
International Journal of Engineering Trends and Technology Volume 71 Issue 10, 20-28, October 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I10P203 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Model-Driven Architecture Approach for SQL

Generation using Acceleo: A Case Study on MySQL

Database

Hamza Natek1, Aziz Srai2, Fatima Guerouate3

1,3LASTIMI Laboratory, Superior School of Technologies of Sale, Mohammadia School of Engineering, Mohamed V University

City of Rabat, Morocco.
2ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco.

1Corresponding Author : hamzanatek@gmail.com

Received: 05 July 2023 Revised: 06 September 2023 Accepted: 13 September 2023 Published: 03 October 2023

Abstract - The MDA approach aims to improve software development efficiency by utilizing models as the primary means

 of specifying, constructing, and implementing software systems. Software systems development often requires

Converting high-level design models into resilient and coherent databases. Manual translation of UML models to SQL

databases is prone to errors and can be time-consuming, hindering the development process. To overcome this problem,

Proposing an automated approach that harnesses the capabilities of MDA and Acceleo, The main goal is to convert UML

models into comprehensive SQL files effortlessly. The proposed approach significantly reduces the time and effort required to

create SQL databases manually. In the first step, an e-commerce model is employed as a high-level representation of the

database structure, consisting of essential tables such as Product, Order, Customer, OrderDetail, Administrator, User, and

ShippingInfo. Through the application of transformation rules and mapping specifications, the UML model is seamlessly

converted into a set of SQL statements that define tables, relationships, and constraints; this automated approach not only

accelerates the development process but also enables easy updates and modifications to the database structure as the system

evolves.

Keywords - Model-Driven Architecture, UML, SQL, Acceleo, MySQL.

1. Introduction
Model-Driven Architecture (MDA) represents a

software development approach emphasising using models

as the main method for specifying, constructing, and

implementing software systems. The increasing need to

create robust and consistent databases from high-level design

models based on widely accepted UML models in the

software industry leads us to automate the transformation of

the model into an SQL database structure using the MDA

approach. This will reduce manual translation errors and

accelerate the development process.

MDA can be applied in various domains, including

software development [1] [2], embedded systems [3], the

Internet of Things (IoT) [4], blockchain [5] [6], cybersecurity

[7] [8], big data, Smart cities [9], Cloud application [10],

generating graphical user interfaces [11], engineering design

and manufacturing [12], and also medical field [13], as it

provides a powerful means to improve the quality, efficiency,

and effectiveness of software development and other related

processes. Its main goal is to enhance software

development's efficiency, quality, and flexibility by

separating concerns among different stakeholders in the

development process. The use of this approach for generating

SQL databases from UML models has a significant impact

on software development. Firstly, this method allows for

better consistency between the conceptual model and the

database, thereby reducing the risks of inconsistencies and

errors during implementation. Additionally, it provides

greater flexibility in managing changes, as modifications

made to the model can be easily reflected in the generated

database.

Model-Driven Architecture (MDA) is a software

development approach that emphasizes using models to

guide and inform the design and development process. The

essence of the MDA approach lies in the clear business

concerns separation and technological concerns, promoting

modularity, abstraction, and reuse of software components. It

is based on the fundamental idea that models play a central

role in all phases of the software system's lifecycle. Models

represent different system perspectives, ranging from

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hamza Natek et al. / IJETT, 71(10), 20-28, 2023

21

business requirements and operational processes to software

architecture design and technical implementation. By using

models as a basis for automatic code generation and other

software artifacts, the MDA approach aims to improve

software productivity, quality, and maintainability. It also

enables a better alignment between business needs and

software solutions by facilitating stakeholder communication

and fostering a shared understanding of the system. MDA

relies on a standardized modeling language, such as the

Unified Modeling Language (UML), which provides a

formal syntax and semantics for representing models. MDA

tools use these models to automatically generate source code,

deployment scripts, database schemas, and other system

artifacts.

In this article, The power of Model Driven Architecture

(MDA) and Acceleo is employed to generate a

comprehensive SQL file from the UML model. The UML

model serves as the foundation, providing a high-level

representation of the database structure. The UML model can

be seamlessly transformed into a set of SQL statements that

define tables, relationships, and constraints by applying

transformation rules and mapping specifications.

