet) Large model 

for feature vector generation. Followed by the DCRNN approach is utilized to identify different kinds of LDs. At last, the SLO 

system was enforced for the tuning process of the DCRNN approach. An extensive set of investigations was performed to 

demonstrate the superior result of the SLO-DCRNN technique. The simulation results ensured the improvement of the SLO-

DCRNN technique over other existing systems. 

Keywords - Lung diseases, Deep learning, Medical imaging, Sealion optimizer, Chest X-ray images. 

1. Introduction  
Detection of LD is presently accomplished over an 

investigation of CXR imageries performed by a qualified 

radiologist because of its comfort and non-surgical valuation 

for comprehensive discoveries of the chest condition in short 

[1]. Also, it is appropriate for subsequent investigation since 

variations of the ailment can be detected further initially and 

effortlessly. The typical imaging procedure for diagnosing LD 

comprises CT, Magnetic Resonance Imaging (MRI), and CXR 

scan [2]. Though CT and MRI scans are presently the best 

regulations in evaluating LDs, these also come with very high 

prices that encompass radiation exposure and are not promptly 

accessible worldwide [3]. Comparatively, CXRs are less 

priced, promptly obtainable, and one of the majorly available 

diagnostic imaging methods for pulmonary and cardiothoracic 

disorders. Hence, clinical imaging procedures, e.g., CXR, play 

a crucial part in diagnosing persons as there is a high suspicion 

of contamination under risk factors and symptoms [4], 

excluding children and expectant women outside of 

emergency conditions. CXR images have been discovered in 

the current epidemic to detect LDs.  

 

Classification and detection of LDs by employing CXR 

imageries is a convolutional method for radiologists [5]. 

Hence, this earned noteworthy consideration from the 

scientists to develop automatic detection of LD procedures. 

Subsequently, several CAD structures have been presented for 

detecting LD in the past decade by implementing X-ray 

images [6]. However, such methods were unsuccessful in 

attaining the needed performance for detecting LD and its 

classification. The recent COVID-19-associated lung 

infections have made these tasks very demanding for such 

CAD procedures. It becomes very critical in detecting the 

presence of pneumonia in the lungs and its further 

classification into COVID-19, viral, and bacterial diseases. 

This structural classification also delivers suitable medical 

care to patients with pneumonia [7]. Many works have been 

conferred with CAD structures for COVID-19, and DL 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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procedures and automated image processing have been 

established for detecting the disease of pneumonia by adopting 

CXR images. Several automatic tools also exist for the 

efficient detection of LD and classification. Despite DL and 

ML modalities prevailing in previous studies [8], improving 

the accomplishment of the classification of LD is still 

required. Due to the constant development of the procedure, 

the amount of restrictions of DL procedures also surges 

promptly, resulting in procedural overfitting. Concurrently, 

diverse hyperparameters have a key result in the CNN's 

proficiency procedure [9]. Especially parameters like batch 

size and epoch count are also critical in obtaining an effective 

result. As the R and D process for hyperparameter tuning is an 

exhausting and inaccurate procedure, metaheuristic 

approaches can be enforced [10]. Hence, in this process, a 

metaheuristic approach is implemented to select parameters of 

the DL procedures. 

 

This study designs an Automated Lung Disease Detection 

Using Sea Lion Optimization with Deep Convolutional 

Recurrent Neural Network (SLO-DCRNN) technique on CXR 

images. In the presented SLO-DCRNN technique, the SLO-

DCRNN technique uses the Adaptive Weiner Filter (AWF) 

technique to eliminate the noise level that exists in the images. 

Next, the SLO-DCRNN technique exploits the Neural 

Architectural Search Network (NASNet) Large model for 

feature vector generation. Followed by the DCRNN approach 

is utilized to identify different kinds of LDs. Finally, the SLO 

system was enforced for the tuning process of the DCRNN 

approach. An extensive set of investigations was performed to 

demonstrate the superior result of the SLO-DCRNN 

technique. 

2. Related Works 
Vaiyapuri et al. [11] presented a CSO-CADLCC 

algorithm called cat swarm optimization-related CAD 

technique for classifying LDs. The presented approach uses 

the Gabor filtering-based noise elimination approach for 

preprocessing the dataset. Likewise, using the NASNetLarge 

method, preprocessed imageries feature extracting process can 

be done. [12] The technique is followed by the CSO technique, 

having a Weighted ELM (WELM) module, which is used for 

classifying lung nodules. Eventually, for the tuning parameter 

of the WELM model, the CSO technique was leveraged, 

resulting in an improved classification outcome. In [13], 

modelled a deep CNN to lung cancer related to global factors 

of CT images based on the original DCNN and for validating 

the feasibility of DCNN, effects of optimization algorithm, 

diverse model parameters, and model structure on the 

detection accomplishment were deliberated and applied used 

and render a reference on CAD of lung cancers. 

