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Abstract - This paper introduces a proximal multipliers algorithm to solve separable convex symmetric cone minimization 

problems subject to linear constraints. The algorithm is motivated by the method proposed by Sarmiento et al. (2016, 

optimization v.65, 2, 501-537), but we consider in the finite-dimensional vectorial spaces, further to an inner product, a 

Euclidean Jordan Algebra. Under some natural assumptions on convex analysis, it is demonstrated that all accumulation 

points of the primal-dual sequences generated by the algorithm are solutions to the problem and assuming strong assumptions 

on the generalized distances; we obtain the global convergence to a minimize point. To show the algorithm's functionality, we 

provide an application to find the optimal hyperplane in Support Vector Machine (SVM) for binary classification. 

Keywords - Symmetric convex cone optimization, Separable techniques, Proximal distances, Proximal method of multipliers, 

Support vector machine. 

1. Introduction  

In this work, we present the development of the 

symmetric cone proximal multiplier algorithm (SC - PMA), 

the same one that solves an optimization problem with 

separable structures; we will give a particular application to a 

support vector machine model related to data classification. 

Consider 𝕍1 and 𝕍2  be two linear vectorial spaces of 

finite dimensions on ℝ,  with ℝ denoting the Euclidean 

space. In this space, we define two inner products:  〈∙,∙〉𝕧1 for 

𝕍1 and 〈∙,∙〉𝕧2 for  𝕍2 with the Jordan product °1 and °2 , 
respectively. Based on these tools, we can define the 

following Euclidean Jordan algebras 𝕍1 = (𝕍1, °1, 〈∙,∙〉𝕧1) 
and 𝕍2 = (𝕍2, °2, 〈∙,∙〉𝕧2), see subsection 2.1 for a strict 

definition of this concept. 

In this paper, we are interested in studying an 

optimization algorithm for solving the following convex 

symmetric cone optimization (CSCO) problem: 

min{𝑓(𝑥) + 𝑔(𝑧) ∶  𝔸𝑥 + 𝔹𝑧 = 𝑏, 𝑥 ∈  𝑘1, 𝑧 ∈ 𝑘2},   (𝑃)   

where 𝑓: 𝕍1 → ℝ∪ {+∞} and 𝑔 ∶ 𝕍2 → ℝ∪ {+∞} are 

proper, closed and convex functions (possibly nonsmooth), 

𝔸:𝕍1 → ℝ𝑚 and 𝔹:𝕍2 → ℝ𝑚  are linear applications, 𝑏 ∈
ℝ𝑚, and 𝑘1 ≔ {𝑥 °1𝑥 ∶  𝑥 ∈ 𝕍1} and 𝑘2 ≔ {𝑧°2𝑧 ∶  𝑧 ∈ 𝕍2} 
are the sets of square elements (symmetric cones) in 𝕍1 and 

𝕍2, respectively. 

The model (P) recovers a wide variety of applications in 

the fields of science and engineering (for example, in the 

economy, game theory, and management science, see, for 

instance, [1, 2, 16, 17, 25] and the references of those papers. 

In particular, it includes a lot of applications of current 

interest (for more details, see 1 and 2 of Section 3). 

Many research, taking advantage of the separable 

structure of the objective function, have introduced several 

decomposition methods to solve the problem (P). Between 

the most recognized methods, we can find the alternating 

direction of the multipliers method [9], the partial inverse 

method [22], and the predictor-corrector proximal multiplier 

(PCPM) method [7]. In this present research, we will focus 

on the (PCPM) using proximal distances. 

The steps of the PCPM method to solve (P) without 

conic constraints are the following. 

 

{
 
 

 
 

𝑝𝑘+1 = 𝑦𝑘 + 𝜆𝑘(𝐴𝑥
𝑘 + 𝐵𝑧𝑘 − 𝑏),

𝑥𝑘+1 = arg min
𝑥∈ℝ𝑛

{𝑓(𝑥) + 〈𝑝𝑘+1, 𝐴𝑥〉 +
1

2𝜆𝑘
‖𝑥 − 𝑥𝑘‖2} ,

𝑧𝑘+1 = arg min
𝑥∈ℝ𝑛

{𝑔(𝑧) + 〈𝑝𝑘+1, 𝐵𝑥〉 +
1

2𝜆𝑘
‖𝑧 − 𝑧𝑘‖2} ,

𝑦𝑘+1 = 𝑦𝑘 + 𝜆𝑘(𝐴𝑥
𝑘 + 𝐵𝑧𝑘 − 𝑏)

(1) 

where {𝜆𝑘}𝑘∈ℕ is a sequence of positive parameters. The 

notation  y = arg min
𝑥∈ℝ𝑛

{ℎ(𝑥)}, where ℎ is a proper function, 
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which means that y is the global minimum of 𝑓 on  ℝ𝑛. 

Auslender and Teboulle [3] developed a proximal 

decomposition algorithm using the logarithmic-quadratic 

distance, and Kyono and Fukushima [11] introduced a 

proximal decomposition algorithm using Bregman distance 

[15]. Sarmiento et al. [20] developed an extension of the 

PCPM method to solve (P) using regularized proximal 

distances [4].  

With the intention of recovering more applications, such 

as separable second-order cones and semidefinite 

optimization problems, this research aims to extend the 

PCPM on Euclidean Jordan algebras using proximal 

distances. We prove the convergence of the sequences 

generated by the proposed algorithm to a minimum point of 

the problem (P). We also present an application to find the 

optimal hyperplane in Support Vector Machine (SVM) for 

binary classification and give computational results after 

appropriately implementing the algorithm. 

The following sections organize the paper:  

Section 2 evokes certain basic on Jordan Euclidean 

algebras. Then, we present the definition of proximal 

distances defined in symmetrical cones. Section 3 details the 

proposed algorithm to solve (P) and establish its global 

convergence. Section 4 presents an application to find the 

optimal hyperplane in SVM and shows the algorithm's 

implementation. For that, a linear generator program for 

determining random data for the algorithm is generated using 

MATLAB software. 

2. Preliminaries  

Below, we present the notation and terminology related 

to convex analysis and linear algebra needed in this paper. 

Given a closed proper convex function 𝑓, we denote the 

effective domain as  𝑑𝑜𝑚 (𝑓) = {𝑥 ∈ 𝕍: 𝑓(𝑥) < +∞} , with 

𝕍  denoting as a finite-dimensional vectorial space with an 

inner product.   For  𝜀 ≥ 0, the following set 

𝜕𝜀𝑓(𝑥) = {𝑝 ∈ 𝕍: 𝑓(𝑥) + 〈𝑝, 𝑧 − 𝑥〉 − 𝜀 ≤ 𝑓(𝑧), ∀𝑧 ∈ 𝕍} 

 
is called the 𝜀-Fenchel subdifferential at 𝑥, and if  𝜀 = 0, then 

we denote 𝜕𝑓 = 𝜕0𝑓.  