In this case, the UML model consists of seven essential

tables: Product, Order, Customer, OrderDetail,

Administrator, User, and ShippingInfo. Each table represents

a distinct entity or concept within the database domain. The

Product table stores information related to products, such as

their names, descriptions, and prices.

The Order table captures details about orders, including order

numbers, dates, and associated customers.

The Customer table holds customer information such as

names, addresses, and contact details. To establish

relationships between tables, the UML model incorporates

associations and dependencies. For instance, the OrderDetail

table is associated with the Order and Product tables,

enabling the storage of specific order details such as

quantities, prices, and the corresponding products.

Additionally, the Administrator and User tables manage user

authentication and authorization, while the ShippingInfo

table stores shipping-related information for orders. By

employing MDA techniques and leveraging Acceleo, The

transformation process can be automated, significantly

reducing the time and effort required to create the SQL file

manually. The resulting SQL file will accurately reflect the

database structure based on the UML model, ensuring

consistency and adherence to the original design. This

automation streamlines the development process and

facilitates easy updates and modifications to the database

structure as the system evolves.

2. Related Works
Several research projects have been proposed to

integrate the Model-Driven Architecture (MDA) approach.

These projects aim to leverage the benefits of MDA in

software development and explore its potential for various

applications. The integration of MDA encompasses areas

such as code generation, model transformation,

metamodeling, and tool support. These research endeavors

contribute to advancing the understanding and practical

implementation of MDA, offering valuable insights and

techniques for utilizing models as central artifacts in the

development process. The journal article in [14] focuses on

the utilization of Model-Driven Architecture (MDA)

combined with the Unified Modeling Language (UML). The

work involves establishing the Symfony framework's

metamodels and UML class diagrams, defining

transformation rules using the Atlas Transformation

Language (ATL), and generating a Platform Specific Model

(PSM) in the Ecore language. The journal article in [15]

presents a methodology based on the Model Driven

Architecture (MDA) for developing mobile applications

using UML modeling and Acceleo. Their methodology

employs UML modeling to capture the application's design

and Acceleo for code generation. By utilizing MDA, the

authors provide a systematic approach that enables the

generation of specific code, thereby simplifying the

development process for mobile applications. In another

work proposed in the journal article [16], the authors present

a methodology for model-driven generation of MVC2 web

applications, focusing on transforming models into code. The

approach utilizes Model-Driven Engineering (MDE)

principles and the Model-Driven Architecture (MDA)

approach, leveraging UML for modeling and the meta-

modeling environment for code generation. The paper

specifically addresses M2M and M2T transformations using

the ATL transformation language and the Acceleo generator,

respectively. Through a case study, the authors validate the

end-to-end code generation achieved by their approach.

Another study presented in the journal article investigates

integrating the Model-Driven Architecture (MDA) approach

in document-oriented NoSQL databases, specifically

focusing on MongoDB. The authors recognize the growing

need to handle and leverage large volumes of data in various

industries, such as healthcare, finance, and manufacturing.

To address this challenge, they present an MDA-based

approach that utilizes model-driven engineering techniques,

including Model-to-Model (M2M) and Model-to-Code

transformations. The article showcases the generation of

NoSQL MongoDB databases through vertical and horizontal

transformations, demonstrating the practical applicability of

their methodology. Although the primary focus of the study

lies in the Platform Specific Model (PSM) transformations

for implementation, further research is proposed to explore

the transformation from the Platform Independent Model

(PIM) to PSM.

3. Methodology
3.1. Unified Modeling Language (UML)

Unified Modeling Language (UML) is a standardized

visual modeling language that plays a crucial role in software

Hamza Natek et al. / IJETT, 71(10), 20-28, 2023

22

development [17]. It provides a rich set of graphical

notations and constructs for representing various aspects of a

system, including its structure, behavior, and interactions.

UML serves as a common language for communication and

documentation among stakeholders, such as software

architects, developers, and business analysts. Using UML,

stakeholders can capture and express complex system

requirements, design decisions, and relationships between

system components clearly and concisely. UML diagrams,

such as class diagrams, sequence diagrams, and activity

diagrams, enable the visualization and analysis of different

system perspectives, facilitating better understanding,

collaboration, and decision-making throughout the software

development lifecycle. Moreover, UML is not limited to a

specific programming language or platform, making it a

versatile modeling language that can be applied in various

domains and contexts. Overall, UML serves as a powerful

tool for modeling software systems, promoting effective

communication, design clarity, and system comprehension.