 

Yang et al. [14] introduced a set of segmentations or 

annotations of lung radiological manifestation that are reliable 

with TB in the openly accessible and broadly utilized 

Shenzhen CXR database. [15] The aim of releasing such 

annotations was to develop the existing image segmenting 

techniques to enhance the outcome of fine-grained 

segmentation of TB-consistent findings in digitalized CXR 

imageries. In [16], the authors have modelled new metrics that 

implement various weights on deviations of features. For 

deriving Weighted City Block Distance (WCBD) and 

Weighted Euclidean Distance (WED), the weights were 

utilized correspondingly with city block distance and 

Euclidean distance.  

 

In [17], a CAD scheme was devised to enhance the 

consistency and diagnostic accuracy in image interpretation of 

pulmonary tuberculosis. Utilizing edge reconstruction region 

and growing algorithms, the lung fields were segmented. 

From the diseased regions, texture features were derived and 

manifested as nodular opacities, consolidations, and 

cavitation. A wrapper technique that combined a one-against-

all Support Vector Machine (SVM) classifier and Cuckoo 

Search Optimization Algorithm (CSA) was utilized for 

choosing the optimal feature subset. First, using entropy, CSA 

is applied, and second, without utilizing entropy measure. 

Utilizing a one-against-all SVM classifier, training is done 

with selective attributes. Mique and Malicdem [18] 

concentrated on formulating a method that segments the 

pulmonary from CXR imageries. Utilizing residual U-Net 

structure-based semantic segmentation, the authors can train 

and develop a method utilizing a set of lung masks and 562 

CXR images. 

3. The Proposed Model 
In the present article, a novel SLO-DCRNN approach was 

presented to identify and classify LDs on CXR images 

accurately. The proposed SLO-DCRNN approach can employ 

the DL and hyperparameter tuning process for automated LDs. 

It follows a series of operations such as AWF-based noise 

removal, NASNet large feature extraction, SLO-based tuning 

process, and DRCNN classification. Figure 1 represents the 

workflow of the SLO-DCRNN algorithm.   

3.1. Image Preprocessing 

Initially, the AWF technique is applied to remove noise 

that exists in it. The first method designed to denoise in digital 

images depends on Wiener filtering. Considering (𝑛1, 𝑛2) as a 

specific pixel location, the AWF is represented as follows 

[19]: 

𝐴𝑊𝐹 [𝐼(𝑛1, 𝑛2)] = 𝜇 +
𝜎2 − 𝜎𝑛

2

𝜎2
(𝐼(𝑛1, 𝑛2) − 𝜇)          (1) 

 

In Equation (1), I, (𝜎2), and 𝜇 signifies the image of the 

input discrepancy, and the mean is estimated locally from the 

(𝑁 × 𝑀) local neighbourhood set of all the pixels.  

 

𝜇 =
1

𝑀𝑁
∑ 𝐼

𝑛1,𝑛2𝜀ℵ

(𝑛1, 𝑛2)                                                    (2) 
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Fig. 1 Workflow of SLO-DCRNN approach 

Fig. 2 Architecture of NASNet used for feature extraction 

𝜎2 =
1

𝑀𝑁
∑ 𝐼2

𝑛1,𝑛2𝜀ℵ

(𝑛1, 𝑛2) − 𝜇2                                        (3) 

Where (𝜎𝑛) denotes the variance of the noise. 

 