For a given set 𝑆 ⊂ ℝ𝑛, the function 𝛿𝑆(. ) is the 

indicator function of 𝑆, that is 𝛿𝑆(𝑥) = 0, if 𝑥 ∈ 𝑆; and 

𝛿𝑆(𝑥) = ∞, if 𝑥 ∉ 𝑆. The set 𝒩𝑆(𝑥) is the normal cone to 𝑆 

at 𝑥 ∈ 𝑆. Given a set 𝒦, 𝑖𝑛𝑡(𝒦) and 𝑏𝑑(𝒦), denote the 

interior and the boundary of 𝒦, respectively. Let 𝔸:𝕍 → ℝ𝑛 

be a linear application; we use the notation 𝔸∗ by its adjoint 

defined by 〈𝔸𝑥, 𝑦〉 = 〈𝑥, 𝔸∗𝑦〉, for all  

𝑥 ∈ 𝕍, 𝑦 ∈ ℝ𝑚. 

 

2.1. Euclidean Jordan Algebra 

This subsection concerns providing elemental tools 

about Euclidean Jordan algebras, being of utmost importance 

for the study of canonical optimization; we recommend [32] 

and [12] for exhaustive revision. 

A Euclidean Jordan algebra consists of a real vectorial 

space doted by an inner product (𝕍, 〈∙,∙〉𝕧) and a bilinear 

mapping (𝒙, 𝒚) ↦ 𝒙 ∘  𝒚 ∶ 𝕍 × 𝕍 → 𝕍 satisfying the 

following three conditions: 

(i) 𝑥 ∘  𝑦 = 𝑦 ∘   𝑥 for all  𝑥, 𝑦 ∈ 𝕍. 

(ii) 𝑥 ∘   (𝑥2  ∘   𝑦) = 𝑥2  ∘   (𝑥 ∘   𝑦), for all 𝑥, 𝑦 ∈ 𝕍 

where 𝑥2 = 𝑥 ∘   𝑥. 

(iii) 〈𝑥 ∘   𝑦, 𝑧〉𝕧 = 〈𝑦, 𝑥 ∘   𝑧〉𝕧,  for all 𝑥, 𝑦, 𝑧 ∈ 𝕍; 
and exists an (unique) unitary element 𝑒 ∈ 𝕍, such that 𝑥 ∘
 𝑒 = 𝑥, for all 𝑥 ∈ 𝕍.  

With the above properties, we said that 𝕍 is a Euclidean 

Jordan algebra and 𝑥 ∘  𝑦 is the Jordan product of 𝑥  and 𝑦.  

2.2. Proximal Distances  

Definition 2.1. An extended-valued function 𝐻: 𝕍 × 𝕍 →
ℝ ∪ {+∞} is a proximal distance related to 𝑖𝑛𝑡(𝒦) if it 

satisfies the following properties: 

(P1) 𝑑𝑜𝑚(𝐻(∙,∙)) = 𝒞1 × 𝒞2 with 𝑖𝑛𝑡(𝒦) × 𝑖𝑛𝑡(𝒦) ⊆

𝒞1 × 𝒞2 ⊆ 𝒦 ×𝒦. 
 

(P2)  𝐻(𝑢, 𝑣) ≥ 0 ∀𝑢, 𝑣 ∈ 𝕍, and  

 𝐻(𝑣, 𝑣) = 0,  ∀𝑣 ∈ 𝑖𝑛𝑡(𝒦). 
 

(P3)  Given an arbitrary 𝑣 ∈ 𝑖𝑛𝑡(𝒦), 𝐻(∙, 𝑣)  is a 

continuous function and strictly convex on 𝒞1, and it is 

continuously differentiable on 𝑖𝑛𝑡(𝒦) with 𝑑𝑜𝑚(∇1𝐻(∙

, 𝑣)) = 𝑖𝑛𝑡(𝒦), where ∇1𝐻(∙, 𝑣) denotes the gradient 

of 𝐻(∙, 𝑣) with respect to the first variable. 
 

(P4)  The set {𝑢 ∈ 𝒞1: 𝐻(𝑢, 𝑣) ≤ 𝛾} is bounded for all 𝛾 ∈
ℝ,  𝑎𝑛𝑑 ∀𝑣 ∈ 𝒞2. 

The above definition has been considered by [19] to 

define proximal distances on the interior of the second-order 

cone. Observe that the above definition has a small 

difference from Definition 2.1 from [4] due that in [4], the 

function  𝐻(∙, 𝑦) should be strictly convex in 𝒞1 for all 𝑦 ∈
int(𝐾). Let us denote by 𝒟(int(𝐾)) the family of functions 

𝐻 satisfying the properties given in Definition 2.1.  

We give some extra conditions on 𝐻 ∈ 𝒟(int(𝐾)) 

Which will be useful for the convergence of the algorithm. 

(B1) For all 𝑢, 𝑣 ∈ int(𝐾) and all 𝑤 ∈ 𝒞1, 〈∇𝑢𝐻(𝑢, 𝑣), 𝑤 −
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 𝑢〉 ≤ 𝐻(𝑤, 𝑣) − 𝐻(𝑤, 𝑢) − 𝛾𝐻(𝑢, 𝑣),  
for some 𝛾 ∈ (0, 1]. 
 

(B1´) For all 𝑢, 𝑣 ∈ int(𝐾) and all 𝑤 ∈ 𝒞2, 〈∇𝑢𝐻(𝑢, 𝑣), 𝑤 −
𝑢〉 ≤ 𝐻(𝑣,𝑤) − 𝐻(𝑢,𝑤) − 𝛾′𝐻(𝑢, 𝑣),  
for some 𝛾′ ∈ (0, 1]. 
 

(B2) For each 𝑢 ∈ 𝒞1, the function 𝐻(𝑢,∙) is level bounded 

on 𝒞2. 
 

(B3) For any {𝑣𝑘}𝑘∈ℕ ⊆ int(𝐾): 𝑣
𝑘 → 𝑣∗, and 𝑐 ∈ 𝒞1, we 

have that  𝐻(𝑐, 𝑣𝑘) → 𝐻(𝑐, 𝑣∗). 
 

(B3') For all {𝑣𝑘}𝑘∈ℕ ⊆ int(𝐾): 𝑣
𝑘 → 𝑣∗, and 𝑐 ∈ 𝒞2, it 

holds 𝐻(𝑣𝑘, 𝑐) → 𝐻(𝑣∗, 𝑐). 
 