3.2. Model Driven Architecture

The demand for efficient and rapid software

development has become crucial in today's software-driven

world. As software architecture continues to evolve, finding

solutions that can generate high-performing software while

saving time is essential.

One such approach is Model-Driven Architecture

(MDA), introduced and endorsed by the Object Management

Group (OMG) in 2001. MDA enables the construction of

software using models. The primary objective of MDA is to

generate software by following a series of well-defined steps

and utilizing transformation languages specifically designed

for this purpose. This approach ensures the validation of each

transformation step before proceeding to the next. The

benefits of MDA include:

• Preservation of business requirements: MDA allows for

the preservation of essential business requirements

throughout the software development process.

• Reusability of architecture and coding choices: MDA

facilitates the reuse of previously established

architecture and coding decisions, promoting efficiency

and consistency.

• Ensuring integrity and consistency: By adhering to the

MDA approach, integrity and consistency are

maintained across different project phases.

MDA revolves around three core concepts:

3.2.1. Model

A model represents a conceptual representation of the

software system. It captures the essential aspects and

functionalities of the system.

3.2.2. Metamodel

A metamodel defines the structure and constraints for

creating models within a specific domain. It provides a

framework for modeling languages.

3.2.3. Model Transformation

Model transformation involves the conversion of one

model into another, typically using transformation languages.

It enables the step-by-step refinement and evolution of the

software system.

3.3. MDA Process

The principal idea for the MDA approach is to create the

conceptual model in the first step and manage to generate a

working source code by following a process of

transformation ; below is a representative diagram of these

steps, which will be detailed later.:

3.3.1. CIM (Computation Independent Model)

A Computation Independent Model (CIM) is a model

that represents a system or system component in a way that is

independent of the technology used to implement the system.

CIMs are used in model-driven architecture (MDA) to

provide a platform-independent representation of a system

that can be transformed into platform-specific models and

code, and they are typically represented using modeling

languages, such as UML or SysML.

The primary objective of a CIM (Computation-

Independent Model) is to offer a high-level, abstract

perspective of a system, free from dependence on the specific

underlying technology employed for its realization.

This enables software developers to concentrate on the

fundamental behaviors and structures of the system without

being burdened by the intricacies of its implementation. By

segregating technological considerations from behavioral

aspects, CIMs promote the reuse of models and code while

aiding in the evolution of systems over time.

3.3.2. PIM (Platform Independent Model)

A Platform Independent Model (PIM) is a type of model

used in the MDA to represent a system or system component

in a way that is independent of the platform used to

implement it. A PIM provides a higher-level, abstract view

of a system not tied to any specific technology or platform.

The objective of PIM is to provide a technology-

agnostic system model, allowing software developers to

focus on a system's essential behavior and structure rather

than its implementation details. This clear separation of

technological concerns from behavioral ones empowers

PIMs to facilitate model and code reuse while supporting

systems' ongoing evolution. PIMs can be transformed into

platform-specific models (PSMs) using model-to-model

(M2M) transformations. The PSMs can then be used to

generate code for a specific platform, such as Java or C++.

3.3.3. PSM (Platform Specific Model)

A Platform-Specific Model (PSM) is a type of model in

Model-Driven Engineering (MDE) that represents a concrete

Hamza Natek et al. / IJETT, 71(10), 20-28, 2023

23

implementation of a software system for a specific platform

or technology. It is a model that provides a detailed

description of the software system's structure, behavior, and

functionality using the constructs and features of a particular

platform or technology, such as a programming language, a

database management system, or an operating system.

In the context of MDE, a PSM is typically derived from

a more abstract Platform-Independent Model (PIM) through

a series of model transformations that progressively refine

the model to a more detailed and specific level of abstraction.

The PSM is intended to be used as input to code generation

tools that can automatically generate executable code for the

target platform based on the information provided in the

model.

The use of PSMs in MDE can provide several benefits,

including improved productivity, reduced development time,

and increased software quality, by allowing developers to

focus on higher-level abstractions and design concepts and

automating the generation of low-level implementation

details.

3.4. The Difference between Model to Text (M2T) and

Model to Model (M2M) Transformation

Model-to-model (M2M) transformation and model-to-

text (M2T) transformation are two key concepts in model-

driven architecture (MDA).