3.2. Feature Extraction using NASNet Large 

The SLO-DCRNN technique employed the NASNet 

Large model for feature vector generation in this phase. In 

general, a NASNet is a CNN approach based on reinforcement 

learning and a scalable NAS approach [20]. The study 

proposed a NASNet Large CNN model using NAS 

methodology. It was introduced by Google's AI research team 

in 2017. The architecture of NASNet Large consists of a 

sequence of repeating blocks, each containing multiple 

parallel convolutional layers. The key idea behind NASNet is 

to automatically discover the optimal architecture through a 

search process rather than relying on human-designed 

architectures. The initial stage of the NASNet architecture is a 

stem convolutional block that processes the input image. It 

applies several convolutional layers with different filter sizes 

to capture features at various scales. The repeating blocks in 

NASNet Large are called "cells." These cells are constructed 

using a combination of normal and reduction cells. The normal 

cells are responsible for capturing fine-grained features, while 

the reduction cells are designed to reduce spatial dimensions 

and capture more global features. Each cell consists of 

multiple nodes, and each node operates on the outputs of its 

preceding nodes. These operations can include various types 

of convolutions, pooling, and skip connections. During the 

search process, the operations for each node are determined 

based on their performance in a validation set. NASNet Large 

utilizes a technique called "sequential model-based 

optimization" to iteratively search for the best-performing cell 

architectures. This optimization process involves training and 

evaluating multiple candidate architectures to find the one 

with the highest accuracy. NASNet Large plays a crucial role 

in feature extraction for image classification tasks. As a CNN 

architecture, NASNet Large is specifically designed to extract 

meaningful and discriminative features from input images. 

 

In NASNet Large, the repeating blocks or cells are 

responsible for feature extraction. Each cell contains multiple 

nodes, and each node operates on the outputs of its preceding 

nodes. These operations include convolutions, pooling, and 

skip connections. During the search process of NASNet, the 

architecture is optimized to identify the most effective 

operations at each node. This optimization is based on the 

performance of the candidate architectures on a validation set. 

As a result, NASNet Large automatically discovers and 

incorporates the most relevant and informative operations for 

extracting features from images. Using a combination of 

normal and reduction cells, NASNet Large captures features 

at different scales. The normal cells focus on fine-grained 

details, while the reduction cells reduce spatial dimensions 

and capture more global features. This multi-scale approach 

enables the network to learn both local and global features, 
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leading to a more comprehensive representation of the input 

images. The learned features from NASNet Large can then be 

passed to a classifier layer, typically consisting of fully 

connected layers, to make predictions for image classification 

tasks. The classifier layer takes the high-level features learned 

by the network and maps them to specific classes or labels. 
 

In NASNet Large, the earlier networking layers are 

typically frozen during feature extraction, while the later 

layers are fine-tuned. This approach is known as transfer 

learning, where pre-trained layers from a large dataset are 

utilized as an initial point for a novel task. Freezing layers 

means their weights and biases are not updated during 

training. By freezing the earlier layers, the network retains the 

pre-learned low-level features. It avoids overfitting the new 

dataset, allowing it to focus on learning task-specific features 

in the subsequent layers, as shown in Figure 2.  
 

In NASNet Large, the initial layers, such as the stem 

convolutional block and the early cells, which capture basic 

image features like edges, textures, and colours, are typically 

frozen. These layers are considered to be more generic and 

transferable across different tasks. On the other hand, the later 

layers, including the deeper cells and the classifier layers, are 

fine-tuned. Fine-tuning involves updating the weights and 

biases of these layers using the novel dataset to adapt the 

network to the specific classification task. By freezing the 

earlier layers and fine-tuning the later layers, NASNet Large 

takes advantage of the pre-learned features while allowing the 

network to specialize in learning task-specific features. This 

approach helps achieve better performance with less training 

data and computational resources. 

3.3. Hyperparameter Tuning using SLO Algorithm 

In this work, the SLO technique was applied for the 

tuning process of the DCRNN technique. SLO stimulates the 

hunting behaviour of sea lions by the method by which it is 

captured and encircles prey or exploits their whiskers and tails 

[21]. While working on different benchmark functions, SLO 

could offer more competitive results than other PSO 

algorithms. SLO includes the vocalization phase, detecting 

and tracking phase, searching for prey, and attacking phase are 

given below. 

3.3.1. Detecting and Tracking Phase 

Initially, SLO creates 𝑁 (the population size) and  𝐷‐

dimensional solutions based on the uniform distribution in the 

search space. Next, recognize the prey's position and collect 

other individuals joining the group to organize. The prey 

assumed the current optimum solution or the solution nearby 

to the optimum result. This behaviour is shown in Equation 

(5). 
 

𝑋𝑖,𝑗
𝑖𝑛𝑖𝑡 = 𝑋𝑖,𝑗

 min + 𝑟𝑎𝑛𝑑𝑖,𝑗(𝑋𝑖,𝑗
 max − 𝑋𝑖,𝑗

 min )                      (4) 
 

In Equation (4), 𝑋𝑖,𝑗
 min and 𝑋𝑖,𝑗

 max  represents the minimal 

and maximal value for the jth parameter of the ith solution; 

𝑟𝑎𝑛𝑑 denotes the unchanging randomized value within 

[0,1], 𝑖 = 1,2, … , 𝑁, 𝑗 = 1,2, … , 𝐷, 𝑋𝑖,𝑗
𝑖𝑛𝑖𝑡 denotes the initial 

location vector of 𝑖-𝑡ℎ solution. 
 