(B4) Given  {𝑣𝑘}𝑘∈ℕ ⊆ int(𝐾) such that {𝑣𝑘}𝑘∈ℕ converges 

to 𝑣∗ ∈ K, it holds 𝐻(𝑣∗, 𝑣𝑘) → 0 

 

(B4') Given  {𝑣𝑘}𝑘∈ℕ ⊆ int(𝐾) such that {𝑣𝑘}𝑘∈ℕ converges 

to 𝑣∗ ∈ 𝐾, we have that 𝐻(𝑣𝑘, 𝑣∗) → 0. 
 

(B5) For 𝑣 ∈ 𝒞1, {𝑣
𝑘}𝑘∈ℕ ⊆ 𝒞2 bounded where 𝐻(𝑣, 𝑣𝑘) →

0 it holds  𝑣𝑘 → 𝑣. 
 

(B5') For 𝑣 ∈ 𝒞2, {𝑣
𝑘}𝑘∈ℕ ⊆ 𝒞1 bounded where 𝐻(𝑣𝑘, 𝑣) →

0, it holds 𝑣𝑘 → 𝑣. 
 

Examples of proximal distances on symmetric cones can 

be found in López and Papa Quiroz [18]. 

3. Methodology 
In this section, we present the conditions on the problem 

(P), show that support vector machine (SVM) for binary 

classification and sparse inverse covariance selection (SICS) 

can be expressed as (P), and introduce the proposed 

algorithm. We prove the global convergence of the 

sequences generated by the algorithm.  

 

3.1. The Problem  

We are interested in solving problem (P)    

min{𝑓(𝑥) + 𝑔(𝑧) ∶  𝔸𝑥 + 𝔹𝑧 = 𝑏, 𝑥 ∈  𝑘1, 𝑧 ∈ 𝑘2},   

Where 𝑓: 𝕍1 → ℝ ∪ {+∞} and 𝑔: 𝕍2 → ℝ ∪ {+∞} 
are two closed proper convex functions defined on the 

Euclidean Jordan algebra 𝕍1 = (𝕍1,∘1, 〈∙,∙〉1) and  𝕍2 =
(𝕍2,∘2, 〈∙,∙〉2), respectively, 𝔸:𝕍1 → ℝ𝑚 and 𝔹:𝕍2 →
ℝ𝑚 are two linear mappings, 𝑏 ∈ ℝ𝑚 and 𝒦1 ≔
{𝑥 ∘1 𝑥: 𝑥 ∈ 𝕍1} and  𝒦2 ≔ {𝑧 ∘2 𝑧: 𝑧 ∈ 𝕍2} denoting the 

sets of square elements in 𝕍1 and 𝕍2, respectively. 

Next, we give some examples of applications that fall 

into the optimization problem (P). 

3.1.1. Support Vector Machines (SVM) for Binary 

Classification  

Given a set of instances with their respective labels 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚), where each 𝑥𝑖 ∈ ℝ𝑛,
and 𝑦𝑖 ∈ {−1,+1},   𝑖 = 1,…, the SVM is based on the 

determination of an optimal hyperplane of the form 

𝐻(𝒘. α ) = {𝒙 ∈ ℝ𝑛: 𝒘𝑇𝒙 + 𝛼 = 0}, 

where 𝑤 ∈  ℝ𝑛 and 𝛼 ∈ ℝ, which separates the given 

points. It can be proved, see [8], that the above optimal 

hyperplane is obtained by solving the following Quadratic 

Programming problem: 

min
𝒘,𝛼,𝜉

 𝑔(𝑤, 𝛼, 𝜉) =
1

2
‖𝒘‖2 + 𝐶∑𝜉𝑖

𝑚

𝑖=1

                  (3.1) 

𝑠. 𝑡. 𝑦𝑖(𝒘𝑇𝑥𝑖 + 𝛼) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0,   𝑖 = 1,… ,𝑚 

where 𝝃 = (𝜉1, … , 𝜉𝑚) ∈ ℝ
𝑚 and 𝐶 > 0 is a penalty 

parameter. 

We will show that (3.1) can be expressed as the problem 

(P). In fact, let us denote by 

𝒛 = (𝒘, 𝛼) ∈ ℝ𝑛+1, 

and by 

𝑌 = 𝐷𝑖𝑎𝑔(𝒚) = 𝐷𝑖𝑎𝑔(𝑦1, 𝑦2, … , 𝑦𝑚), 

The diagonal matrix where the main diagonal is given 

by the elements of the vector 𝒚. Consider also e being a 

vector of ones in ℝ𝑚, and by 

�̂� = (
(𝑥1 )𝑇 1
⋮ ⋮

(𝑥𝑚)𝑇 1
) ∈ ℝ𝑚×(𝑛+1), 

Then, the first inequality in (3.1) can be expressed as  

𝑌�̂�𝒛 + 𝝃 − 𝒆 ≥ 0. 

Now, let 𝒖 = 𝑌�̂�𝒛 + 𝝃 − 𝒆 ≥ 0 and define 𝒗 = (𝝃, 𝒖) ∈
ℝ2𝑚. We use the two variables 𝑧  and 𝒗 to obtain the 

problem (3.1). Define  𝑓(𝒛) =
1

2
‖𝒘‖2 , 𝑔(𝒗) = 𝐶𝒆𝑇𝝃 and  

the matrices 

𝐴 = 𝑌�̂� ∈ ℝ𝑚×(𝑛+1), 𝐵 = (𝐼     − 𝐼) ∈ 𝔹𝑚×2𝑚 

Then, it is easy to verify that the problem (3.1) can be 

rewritten as 

min
𝒛.𝒗
{𝑓(𝒛) + 𝑔(𝒗): 𝐴𝒛 + 𝐵𝒗 = 𝑏, 𝒗 ≥ 0}     (3.2) 
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considering x=z  and y=v. Observe that the dimension of z is 

n+1 and the dimension of v is 2m. 

3.1.2. Sparse Inverse Covariance Selection  

Gaussian Graphical model is a line of research of great 

interest in statistical learning [10, 24] that conditional 

independence between several different nodes is assigned 

zero in the inverse of the covariance matrix related to the 

Gauss distribution. This problem is associated with solving 

the semidefinite convex optimization problem: 

min
𝑋∈𝒮𝑛

{〈𝒮, 𝑋〉 − ln det(𝑋) +𝜌‖𝑋‖1: 𝑋 ∈ 𝒮+
𝑛}     (3.3) 

where 𝒮+
𝑛 is the set of the symmetric positive 

semidefinite matrix, 𝜌 > 0, 𝒮 ∈ 𝒮+
𝑛, and ‖𝑋‖1 the 𝑙1-norm 

of the matrix 𝑋 defined by 

‖𝑋‖1 ≔∑∑|𝑥𝑖𝑗|

𝑛

𝑗=1

𝑛

𝑖=1

. 