M2M transformation refers to the process of

transforming a source model into a target model. The source

and target models can be represented using different

modeling languages, such as UML or SysML. The M2M

transformation defines the mapping between the elements of

the source model and the target model and specifies how the

source model should be transformed into the target model.

M2T transformation refers to the process of

transforming a model into text, such as source code,

configuration files, or scripts. The M2T transformation

defines the mapping between the elements of the model and

the text representation and specifies how the model should be

transformed into text. M2M and M2T transformations are

important components of the model-driven architecture, as

they allow software developers to take advantage of the

benefits of modeling, such as abstraction, reusability, and

platform independence, while generating code and other

artifacts for a specific platform.

By using M2M and M2T transformations, software

developers can work with high-level, abstract models

independent of the underlying technology and then

automatically generate platform-specific code and artifacts

that can be used to implement and deploy the system. This

can help improve software development projects' efficiency,

quality, and scalability.

4. Proposed Approach
This work proposes an approach that combines Model-

Driven Architecture (MDA) techniques and Acceleo to

transform a UML model into a SQL file for easy importation

into a MySQL database. MDA is a methodology that

emphasizes using models to describe software systems. The

UML model serves as the input for the automated

transformation process, which generates the SQL file. The

approach ensures accuracy and repeatability by applying

model-to-model and model-to-text transformation

techniques.

The utilization of MDA principles and Acceleo offers

significant advantages. Firstly, the automated transformation

reduces the likelihood of manual errors, enhancing the

reliability and consistency of the resulting SQL files.

Secondly, the platform-independent model allows for

seamless modifications to the database structure, ensuring

flexibility and adaptability without compromising the

transformation process. Lastly, the powerful Acceleo

language enables the implementation of complex mapping

and generation rules, making it a robust tool for the

transformation logic.

By adopting this approach, organizations can benefit

from a structured and efficient method for creating and

maintaining databases, promoting consistency and accuracy

in software system design and implementation. The

automated transformation reduces manual effort and

improves productivity while integrating MDA principles, and

Acceleo facilitates streamlined and error-free SQL file

generation.

The schema in Figure 1 illustrates the different stages in

the Model-Driven Architecture (MDA) approach.

• Business Modeling: This phase captures and models

business requirements, processes, and rules.

• Platform-Independent Modeling: In this phase, platform-

independent models are created, not tied to any specific

technology or platform. These models represent the

system's functionality and behavior in a technology-

agnostic manner.

• Platform-Specific Modeling: Here, platform-specific

models are derived from the platform-independent

models. These models include the technology-specific

details necessary for implementation.

• Code Generation: Code generation takes place based on

platform-specific models. Automated tools generate the

actual code for the target platform or technology.

• Implementation: The generated code is then used to

develop and implement the software system.

The Model-Driven Architecture (MDA) approach

promotes using models as a central artifact throughout the

software development lifecycle, enabling easier maintenance,

reuse, and flexibility in adapting to changes.

Hamza Natek et al. / IJETT, 71(10), 20-28, 2023

24

Fig. 1 Model-Driven Architecture (MDA) workflow

The UML model depicted in Figure 2 serves as the

starting point for the transformation process. It encapsulates

the essential elements of the e-commerce database, providing

a comprehensive representation of the entities and

relationships within the e-commerce domain. The UML

model comprises various classes, each playing a specific role

in the system. Among the primary classes in the UML model

are Product, Order, Customer, and OrderDetail. These

classes capture the fundamental entities in the e-commerce

platform.

The Product class represents the individual products

available for sale, encompassing attributes such as name,

description, and price. The Order class represents the orders

customers place, incorporating attributes such as order

number and date. The Customer class represents the users of

the e-commerce platform, holding attributes such as name,

address, and contact details. Lastly, the OrderDetail class

represents the specifics of each order, including attributes

like quantity, price, and associated products.

The UML model utilizes various types of associations,

aggregations, and inheritance to establish relationships

between these classes. These relationships enable the

representation of complex connections within the e-

commerce domain. A clear and concise representation of the

relationships between entities is ensured by visually

illustrating these associations in the UML model.

Additionally, the UML model incorporates attributes and

methods for each class. These define the properties and

behaviors associated with the entities within the e-commerce

domain, further enriching the model's expressiveness and

functionality.

Figure 2 provides a comprehensive overview of the

UML model, capturing the entities, relationships, and

attributes of the ecommerce database. This well-defined

model will serve as the foundation for the subsequent

transformation process, guiding the seamless conversion

from UML to an SQL file.