The solution is estimated for fitness using the objective 

function. 

 

𝑋𝑔+1 = 𝑋𝑏𝑒𝑠𝑡 − 𝐶|2𝑟𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑔|                                   (5) 

 

𝐶 = 2 (1 −
𝑔

𝑔 max 

)                                  (6) 

 

 Where 𝑋𝑏𝑒𝑠𝑡
𝑔

 denotes the location vector of the optimum 

solution; 𝑋𝑔 indicates the individual in iteration 𝑔; 𝑔 

represents the existing iteration of the generation; 𝑔 max shows 

the maximal amount of generations; 𝑟 indicates a random 

number within[0,1]; 𝑋𝑔+1 represents the newest location of 

the searching agent afterwards upgrading; 𝐶 denotes a 

parameter linearly reduced from two to zero, specifying the 

sea lion's encircling method once they draw near and encircle 

the prey. 

3.3.2. Vocalization Stage  

Once an individual identifies a group of prey, it calls other 

individuals to collect and generate a net for the prey's capture, 

and that sea lion is regarded as a leading entity and leads the 

group and decides the behaviours of the group as follows. 

 

𝑆𝑃𝑙𝑒𝑎𝑑𝑒𝑟 = |(𝑉1(1 + 𝑉2)/𝑉2|                                  (7) 

 

𝑉1 =  sin (𝜃)                                 (8) 

 

𝑉2 =  sin (𝜙)                          (9) 

 

Where 𝜃 indicates the voice refection's angle from the 

water; (𝜙) denotes the voice refraction's angle from the water 

and 𝑆𝑃𝑙𝑒𝑎𝑑𝑒𝑟  denotes the decision of the leader than other 

individuals in the group.  

3.3.3. Attacking Phase (Exploitation Phase)  

The sea lion's hunting activity led by the leader is 

discussed in the following: 

 

Dwindling encircling strategy: These behaviours rely on 

the value of 𝐶 and are linearly reduced within [0,2]; hence, 

this enables the search space nearby the present optimum 

location to force and shrink other search agents for updating.  

 

Thus, a new upgraded location of the sea lion is 

positioned anyplace in the searching range amongst its 

existing location and the position of the optimum agent. 

 

Circling updation location: Sea lion chases the prey's bait 

ball and hunts them beginning from the end using Equation 

(10), with 𝑚 a randomly generated integer within [−1, 1]. 
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𝑋𝑔+1 = 𝑋𝑏𝑒𝑠𝑡 +  cos (2𝜋𝑚)|𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑔|                          (10) 

3.3.4. Searching for Prey (Exploration Step)  

During the discovery stage, the search agent upgrades the 

position by randomly selecting the sea lion: 

 

𝑋𝑔+1 = 𝑋𝑟𝑎𝑛𝑑
𝑔

− 𝐶|2𝑟𝑋𝑟𝑎𝑛𝑑
𝑔

− 𝑋𝑔|                      (11)  

 

The condition which enables the exploitation stage to 

occur is once the value of 𝐶 develops larger than 1. Equation 

(11) 𝑋𝑟𝑎𝑛𝑑
𝑡  denotes a randomly chosen individual from the 

existing population. 𝑟 denotes the random value within[ 0,1].  
The SLO manner produces a Fitness Function (FF) for 

accomplishing enhanced classifier results. It explains the 

positive integer for representing the better efficiency of the 

solution candidate. In such cases, minimizing the classifier 

rate of errors is regarded as FF provided in Equation (12).  

   

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100                   (12) 

 

3.4. Image Classification 

In this work, the DCRNN is exploited for the 

identification of different kinds of LDs and comprises four 

major parts [22]:  

(1) an SFLN with sigmoid activation reads the last output 

of recurrent layers and calculates the possibility of the Event 

Activity (EA) for all the frames;  

(2) a time-frequency of the dataset is given to 𝐿𝑐 ∈ ℕ 

convolution layers with non‐overlapping pooling on 

Frequency Axis (FA);  

(3) EA probability is binarized by thresholding on 

constant to accomplish EA prediction, and  

(4) the mapping feature of the final convolution layer is 

stacked on the FA and given to 𝐿𝑟 ∈ ℕ recurrent layer.  