Defining the functions on 𝒮+
𝑛: 

 𝑓(𝑋) = 〈𝒮, 𝑋〉-In det (𝑋) and  𝑔(𝑋) = 𝜌‖𝑋‖1,  

We obtain that (3.3) is equivalent to 

min
𝑋∈𝒮𝑛

{𝑓(𝑋) + 𝑔(𝑌): , 𝑋 ∈ 𝒮+
𝑛}, 

and it can be rewritten as: 

min
𝑋,𝑌∈𝒮𝑛

{𝑓(𝑋) + 𝑔(𝑌): 𝑋 − 𝑌 = 0, 𝑋, 𝑌 ∈ 𝒮+
𝑛}      (3.4) 

Thus (3.3) is a particular case of (3.1) if we fixe 𝕍1 =
𝕍2 = 𝒮

𝑛,𝒦1 = 𝒦2 = 𝒮+
𝑛, and 𝔸, 𝔹: 𝒮𝑛 → ℝ�̃�, where �̃� =

1

2
𝑛(𝑛 + 1), 𝔸(𝑋) = 𝑠𝑣𝑒𝑐(𝑋), and 𝔹(𝑌) = −𝑠𝑣𝑒𝑐(𝑌) with 

𝑠𝑣𝑒𝑐(𝑋) =

(𝑥11, √2𝑥12, … , √2𝑥1𝑛, 𝑥22, √2𝑥23, … , √2𝑥2𝑛, … , 𝑥𝑛𝑛)  

(see [14]). 

3.2. Proximal Multiplier Algorithm 

Let 𝐻1: 𝕍1 × 𝕍1 → ℝ∪ {+∞} be a function satisfying 

𝐻1 ∈ 𝒟(𝑖𝑛𝑡(𝒦1)). Consider another function 𝐻2: 𝕍2 × 𝕍2 →

ℝ∪ {+∞} with  𝐻2 ∈ 𝒟(𝑖𝑛𝑡(𝒦2)) and 𝜃1, 𝜃2 > 0 positive 

parameters. We define 

𝐻𝜃1(𝑥1, 𝑥2) ≔ 𝐻1(𝑥1, 𝑥2) +
𝜃1
2
‖𝑥1 − 𝑥2‖

2    (3.5) 

𝐻𝜃2(𝑧1, 𝑧2) ≔ 𝐻2(𝑧1, 𝑧2) +
𝜃2
2
‖𝑧1 − 𝑧2‖

2    (3.6) 

It is easy to show that for each 𝑖 = 1,2, 𝐻𝜃𝑖 is also a 

proximal distance with respect to 𝑖𝑛𝑡(𝒦𝑖), that is 𝐻𝜃𝑖 ∈

𝒟(𝑖𝑛𝑡(𝒦)) . 

The proposed algorithm, called SC-PMA, which means 

Symmetric cone Proximal Multiplier Algorithm, for solving 

the problem (P) is defined by: 

3.3. Algorithm SC-PMA 

 Let 𝐻𝑖 ∈ 𝒟(𝑖𝑛𝑡(𝒦𝑖)), 𝜃𝑖 > 0, 𝑖 = 1,2 , 𝑡𝑜𝑙 > 0 and 

{𝜀𝑘}, {𝜁𝑘}, {𝜆𝑘} be sequences of positive scalars. 

Step 0: Start with some initial point 𝜔0 = (𝑥0, 𝑧0, 𝑦0) ∈
𝑖𝑛𝑡(𝒦1) × 𝑖𝑛𝑡(𝒦2) × ℝ

𝑚. Set 𝑘 = 0. 

Step 1: Compute 

𝑝𝑘+1 = 𝑦𝑘 + 𝜆𝑘(𝔸𝑥
𝑘 + 𝔹𝑧𝑘 − 𝑏),    (3.7) 

Step 2: Find (𝑥𝑘+1, 𝑧𝑘+1) ∈  𝑖𝑛𝑡(𝒦1) × 𝑖𝑛𝑡(𝒦2) and 

(𝑔𝑘+1, 𝑔𝑘+2) ∈ 𝕍1 × 𝕍2, such that  

𝑔1
𝑘+1 ∈ 𝜕𝜀𝑘𝑓(𝑥

𝑘+1)  

𝑔1
𝑘+1 + 𝔸∗𝑝𝑘+1 +

1

𝜆𝑘
∇𝑥𝐻𝜃1(𝑥

𝑘+1, 𝑥𝑘) = 0    (3.8) 

𝑔2
𝑘+1 ∈ 𝜕𝜁𝑘𝑔(𝑧

𝑘+1) 

𝑔2
𝑘+1 + 𝔹∗𝑝𝑘+1 +

1

𝜆𝑘
∇𝑧𝐻𝜃2(𝑧

𝑘+1, 𝑧𝑘) = 0    (3.9) 

Step 3: Compute 

𝑦𝑘+1 = 𝑦𝑘 + 𝜆𝑘(𝔸𝑥
𝑘+1 + 𝔹𝑧𝑘+1 − 𝑏)   (3.10) 

Step 4: Set 𝑤𝑘+1 = (𝑥𝑘+1, 𝑧𝑘+1, 𝑦𝑘+1). If ‖𝑤𝑘+1 −𝑤𝑘‖ ≤
𝑡𝑜𝑙, stop; otherwise replace 𝑘 by 𝑘 + 1 and go to Step 1. 

The next lemma is a well know property related to proximal 

point algorithms; see Theorem 2.1 of [4] or Lemma 2.2 of 

[13] for proof of that result. 