The next figure (Figure 3) presents the same e-

commerce database model as in UML, but this time, it is

implemented in Ecore, which is the metamodeling language

of the Eclipse Modeling Framework (EMF)

Request

Business Modeling (UML)

Platform Independent

Modeling (PIM)

PSM PSM PSM

Code Code Code

Step 1

Step 2

Step 3

Step 4

Step 5

Presentation tier:

JSPs
Business tier:

EJBs
Database tier:

SQL Script

PSM Bridge

Code Bridge

Hamza Natek et al. / IJETT, 71(10), 20-28, 2023

25

Fig. 2 Class diagram of the model

Fig. 3 The model implemented in Ecore

The next figure (Figure 4) presents an abstract of the

code to generate the database structure using Acceleo, which

is a high-level overview of the implementation details of the

transformation process. Acceleo is a model-to-text

transformation language that generates code and text from

models. In this case, Acceleo is used to transform the Ecore

model of the e-commerce database into an SQL file that can

be used to create the database structure.

After creating the database structure, the next step

involves adding relationships between the tables. This is

achieved by creating a new transformation using Acceleo,

specifically designed to incorporate constraints between the

tables (See Figure 5).

ShoppingCart

id: Elnt

quantity: Elnt

createdAt: EString

• addCartItem
• updateQuantity

• viewCartDetails
• checkout

Customer

customerName: EString

address: EString

createdAt: EString

id: Elnt

• Register

• Login

• updateProfile
Administrator

adminName: EString

• updateCatalog

Product

id: Elnt

productName : EString

unitPrice: Elnt

quantity: Elnt

• addProduct

• getProductInfo

Order

id: Elnt

createdAt: EString

shipping Date: EString

customerName: EString

status: EString

shippingld: Elnt

• placeOrder

User

id: Elnt

password: EString

loginStatus: EString

email: EString

• verifyLogin

OrderDetail

id: Elnt

productld: Eint

productName: EString

quantity: Elnt

unitPrice: Elnt

sub Totat: Elnt

• calculatPrice

ShippingInfo

id: Elnt

shipping Type: EString

shippingCost: EString

• updateShippingInfo

customer

Order

0..*

user

user 0..1
0..1

1..1
1..1

0..1

product

orderDetail
shippingInfo

0..1

Hamza Natek et al. / IJETT, 71(10), 20-28, 2023

26

Fig. 4 Abstract of the code to generate the database structure using Acceleo

Fig. 5 Abstract of the code to generate the constraint between the tables using Acceleo

Hamza Natek et al. / IJETT, 71(10), 20-28, 2023

27

Fig. 6 The generated database is imported into a MySQL database

A comprehensive verification process was undertaken to

validate the effectiveness of the approach. This involved

importing the generated SQL file into a MySQL database

using the phpMyAdmin script. During this process, a

comparison was made between the structure of the imported

database and the corresponding UML model, ultimately

confirming the successful transformation.

This crucial validation step played a significant role in

ensuring the reliability and consistency of the generated SQL

file by verifying that the imported database structure aligned

with the UML model. Confidently affirming the accuracy of

the transformation process, this validation procedure served

as a crucial quality assurance measure, assuring that the

generated SQL file accurately represented the intended

system design.

By conducting such validations, the overall

trustworthiness of the approach is enhanced, showcasing its

ability to deliver dependable and consistent results. This

verification not only assures the correctness of the

transformation but also provides a solid foundation for

further development and deployment of the software system.

5. Results and Discussion
The transformation process using Acceleo has proven

effective in generating accurate SQL files for MySQL

databases. The resulting SQL file encapsulates the necessary

database structure and constraints, ensuring compatibility

and seamless importation into MySQL database management

systems. Extensive testing and validation have been

conducted to verify the accuracy and integrity of the

generated SQL files. The adoption of MDA principles and

the utilization of Acceleo for SQL file generation offer

several notable advantages.

Firstly, the automated transformation significantly

reduces the chances of manual errors, enhancing the

reliability and consistency of the generated SQL files.

Secondly, the utilization of a platform-independent model

ensures flexibility and adaptability, enabling seamless

modifications to the database structure without

compromising the transformation process. Lastly, using the

Acceleo language provides a powerful and expressive tool

for implementing the transformation logic and facilitating

complex mapping and generation rules.