The convolution layer acts as a feature extractor, the 

recurrent layer integrates the extracted feature over time, thus 

giving the context data, and lastly, the feedforward layer 

generates the action probability for all the classes. The 

feedforward, convolution, and recurrent layers stack are 

jointly trained via backpropagation.  

 
Fig. 3 Architecture of RNN 
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3.4.1. Convolution Layers 

Context window of log mel band energy X ∈ ℝ𝐹×𝑇 is 

given as input to the CNN layer with 2D convolution sizes. 

After passing the feature map output through ReLU for all the 

CNN layers, non-overlapping max−pooling was utilized to 

provide more frequency invariance and decrease the data 

dimensionality. To maintain alignment between every target 

hidden activations ℎ𝑡 and output vector 𝑦𝑡 . Figure 3 represents 

the structure of RNN. 

 

Afterwards, in 𝐿𝑐 convolution layers, the outcome of 

CNN is a tensor ℋ ∈ ℝ𝑀×𝐹′×𝑇 , where 𝐹′ symbolizes the 

number of frequency bands remaining afterwards numerous 

pooling functions through the CNN layer, and 𝑀 represents 

the number of mapping features for the final CNN layer. 

 

3.4.2. Recurrent Layers 

The CNN output 𝐻 ∈ ℝ(𝑀⋅𝐹′)×𝑇 for 𝑡ℎ𝑒 𝐿𝑐  layer is given 

to the RNN as a series of frames ℎ𝑡
𝐿𝑐 afterwards stacking the 

feature map output over an FA. The RNN part comprises (1) 

The output of the final convolution layer stacked on the FA 

and given to the stacked recurrent layer, (2) the feedforward 

layer as the output layer, (3) the binarization of EA 

probability, and (4): 𝐿𝑟 stacked recurrent layer every 

outputting and computing a ℎ𝑡 hidden vector for every frame 

as pooling in the FA. 

 

ℎ𝑡
𝐿𝑐+1

= ℱ(ℎ𝑡
𝐿𝑐 , ℎ𝑡−1

𝐿𝑐+1
)

ℎ𝑡
𝐿𝑐+2

= ℱ(ℎ𝑡
𝐿𝑐+1

, ℎ𝑡−1
𝐿𝑐+2

)

⋮

ℎ𝑡
𝐿𝑐+𝐿𝑟 = ℱ(ℎ𝑡

𝐿𝑐+𝐿𝑟−1
, ℎ𝑡−1

𝐿𝑐+𝐿𝑟)

                       (13) 

 

The ℱ function characterizes a GRU or LSTM unit, which 

has two inputs: the outcome of the prior frame of the existing 

layer(ℎ𝑡−1
𝐿𝑐+1

), and the outcome of the existing frame of the 

prior layer(ℎ𝑡
𝐿𝑐). 

 

3.4.3. Feedforward Layer 

A recurrent layer followed by SLFN is utilized as the 

resultant layer. The feedforward layer output is derived from 

the final recurrent layer activation ℎ𝑡
𝐿𝑐+𝐿𝑟 as follows 

 

ℎ𝑡
𝐿𝑐+𝐿𝑟+1

= 𝒢(ℎ𝑡
𝐿𝑐+𝐿𝑟),                     (14) 

 

In Equation (14), 𝒢 signifies a feedforward layer with 

sigmoid activation and employs a similar weight set for the 

extracted feature from all the frames. 

 

3.4.4. Binarization 

The output ℎ𝑡
𝐿𝑐+𝐿𝑟+1

 of the feedforward layer is utilized 

as an EA probability for all the classes 𝑘 = 1,2, … 𝐾 as 

 

𝑝(𝑦𝑡(𝑘)|𝑥0:𝑡 , 𝜃) = ℎ𝑡
𝐿𝑐+𝐿𝑟+1

                 (15) 

Equation (15) 𝐾 denotes the class count, and 𝜃 

characterizes the variables of each layer of the combined 

network. Lastly, EA prediction 𝑦̂ is attained by thresholding 

the probability over a static value 𝐶 ∈ [0,1] as follows: 

 

𝑦̂𝑡(𝑘) = {
1, 𝑝(𝑦𝑡(𝑘)|𝑥0:𝑡 , 𝜃) ≥ 𝐶
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (16) 

4. Performance Validation 
The proposed method is put under simulation on a 

LAPTOP-EVV5KL7B, 8GB RAM, Radeon Vega Mobile Gfx 

2.10 GHz with AMD Ryzen 5 3500U, and 64-bit OS using 

Python 3.6.5 tool. The parameter settings are represented in 

the following: batch size: 5, rate of learning: 0.01, dropout: 

0.5, activation: ReLU, and epoch count: 50. Figure 4 shows 

the sample images obtained during the preprocessing step. 