Lemma 3.1. Let 𝐹:𝕍 → ℝ ∪ {+∞} be a closed proper 

convex function, 𝐻 ∈ 𝒟(𝑖𝑛𝑡(𝒦)) satisfying (B1) or (B1’) 

and 𝜆𝑘 > 0. If {(𝑢𝑘, 𝑔1
𝑘)}𝑘∈ℕ and {(𝑣𝑘, 𝑔2

𝑘)}𝑘∈ℕ are two 

sequences satisfying 

𝑔1
𝑘+1 ∈ 𝜕𝜀𝑘𝐹(𝑢

𝑘+1)  

𝑔1
𝑘+1 + 𝜆𝑘

−1∇𝑥𝐻(𝑢
𝑘+1, 𝑢𝑘) = 0     

�̃�2
𝑘+1 ∈ 𝜕𝜁𝑘𝐹(𝑣

𝑘+1) 

�̃�2
𝑘+1 + 𝜆𝑘

−1𝐻(𝑣𝑘+1 − 𝑣𝑘) = 0     

Then, for any 𝑘 ≥ 0, we obtain 

𝜆𝑘(𝐹(𝑢
𝑘+1) − 𝐹(𝑢)) ≤ 𝐻(𝑢, 𝑢𝑘) − 𝐻(𝑢, 𝑢𝑘+1) +

𝜆𝑘𝜀𝑘, ∀𝑢 ∈ 𝐶1, if (B1) holds; 
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𝜆𝑘(𝐹(𝑢
𝑘+1) − 𝐹(𝑢)) ≤ 𝐻(𝑢𝑘, 𝑢) − 𝐻(𝑢𝑘+1, 𝑢) +

𝜆𝑘𝜀𝑘, ∀𝑢 ∈ 𝐶2, if (B1’) holds; 

2𝜆𝑘(𝐹(𝑣
𝑘+1) − 𝐹(𝑣))

≤ ‖𝑣𝑘 − 𝑣‖2 − ‖𝑣𝑘+1 − 𝑣‖2

− ‖𝑣𝑘+1 − 𝑣𝑘‖2 + 2𝜆𝑘𝜁𝑘, ∀𝑣 ∈ ℝ
𝑛 

3.4. Convergence Analysis of Algorithm SC-PMA 

In this section, we prove the convergence of the iterates  

{(𝑥𝑘+1, 𝑧𝑘+1}, to an optimal solution of the primal problem 

(P) as also the convergence of {𝑦𝑘+1} to the optimal 

Lagrangian multiplier of (P). 

We impose the following assumptions: 

(A) Problem (P) admits at least an optimal solution (𝑥∗, 𝑧∗). 

(B) ∃𝑥 ∈ 𝑖𝑛𝑡(𝒦1) ∩ 𝑟𝑖(𝑑𝑜𝑚(𝑓)) , 𝑧 ∈ 𝑖𝑛𝑡(𝒦2) ∩

𝑟𝑖(𝑑𝑜𝑚(𝑔)) Such that 𝔸𝑥 + 𝔹𝑧 = 𝑏. 

(C) The sequences {𝜁𝑘}𝑘∈ℕ and {𝜀𝑘}𝑘∈ℕ are nonnegative, 

and ∑ (𝜁𝑘 + 𝜀𝑘) < ∞∞
𝑘=0 . 

Remark 3.2. Observe that (B) guarantee the existence of an 

optimal dual Lagrange multiplier 𝑦∗. Hence, under 

conditions  (A), (B) (𝑥∗, 𝑧∗, 𝑦∗) is a saddle point of 𝐿, that is, 

𝐿(𝑥∗, 𝑧∗, 𝑦) ≤ 𝐿(𝑥∗, 𝑧∗, 𝑦∗) ≤ 𝐿(𝑥, 𝑧, 𝑦∗), ∀𝑥
∈ 𝒦1 ∩ 𝑑𝑜𝑚(𝑓), 𝑧 ∈ 𝒦2 ∩ 𝑑𝑜𝑚(𝑔), 𝑦
∈ ℝ𝑚 

where 

𝐿(𝑥, 𝑧, 𝑦) = 𝑓(𝑥) + 𝑔(𝑧) + 〈𝑦, 𝔸𝑥 + 𝔹𝑧 ± 𝑏〉, 
𝑥 ∈ 𝒦1, 𝑧 ∈ 𝒦2, 𝑦 ∈ ℝ

𝑚 

denotes the Lagrangian function for the problem (P). 

The following result shows that the algorithm SC-PMA 

is well-defined 

Proposition 3.1. Under assumptions (A), (b), 𝐻𝑖 ∈

𝒟(𝑖𝑛𝑡(𝒦𝑖)), 𝑖 = 1,2, and (𝑥𝑘, 𝑧𝑘, 𝑦𝑘) ∈ 𝑖𝑛𝑡(𝒦1) ×

𝑖𝑛𝑡(𝒦2) × ℝ
𝑚, there exists a unique point (𝑥𝑘+1, 𝑧𝑘+1) ∈

𝑖𝑛𝑡(𝒦1) × 𝑖𝑛𝑡(𝒦2) satisfying (3.8)-(3.9). 

Proof. Similar to Theorem 4.1 of [20]. 

The next result establishes estimates for the sequences 

generated by the SC-PMA. 

Proposition 3.2. Let {𝑥𝑘, 𝑧𝑘, 𝑦𝑘, 𝑝𝑘}𝑘∈ℕ be the sequence 

generated by SC-PMA, (𝑥∗, 𝑧∗) be an optimal solution of (P) 

and 𝑦∗ be a corresponding Lagrange multiplier. Suppose 

that 𝐻𝑖 ∈ 𝒟(𝑖𝑛𝑡(𝒦𝑖)), for 𝑖 = 1,2, and (B1) or (B1’) holds. 

Then, for all 𝑘 ≥ 0, we have 

 

𝐻𝜃1(𝑥
∗, 𝑥𝑘+1) + 𝐻𝜃2(𝑧

∗, 𝑧𝑘+1) ≤ 𝐻𝜃1(𝑥
∗, 𝑥𝑘) +

𝐻𝜃2(𝑧
∗, 𝑧𝑘) − 𝛾1𝐻𝜃1(𝑥

𝑘+1, 𝑥𝑘) − 𝛾2𝐻𝜃2(𝑧
𝑘+1, 𝑧𝑘) −

𝜆𝑘〈𝑝
𝑘+1 − 𝑦∗, 𝔸𝑥𝑘+1 +  𝔹𝑧𝑘+1 − 𝑏〉 + 𝜆𝑘(𝜁𝑘 + 𝜀𝑘),   (3.12)  

if (B1) holds; 

and                                                                                

 𝐻𝜃1(𝑥
𝑘+1, 𝑥∗) + 𝐻𝜃2(𝑧

𝑘+1, 𝑧∗) ≤ 𝐻𝜃1(𝑥
𝑘, 𝑥∗) +

𝐻𝜃2(𝑧
𝑘, 𝑧∗) − 𝛾1

′𝐻𝜃1(𝑥
𝑘+1, 𝑥𝑘) − 𝛾2

′𝐻𝜃2(𝑧
𝑘+1, 𝑧𝑘) −

𝜆𝑘〈𝑝
𝑘+1 − 𝑦∗, 𝔸𝑥𝑘+1 + 𝔹𝑧𝑘+1 −   𝑏〉 + 𝜆𝑘(𝜁𝑘 +

𝜀𝑘), 𝑖𝑓 (𝐵1
′) ℎ𝑜𝑙𝑑𝑠   (3.13)  