6. Conclusion
In conclusion, the approach proposed using Model

Driven Architecture (MDA) techniques and Acceleo to

transform a UML model into an SQL file for creating a

database structure is a structured and efficient way to design

and implement databases for software systems.

The UML model provides a high-level representation of

the entities and relationships in the system, which can be

transformed into a concrete implementation using Acceleo.

The transformation process automates the generation of the

SQL code, reducing manual effort and improving

consistency and accuracy.

The resulting SQL file can be easily imported into a

database management system like MySql to create the

database structure. The approach presented in this article can

be applied to various software systems and adapted to

different modeling languages and transformation tools.

Overall, this approach promotes best practices in software

development and can improve the efficiency and reliability

of database design and implementation.

Moreover, as a perspective, the approach validation is

planned through the utilization of various database

management systems, including PostgreSQL, MariaDB,

Oracle, and others. Additionally, a similar effort will be

made for NoSQL databases.

References
[1] J. Bezivin et al., “Applying MDA Approach for Web Service Platform,” Proceedings Eighth IEEE International Enterprise Distributed

Object Computing Conference, pp. 58-70, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[2] Julia N. Korongo, Samuel T. Mbugua, and Samuel M. Mbuguah, “A Review Paper on Application of Model-Driven Architecture in

Use-Case Driven Pervasive Software Development,” International Journal of Computer Trends and Technology, vol. 70, no. 3, pp. 19-

26, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/EDOC.2004.1342505
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applying+MDA+approach+for+Web+service+platform&btnG=
https://ieeexplore.ieee.org/abstract/document/1342505
https://doi.org/10.14445/22312803/IJCTT-V70I3P104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+Paper+on+Application+of+Model-Driven+Architecture+in+Use-Case+Driven+Pervasive+Software+Development%2C%22+&btnG=
https://ijcttjournal.org/archives/ijctt-v70i3p104

Hamza Natek et al. / IJETT, 71(10), 20-28, 2023

28

[3] Deniz Akdur, Vahid Garousi, and Onur Demirörs, “A Survey on Modeling and Model-Driven Engineering Practices in the Embedded

Software Industry,” Journal of Systems Architecture, vol. 91, pp. 62-82, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[4] Lenin Erazo-Garzón et al., “Models@runtime and Internet of Things: A Systematic Literature Review,” 2021 Second International

Conference on Information Systems and Software Technologies (ICI2ST), pp. 128-134, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[5] Mantas Jurgelaitis et al., “Smart Contract Code Generation from Platform Specific Model for Hyperledger Go,” Trends and

Applications in Information Systems and Technologies, vol. 1368, pp. 63-73, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Moneeb Abbas et al., “A Model-Driven Framework for Security Labs Using Blockchain Methodology,” 2021 IEEE International

Systems Conference (SysCon), pp. 1-7, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Phu H. Nguyen et al., “An Extensive Systematic Review on the Model-Driven Development of Secure Systems,” Information and

Software Technology, vol. 68, pp. 62-81, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[8] Santiago Moral-García et al., “Enterprise Security Pattern: A Model-Driven Architecture Instance,” Computer Standards and Interfaces,

vol. 36, no. 4, pp. 748-758, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] Nour Moadad, Issam Damaj, and Islam El Kabani, “A Generic MDA-IoT Architecture for Connected Vehicles in Smart Cities,” 2022

IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), pp. 122-129, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[10] Manal Bouacha, and Hanae Sbai, “Business-IT Alignment in Cloud Environment Proposed Framework,” ITM Web of Conferences, vol.

52, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Sarra Roubi, Mohammed Erramdani, and Samir Mbark, “Model Driven Architecture as an Approach for Modeling and Generating

Graphical User Interface,” Proceedings of the Mediterranean Conference on Information & Communication Technologies, vol. 381, pp.