 

Fig. 4 Sample preprocessed images 

 

In this study, the overall LD classification outcomes of 

the SLO-DCRNN technique are extensively studied on the 

Kaggle dataset [23]. The datasets hold 15153 samples with 3 

classes, as portrayed in Table 1. 

 
Table 1. Dataset details 

Class No. of Instances 

COVID 3616 

Normal 10192 

Viral Pneumonia 1345 

Total Number of Samples 15153 
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Fig. 5 Sample images (a, c) Original (b, d) Masked 

Figure 5 depicts the instance imaging. Figures 5a and 5c 

demonstrate the original CXR images; the respective masked 

regions are given in Figures 5b and 5d. 

 

Figure 6 exhibits the classifier outcomes of the SLO-

DCRNN method under the testing data. Figure 6a exhibits the 

confusion matrix the SLO-DCRNN method offers under 70% 

of TRS. The figure illustrates that the SLO-DCRNN method 

has recognized 2514 instances of COVID, 7062 instances of 

normal, and 804 instances of viral pneumonia. Besides, Figure 

6b describes the confusion matrix provided by the SLO-

DCRNN method under 30% of TSS. The figure illustrated that 

the SLO-DCRNN method has analyzed 1055 instances of 

COVID, 3036 instances under normal, and 344 instances of 

viral pneumonia. 

 

Similarly, Figure 6c illustrates the PR evaluation of the 

SLO-DCRNN technique. The figures show that the SLO-

DCRNN technique has obtained optimum PR achievement 

under the overall classes. Lastly, Figure 6d denoted the ROC 

investigation of the SLO-DCRNN method. The figure 

revealed that the SLO-DCRNN method has resulted in 

promising outputs with the maximum values of ROC values 

under various class labels. 

Table 2 describes the LD classification outputs of the 

SLO-DCRNN approach on 70% of TRS. 

 
Table 2. LD classifier outcomes of SLO-DCRNN method on 70% of 

TRS 

Training Phase (70%) 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

COVID 99.27 98.24 98.74 99.44 98.49 98.01 

Normal 98.17 98.17 99.13 96.21 98.65 95.84 

Viral Pneumonia 98.27 94.15 85.81 99.48 89.78 88.96 

Average 98.57 96.85 94.56 98.38 95.64 94.27 

 
Fig. 6 Classifiers of (a-b) TRS/TSS of 70:30, (c) PR curve, and (d) ROC curve 
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Fig. 7 𝑨𝒄𝒄𝒖𝒚, 𝑷𝒓𝒆𝒄𝒏, and MCC outcomes of the SLO-DCRNN 

approach on 70% of TRS 

 
Fig. 8 𝑺𝒆𝒏𝒔𝒚, 𝑺𝒑𝒆𝒄𝒚, and 𝑭𝒔𝒄𝒐𝒓𝒆 outcomes of the SLO-DCRNN 

approach on 70% of TRS 

In Figure 7, the overall disease detection results of the 

SLO-DCRNN approach are studied in terms of 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

and MCC. In the COVID class, the SLO-DCRNN technique 

gains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and MCC of 99.27%, 98.24%, and 

98.01%, respectively. Simultaneously, in a normal class, the 

SLO-DCRNN technique gains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and MCC of 

98.17%, 98.17%, and 95.84% correspondingly.  

Concurrently, in the viral pneumonia class, the SLO-

DCRNN technique gains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and MCC of 98.27%, 

94.15%, and 88.96% correspondingly. 
 

In Figure 8, the comprehensive disease detection results 

of the SLO-DCRNN technique are studied in terms of 𝑠𝑒𝑛𝑠𝑦 , 

𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒. In the COVID class, the SLO-DCRNN 

technique obtains 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.74%, 

99.44%, and 98.49% correspondingly. 