Proof. Assume that (B1) holds. Using Lemma 3.1, Part (i) 

with 𝐹(∙) ≔ 𝑓(∙) + 〈𝑝𝑘+1, 𝔸 ∙〉 and with 𝐹(∙) ≔ 𝑔(∙) +
〈𝑝𝑘+1, 𝔹 ∙〉 we have that, for all 𝑥 ∈ 𝒞1: 

𝜆𝑘(𝑓(𝑥
𝑘+1) + 〈𝑝𝑘+1, 𝔸𝑥𝑘+1〉 − 𝑓(𝑥) − 〈𝑝𝑘+1, 𝔸𝑥〉) 

≤ 𝐻𝜃1(𝑥, 𝑥
𝑘) − 𝐻𝜃1(𝑥, 𝑥

𝑘+1) 

−𝛾1𝐻𝜃1(𝑥
𝑘+1, 𝑥𝑘) + 𝜆𝑘𝜀𝑘, 

and for all 𝑧 ∈ 𝒞1: 

𝜆𝑘(𝑔(𝑧
𝑘+1) + 〈𝑝𝑘+1, 𝔹𝑧𝑘+1〉 − 𝑔(𝑧) − 〈𝑝𝑘+1, 𝔹𝑧〉) 

≤ 𝐻𝜃2(𝑧, 𝑧
𝑘) − 𝐻𝜃2(𝑧, 𝑧

𝑘+1) 

−𝛾2𝐻𝜃2(𝑧
𝑘+1, 𝑧𝑘) + 𝜆𝑘𝜁𝑘. 

Adding the inequalities above, we obtain 

𝜆𝑘(𝐿(𝑥
𝑘+1, 𝑧𝑘+1, 𝑝𝑘+1) − 𝐿(𝑥, 𝑧, 𝑝𝑘+1)) ≤ 

𝐻𝜃1(𝑥, 𝑥
𝑘) − 𝐻𝜃1(𝑥, 𝑥

𝑘+1) − 𝛾1𝐻𝜃1(𝑥
𝑘+1, 𝑥𝑘) + 

𝐻𝜃2(𝑧, 𝑧
𝑘) − 𝐻𝜃2(𝑧, 𝑧

𝑘+1) − 𝛾2𝐻𝜃2(𝑧
𝑘+1, 𝑧𝑘) + 

𝜆𝑘(𝜁𝑘 + 𝜀𝑘)                                                                    (3.14) 

The other side, as (𝑥∗, 𝑧∗, 𝑦∗)  is a saddle point of 𝐿 we have 

𝜆𝑘(𝐿(𝑥
∗, 𝑧∗, 𝑝𝑘+1) − 𝐿(𝑥𝑘+1, 𝑧𝑘+1, 𝑦∗)) ≤ 0. 

Using (3.11) with 𝑥 = 𝑥∗, 𝑧 = 𝑧∗, and adding the above 

inequality and after rearranging terms, we obtain (3.9). The 

inequality (3.10) is obtained by using the same arguments 

but using the property (B1').      

Proposition 3.3. Let {𝑥𝑘, 𝑧𝑘, 𝑦𝑘, 𝑝𝑘}𝑘∈ℕ be the sequence 

generated by algorithm (SC-PMA), (𝑥∗, 𝑧∗) be an optimal 

solution of (P) and 𝑦∗ be a corresponding Lagrange 

multiplier. Then, the following inequalities hold for all 𝑘 ≥ 0 

𝜆𝑘〈𝔸𝑥
𝑘+1 +𝔹𝑧𝑘+1 − 𝑏, 𝑦∗ − 𝑦𝑘+1〉 ≤

1

2
(‖𝑦𝑘 − 𝑦∗‖2 −

‖𝑦𝑘+1 − 𝑦∗‖2 − ‖𝑦𝑘+1 − 𝑦𝑘‖2),                                    (3.15)                                   
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𝜆𝑘〈𝔸𝑥
𝑘+1 +𝔹𝑧𝑘+1 − 𝑏, 𝑦𝑘+1 − 𝑝𝑘+1〉 ≤

1

2
(‖𝑦𝑘 − 𝑦𝑘+1‖2 −

‖𝑝𝑘+1 − 𝑦𝑘+1‖2 − ‖𝑝𝑘+1 − 𝑦𝑘‖2) (3.16)       

Proof. The inequalities (3.15)-(3.16) follow directly from [3, 

Proposition 2] or [11, Lemma 4.1].                                   

For any vector 𝑤1 = (𝑥1, 𝑧1, 𝑦1) ∈  𝒞1 × 𝒞1 × ℝ
𝑚 and 𝑤2 =

(𝑥2, 𝑧2, 𝑦2) ∈  𝒞2 × 𝒞2 × ℝ
𝑚 we define           �̂�𝜃(𝑤1, 𝑤2) =

𝐻𝜃1(𝑥1, 𝑥2) + 𝐻𝜃2(𝑧1, 𝑧2) +
1

2
‖𝑦1 − 𝑦2‖

2. (3.17)                       

Lemma 3.2. Let {𝑥𝑘, 𝑧𝑘, 𝑦𝑘, 𝑝𝑘}𝑘∈ℕ be the sequence 

generated by the algorithm (SC-PMA) and let 𝑤∗ =
(𝑥∗, 𝑧∗, 𝑦∗) with (𝑥∗, 𝑧∗) an optimal solution of (P) and 𝑦∗ its 

corresponding Lagrange multiplier. Assume that 𝐻𝑖 ∈

𝒟(𝑖𝑛𝑡(𝑘𝑖)), for 𝑖 = 1,2. If (B1) holds, then 

�̂�𝜃(𝑤
∗, 𝑤𝑘+1) ≤ �̂�𝜃(𝑤

∗, 𝑤𝑘)

−
1

2
(𝜃1𝛾1 − 4𝜆𝑘

2‖𝔸‖2)‖𝑥𝑘+1 − 𝑥𝑘‖2

−
1

 2
(𝛾2𝜃2 − 4𝜆𝑘

2‖𝔹‖2)‖𝑧𝑘+1 − zk‖
2

−
1

2
‖𝑝𝑘+1 − 𝑦𝑘+1‖2 −  

1

2
‖𝑝𝑘+1 − 𝑦𝑘‖2

+ 𝜆𝑘(𝜁𝑘 + 𝜀𝑘);                                   (3.18) 