651-656, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[12] Francisco J. Pereda, and Arturo Molina, “Model Driven Architecture for Engineering Design and Manufacturing,” IFAC Proceedings

Volumes, vol. 46, no. 24, pp. 400-407, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[13] Mohammad Ali Kadampur, and Sulaiman Al Riyaee, “Skin Cancer Detection: Applying a Deep Learning Based Model Driven

Architecture in the Cloud for Classifying Dermal Cell Images,” Informatics in Medicine Unlocked, vol. 18, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[14] M'hamed Rahmouni, Chaymae Talbi, and Soumia Ziti, “Model-Driven Architecture: Generating Models from Symfony Framework,”

Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 3, pp. 1659-1668, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[15] Hanane Benouda et al., “Modeling and Code Generation of Android Applications Using Acceleo,” International Journal of Software

Engineering and Its Applications, vol. 10, no. 3, pp. 83-94, 2016. [Google Scholar] [Publisher Link]

[16] M'hamed Rahmouni, and Samir Mbarki, “Model-Driven Generation of MVC2 Web Applications: From Models to Code,” International

Journal of Engineering and Applied Computer Science, vol. 2, no. 7, pp. 217-231, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[17] Hatice Koç et al., “UML Diagrams in Software Engineering Research: A Systematic Literature Review,” Proceedings, vol. 74, no. 1, p.

13, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.sysarc.2018.09.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+modeling+and+model-driven+engineering+practices+in+the+embedded+software+industry%2C%E2%80%9D&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1383762118302455
https://doi.org/10.1109/ICI2ST51859.2021.00026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Models%40runtime+and+Internet+of+Things%3A+A+Systematic+Literature+Review%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/9447355
https://ieeexplore.ieee.org/abstract/document/9447355
https://doi.org/10.1007/978-3-030-72654-6_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smart+Contract+Code+Generation+from+Platform+Specific+Model+for+Hyperledger+Go%2C&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-72654-6_7
https://doi.org/10.1109/SysCon48628.2021.9447125
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Model-Driven+Framework+for+Security+Labs+using+Blockchain+Methodology%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/9447125
https://doi.org/10.1016/j.infsof.2015.08.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+extensive+systematic+review+on+the+Model-Driven+Development+of+secure+systems%2C%E2%80%9D&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001482
https://doi.org/10.1016/j.csi.2013.12.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enterprise+security+pattern%3A+A+model-driven+architecture+instance%2C%E2%80%9D&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0920548913001839
https://doi.org/10.1109/GCAIoT57150.2022.10019064
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CA+Generic+MDA-IoT+Architecture+for+Connected+Vehicles+in+Smart+Cities%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/10019064
https://doi.org/10.1051/itmconf/20235202006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Business-IT+Alignment+in+Cloud+environment+Proposed+Framework&btnG=
https://www.itm-conferences.org/articles/itmconf/abs/2023/02/itmconf_cocia2023_02006/itmconf_cocia2023_02006.html
https://doi.org/10.1007/978-3-319-30298-0_72
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+Driven+Architecture+as+an+Approach+for+Modeling+and+Generating+Graphical+User+Interface%2C%E2%80%9D&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-30298-0_72
https://doi.org/10.3182/20130911-3-BR-3021.00093
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+Driven+Architecture+for+Engineering+Design+and+Manufacturing&btnG=
https://www.sciencedirect.com/science/article/pii/S1474667016322224
https://doi.org/10.1016/j.imu.2019.100282
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Skin+cancer+detection%3A+Applying+a+deep+learning+based+model+driven+architecture+in+the+cloud+for+classifying+dermal+cell+images%2C%E2%80%9D+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Skin+cancer+detection%3A+Applying+a+deep+learning+based+model+driven+architecture+in+the+cloud+for+classifying+dermal+cell+images%2C%E2%80%9D+&btnG=
https://www.sciencedirect.com/science/article/pii/S2352914819302047
http://doi.org/10.11591/ijeecs.v30.i3.pp1659-1668
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model-driven+architecture%3A+generating+models+from+Symfony+framework%2C%E2%80%9D&btnG=
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/31475
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modeling+and+Code+Generation+of+Android+Applications+Using+Acceleo%2C%E2%80%9D+&btnG=
https://www.earticle.net/Article/A270929
http://doi.org/10.24032/ijeacs/0207/04
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model-Driven+Generation+of+MVC2+Web+Applications%3A+From+Models+to+Code%2C&btnG=
http://www.ijeacs.com/Files/Other/Vol02-Issue07/Model-Driven-Generation-of-MVC2-Web-Applications-From-Models-to-Code.pdf
https://doi.org/10.3390/proceedings2021074013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=UML+Diagrams+in+Software+Engineering+Research%3A+A+Systematic+Literature+Review%2C%E2%80%9D&btnG=
https://www.mdpi.com/2504-3900/74/1/13