 
Fig. 9 𝑨𝒄𝒄𝒖𝒚, 𝑷𝒓𝒆𝒄𝒏, and MCC outcomes of SLO-DCRNN approach on 

30% of TSS 

 
Fig. 10 𝑺𝒆𝒏𝒔𝒚, 𝑺𝒑𝒆𝒄𝒚, and 𝑭𝒔𝒄𝒐𝒓𝒆 outcomes of the SLO-DCRNN 

approach on 30% of TSS 
 

Concurrently, in a normal class, the SLO-DCRNN 

method gains 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.13%, 96.21%, 

and 98.65% correspondingly. Simultaneously, in the viral 

pneumonia class, the SLO-DCRNN method gains 𝑠𝑒𝑛𝑠𝑦 , 

𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 85.81%, 99.48%, and 89.78% 

correspondingly. 
 

 

Table 3 presents the LD classification results of the SLO-

DCRNN technique on 30% of TSS. In Figure 9, the overall 

disease detection outcomes of the SLO-DCRNN method are 

studied in terms of 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and MCC. In the COVID 

class, the SLO-DCRNN method obtains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 

MCC of 99.10%, 97.59%, and 97.51% correspondingly. Also, 

in a normal class, the SLO-DCRNN method achieves 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, and MCC of 97.98%, 98.06%, and 95.38% 

correspondingly. Simultaneously, in the viral pneumonia 

class, the SLO-DCRNN technique gains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 

MCC of 98.04%, 93.22%, and 87.61% correspondingly. 
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Table 3. LD classifier outcomes of SLO-DCRNN methodology on 30% 

of TSS 

Testing Phase (30%) 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

COVID 99.10 97.59 98.60 99.25 98.09 97.51 

Normal 97.98 98.06 98.96 95.94 98.51 95.38 

Viral Pneumonia 98.04 93.22 84.31 99.40 88.55 87.61 

Average 98.37 96.29 93.96 98.20 95.05 93.50 

 
Fig. 11 TACY and VACY outcome of SLO-DCRNN method  

 
Fig. 12 TLOS and VLOS outcome of SLO-DCRNN approach 

 
Fig. 13 𝑨𝒄𝒄𝒖𝒚 and 𝑷𝒓𝒆𝒄𝒏 the outcome of the SLO-DCRNN approach 

with existing systems 

In Figure 10, the overall disease detection results of the 

SLO-DCRNN system are studied in terms of 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, 

and 𝐹𝑠𝑐𝑜𝑟𝑒. In the COVID class, the SLO-DCRNN method 

gains 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.60%, 99.25%, and 

98.09% correspondingly. In a normal class, the SLO-DCRNN 

method gains 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.96%, 95.94%, 

and 98.51% correspondingly. Also, in the viral pneumonia 

class, the SLO-DCRNN technique gains 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 

𝐹𝑠𝑐𝑜𝑟𝑒 of 84.31%, 99.40%, and 88.55% correspondingly. 

 

The TACY value and VACY value of the SLO-DCRNN 

approach are examined on LD detection accomplishment in 

Figure 11. The figure showed that the SLO-DCRNN model 

has illustrated an enhanced accomplishment with the highest 

TACY values and VACY values. The SLO-DCRNN model 

has reached enhanced TACY outputs. 

 

The TLOS value and VLOS value of the SLO-DCRNN 

approach are examined on LD recognition accomplishment in 

Figure 12. The figure showed that the SLO-DCRNN model 

has depicted the highest accomplishment with reduced TLOS 

and VLOS values. The SLO-DCRNN model has given a result 

in minimized VLOS outputs. 

Finally, a comparative result of the SLO-DCRNN 

technique is well studied in Table 4 [24]. Figure 13 exhibits a 

comparison study of the SLO-DCRNN technique with 

existing methods in terms of 𝑎𝑐𝑐𝑢𝑦 and 𝑝𝑟𝑒𝑐𝑛. Based on 

𝑎𝑐𝑐𝑢𝑦, the SLO-DCRNN technique obtains increasing 𝑎𝑐𝑐𝑢𝑦 

of 98.57% while the NO, GA, PS, SA, PSO, WO, and 

OptCoNet techniques attain decreasing 𝑎𝑐𝑐𝑢𝑦 of 90.22%, 

94.89%, 94.82%, 95.24%, 95.16%, 96.43%, and 97.30% 

respectively. Besides, based on 𝑝𝑟𝑒𝑐𝑛, the SLO-DCRNN 

method attains maximum 𝑝𝑟𝑒𝑐𝑛 of 96.85% while the NO, GA, 

PS, SA, PSO, WO, and OptCoNet methods accomplish 

minimum 𝑝𝑟𝑒𝑐𝑛 of 82.10%, 91.31%, 87.43%, 94.76%, 

89.76%, 94.19%, and 95.14% correspondingly. 