And if (B1') holds, then 

�̂�𝜃(𝑤
𝑘+1, 𝑤∗) ≤ �̂�𝜃(𝑤

𝑘, 𝑤∗) −
1

2
(𝜃1 − 4𝜆𝑘

2‖𝔸‖2)‖𝑥𝑘+1 −

𝑥𝑘‖2 −
1

2
(𝜃2 − 4𝜆𝑘

2‖𝔹‖2)‖𝑧𝑘+1 − 𝑧𝑘‖2 −
1

2
‖𝑝𝑘+1 −

𝑦𝑘+1‖2 −
1

2
‖𝑝𝑘+1 − 𝑦𝑘‖2 + 𝜆𝑘(𝜁𝑘 + 𝜀𝑘);                   (3.19)  

Let 𝑤𝑘+1 = (𝑥𝑘+1, 𝑧𝑘+1, 𝑦𝑘+1) and 𝑤𝑘 = (𝑥𝑘, 𝑧𝑘, 𝑦𝑘). 

Then, adding (3.12) to the above inequality, we get 

�̂�𝜃(𝑤
∗, 𝑤𝑘+1) ≤ �̂�𝜃(𝑤

∗, 𝑤𝑘) −
𝛾1𝜃1

2
‖𝑥𝑘+1 − 𝑥𝑘‖2 −

𝛾2𝜃2

2
‖𝑧𝑘+1 − 𝑧𝑘‖2 −

1

2
(‖𝑝𝑘+1 − 𝑦𝑘+1‖2 − ‖𝑝𝑘+1 − 𝑦𝑘‖2) +

𝜌𝑘 + 𝜆𝑘(𝜁𝑘 + 𝜀𝑘);                                                        (3.20) 

where 𝜌𝑘 = 𝜆𝑘〈𝑦
𝑘+1 − 𝑝𝑘+1, 𝔸(𝑥𝑘+1 − 𝑥𝑘) + 𝔹(𝑧𝑘+1 −

𝑧𝑘)〉 . Now, by using (3.9) and (3.10), it follows that 

𝜌𝑘 = 𝜆𝑘
2‖𝔸(𝑥𝑘+1 − 𝑥𝑘) + 𝔹(𝑧𝑘+1 − 𝑧𝑘)‖2 ≤ 

2𝜆𝑘
2(‖𝔸‖2‖𝑥𝑘+1 − 𝑥𝑘‖2 + ‖𝔹‖2‖𝑧𝑘+1 − 𝑧𝑘‖2) 

Hence, the result follows by employing this inequality in 

(3.20). The inequality (3.19) follows by applying the same 

arguments above and the property (B1 ′ ). 

Theorem 3.1. Let  {𝑥𝑘, 𝑧𝑘, 𝑦𝑘 , 𝑝𝑘}𝑘∈ℕ be the sequence 

generated by the algorithm (SC-PMA) and let 𝑤∗ =

(𝑥∗, 𝑧∗, 𝑦∗) with (𝑥∗, 𝑧∗) an optimal solution of (1) and  𝑦∗ its 

corresponding Lagrange multiplier. Assume that 𝐻𝑖 ∈

𝒟(𝑖𝑛𝑡(𝑘𝑖)), for 𝑖 = 1,2, and (B1)-(B3) or (B1´),(B3´) hold. 

If {𝜆𝑘} satisfies 

      𝜆𝑘‖𝔸‖ ≤
1

2
(𝛾1𝜃1 − 𝜗)

1
2,                  

              𝜆𝑘‖𝔹‖ ≤
1

2
(𝜃2 − 𝜗)

1

2, ∀𝑘 ≥ 0,          (3.21) 

For some 𝜂 > 0 and 0 < 𝜗 < 𝑚𝑖𝑛{𝜃1, 𝜃2}, then the 

following hold: 

The sequence 𝑤𝑘 = (𝑥𝑘, 𝑧𝑘, 𝑦𝑘) is bounded, and every limit 

point of 𝑤𝑘 is a saddle point of the Lagrangian. 

Furthermore, if (B4)-(B5) or (B4´)-(B5´) hold, then the 

sequence       {(𝑥𝑘, 𝑧𝑘, 𝑦𝑘) } globally converges to a solution 

to the problem (P). 

Proof. (i) Assume that (B1)-(B2) hold. Since 𝜆𝑘 satisfies            

(3.18), from (3.15), we have that 

�̂�𝜃(𝑤
∗, 𝑤𝑘+1) ≤ �̂�𝜃(𝑤

∗, 𝑤𝑘) −
𝜗

2
(‖𝑥𝑘+1 − 𝑥𝑘‖2 +

‖𝑧𝑘+1 − 𝑧𝑘‖2) −
1

2
(‖𝑝𝑘+1 − 𝑦𝑘+1‖2 + ‖𝑝𝑘+1 − 𝑦𝑘‖2) +

𝜆𝑘(𝜁𝑘 + 𝜀𝑘)                                                             (3.22) 

This implies that {𝑤𝑘}𝑘∈ℕ ⊆ {𝑤 ∈ int(k) × ℝ𝑝 ×

ℝ𝑚: �̂�𝜃(𝑤
∗, 𝑤) ≤ �̅�}, with �̅� = �̂�𝜃(𝑤

∗, 𝑤0) + ∑ 𝜆𝑘(𝜁𝑘 +
∞
𝑘=0

𝜀𝑘). By assumption (B2) and the fact that ∑ 𝜆𝑘(𝜁𝑘 +
∞
𝑘=0

𝜀𝑘) < ∞ (cf. Assumption (A3) and (3.18)), it follows that the 

sequence {𝑤𝑘}𝑘∈ℕ is bounded. Moreover, (3.19), together 

with �̂�𝜃(𝑤
∗, 𝑤𝑘+1) ≥ 0 implies that there exists 𝑙(𝑤∗) ≥ 0 

such that 

lim
𝑘→∞

�̂�𝜃(𝑤
∗, 𝑤𝑘) = 𝑙(𝑤∗).                (3.23) 

Therefore, by taking the limits on both sides of (3.21), 

we obtain 

‖𝑥𝑘+1 − 𝑥𝑘‖ → 0, ‖𝑧𝑘+1 − 𝑧𝑘‖ → 0, 
‖𝑝𝑘+1 − 𝑦𝑘+1‖ → 0, ‖𝑝𝑘+1 − 𝑦𝑘‖ → 0.              (3.24) 