Figure 14 exhibits a comparison study of the SLO-

DCRNN technique with existing methods in terms of 𝑠𝑒𝑛𝑠𝑦 , 

𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒. Based on 𝑠𝑒𝑛𝑠𝑦 , the SLO-DCRNN method 

achieves increasing 𝑠𝑒𝑛𝑠𝑦  of 94.56%, while the NO, GA, PS, 

SA, PSO, WO, and OptCoNet techniques accomplish 

reducing 𝑠𝑒𝑛𝑠𝑦  of 93.89%, 92.80%, 94.02%, 94.11%, 

92.70%, 93.35%, and 94.20% correspondingly. Besides, 

based on 𝑠𝑝𝑒𝑐𝑦, the SLO-DCRNN method attains increasing 

𝑠𝑝𝑒𝑐𝑦 of 98.38% while the NO, GA, PS, SA, PSO, WO, and 

OptCoNet techniques attain decreasing 𝑠𝑝𝑒𝑐𝑦 of 89.68%, 

92.43%, 93.62%, 92.62%, 95.22%, 93.98%, and 97.43% 

correspondingly. In addition, based on 𝐹𝑠𝑐𝑜𝑟𝑒, the SLO-

DCRNN technique gains increasing 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.64%, while 

the NO, GA, PS, SA, PSO, WO, and OptCoNet systems attain 

decreasing 𝐹𝑠𝑐𝑜𝑟𝑒 of 87.71%, 95.09%, 93.51%, 92.62%, 

93.13%, 94.95%, and 94.74% correspondingly.
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Table 4. Comparative outcome of SLO-DCRNN method with existing systems 

Method Accuracy Precision Sensitivity Specificity F-Score 

SLO-DCRNN 98.57 96.85 94.56 98.38 95.64 

Non-optimization 90.22 82.10 93.89 89.68 87.71 

Genetic Algorithm 94.89 91.31 92.80 92.43 95.09 

Pattern search 94.82 87.43 94.02 93.62 93.51 

Simulated Annealing 95.24 94.76 94.11 92.62 92.62 

PSO Algorithm 95.16 89.76 92.70 95.22 93.13 

WO Algorithm 96.43 94.19 93.35 93.98 94.95 

OptCoNet 97.30 95.14 94.20 97.43 94.74 

 
Fig. 14 𝑺𝒆𝒏𝒔𝒚, 𝒔𝒑𝒆𝒄𝒚, and 𝑭𝒔𝒄𝒐𝒓𝒆 the outcome of the SLO-DCRNN 

approach with existing systems 

Finally, Table 5 and Figure 15 offer detailed CT results of 

the SLO-DCRNN technique with recent techniques. The 

outputs stated that the SLO-DCRNN technique accomplished 

better with a minimal CT of 7.89s.  

 

At the same time, the NO, GA, PS, SA, PSO, WO, and 

OptCoNet techniques reached higher CT values of 11.05s, 

10.45s, 10.01s, 13.10s, 11.43s, 12.03s, and 14.05s 

correspondingly. These results confirmed the improvements 

of the SLO-DCRNN method over other approaches. 

Table 5. Relative CT outcome of SLO-DCRNN systems with existing 

models 

Models Computational Time (Sec) 

SLO-DCRNN 07.89 

Non-optimization 11.05 
Genetic Algorithm 10.45 

Pattern search 10.01 
Simulated Annealing 13.10 

PSO Algorithm 11.43 
WO Algorithm 12.03 

OptCoNet 14.05 

 
Fig. 15 Comparative CT results of the SLO-DCRNN approach 

5. Conclusion 
This article presented a novel SLO-DCRNN approach to 

identify and classify lung cancer on CXR images accurately. 

The proposed SLO-DCRNN approach can employ the DL and 

hyperparameter tuning process for automated LDs. It follows 

a series of operations such as AWF-based noise removal, 

NASNet Large feature extraction, SLO-based tuning process, 

and DRCNN classification. The SLO-DCRNN technique 

primarily utilized the AWF technique to eliminate the image's 

noise level.  

Next, the SLO-DCRNN technique employed the NASNet 

Large model for feature vector generation. Following this, the 

SLO approach was utilized for the tuning process of the 

DCRNN model. Finally, the DCRNN model is applied to 

identify different kinds of LDs.  

An extensive set of investigations was accomplished to 

demonstrate the enhanced result of the SLO-DCRNN 

technique. The experimental outcome ensured the 

improvement of the SLO-DCRNN methodology over other 

existing techniques in terms of different measures. 
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