On the other hand, since (𝑤𝑘)𝑘∈ℕ is bounded, there 

exists a subsequence {𝑤𝑘𝑗 = (𝑥𝑘𝑗 , 𝑧𝑘𝑗 , 𝑦𝑘𝑗)}𝑗∈ℕ and a limit 

point 𝑤∞ = (𝑥∞, 𝑧∞, 𝑦∞) such that 𝑤𝑘𝑗 → 𝑤∞. We now 

proceed to show that 𝑤∞ is a saddle point of 𝐿. First, since 

𝜆𝑘 ≥ 𝜂, passing to the limit in (3.14) on the subsequence, 

and using (B3) and (3.24), we obtain 

𝐿(𝑥∞, 𝑧∞, 𝑦∞) ≤ 𝐿(𝑥, 𝑧, 𝑦∞),      ∀𝑥 ∈ 𝒞1,   ∀𝑧 ∈ 𝒞2. (3.25)          

Second, by applying Lemma 3.1, Part (iii) (in its exact 
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form) with 𝐹(∙) ≔ −𝐿(𝑥𝑘+1, 𝑧𝑘+1,∙), we have 

𝜆𝑘(𝐿(𝑥
𝑘+1, 𝑧𝑘+1, 𝑦) − 𝐿(𝑥𝑘+1, 𝑧𝑘+1, 𝑦𝑘+1)) 

≤
1

2
(‖𝑦𝑘 − 𝑦‖2‖𝑦𝑘+1 − 𝑦‖2),    

    ∀𝑦 ∈ ℝ𝑚. 

Taking the limit on the subsequence in the above 

inequality and using (3.23), we have 

𝐿(𝑥∞, 𝑧∞, 𝑦) ≤ 𝐿(𝑥∞, 𝑧∞, 𝑦∞),      ∀𝑦 ∈ ℝ𝑚.   (3.26) 

It follows from (3.23) that 𝐴𝑥∞ + 𝐵𝑧∞ = 𝑏. Finally, 

since {𝑥𝑘}𝑘∈ℕ ⊂ int(𝑘1) and {𝑧𝑘}𝑘∈ℕ ⊂ int(𝑘2), passing to 

the limit one has (𝑥∞, 𝑧∞) ∈ 𝑘1 × 𝑘2. Hence, the result 

follows from (3.22)-(3.23). In the case that (B1') (B3') hold, 

the proof is similar to above and by using (P4) of Definition 

2.1 instead of (B2). 

(ii)  Suppose that (B4)-(B5) holds. Let 𝑤∞ be the limit of a 

subsequence {𝑤𝑘𝑗}𝑗∈ℕ of {𝑤𝑘}𝑘∈ℕ, that is, 𝑤𝑘𝑗 → 𝑤∞. Then, 

by (B4), we have 

                          lim
𝑗→∞

�̂�𝜃(𝑤
∞, 𝑤𝑘𝑗) = 0.          (3.27) 

Since 𝑤∞ is a saddle point of 𝐿 (by Part (i)), it follows 

from (3.2.3) and (3.27) that 𝑙(𝑤∞) = 0. Hence, by using 

(B5), we obtain that the sequence {𝑤𝑘}𝑘∈ℕ converges to 𝑤∞. 

Now, if (B4')- (B5') keeps the result same result obtained 

previously. 

4. Numerical Experiment  
This section presents an implementation of the proposed 

SC-PMA applied to find linear hyperplanes in binary 

classification in SVM. 

Given a set of points 𝑥1, 𝑥2, … , 𝑥𝑚 ∈ ℝ𝑛 with their 

respective labels 𝑦1, 𝑦2, … , 𝑦𝑚 ∈ {−1,+1},  we form the m-

upla  (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚). The objective of the 

SVM is to determine an optimal hyperplane 

𝐻(𝑤. 𝛼) = {𝑥 ∈ ℝ𝑛: 𝑤𝑇𝑥 + 𝛼 = 0}, 

where 𝑤 ∈  ℝ𝑛and 𝛼 ∈ ℝ, which separates the given points. 

 As we observed in Subsection A of Section III, that 

class of problems could be expressed as our model (3.1), that 

is, 

min
𝑧.𝑣
{𝑓(𝑧) + 𝑔(𝑣): 𝐴𝑧 + 𝐵𝑣 = 𝑏, 𝑣 ≥ 0} ,    

 

Where the variables are: 

 𝑧 = (𝑤, 𝛼) ∈ ℝ𝑛+1 and 𝑣 = (𝜉, 𝑢) ∈ ℝ2𝑚 with  

𝜉 = (𝜉1, … , 𝜉𝑚) ∈ ℝ
𝑚 𝑤𝑖𝑡ℎ 𝜉𝑖 ≥ 0 

𝑢 = (𝑢1, … , 𝑢𝑚) ∈ ℝ
𝑚 𝑤𝑖𝑡ℎ 𝑢𝑖 ≥ 0 

The separable functions are 

𝑓(𝒛) =
1

2
‖𝒘‖2 and 𝑔(𝒗) = 𝐶𝒆𝑇𝝃, 

The matrix A and B are the following  

𝐴 = 𝑌�̂� ∈ ℝ𝑚×(𝑛+1), 𝐵 = (𝐼 − 𝐼) ∈ 𝔹𝑚×2𝑚 

where 

𝑌 = 𝐷𝑖𝑎𝑔(𝒚) = 𝐷𝑖𝑎𝑔(𝑦1, 𝑦2, … , 𝑦𝑚) 
and  

�̂� = (
𝑥1 𝑇 1
⋮ ⋮
𝑥𝑚 1

) ∈ ℝ𝑚×(𝑛+1), 

Finally, the vector b is given by 𝑏 = 𝒆 = (1,1, … ,1) ∈
ℝ𝑚 . 

We use MATLAB Software (R2017a), a computer 8th 

Gen Intel (R) Core (TM) i5-8250U CPU, 1.60 GHz, 1.80 

GHz, 4.00 GB, Windows 1064 bits. 

We will give three examples of finding optimal 

hyperplanes using the SC-PMA with the amount of data of 

m=10, m=50 and m=100, respectively, obtained by an 

implementation using the function Rand of MATLAB. 

4.1. Subheadings  

The results and discussion may be presented separately 

or in one combined section and optionally divided into 

headed subsections.  

The parameters to enter are: 

Data: Linearly separable data set 

MAX_ITER: Maximum number of iterations (the number of 

maximum interactions given to the algorithm) 

GRAF_CON : (1) to graph and (0) to not graph (with (1) it 

shows the graph of the plane in another case, (0) it does not 

show the separating hyperplane) 

ITER_CON : (1) to show convergence and (0) to not show 

(with (1) it shows the graph of the convergence of the 

optimal point also of "z" and "v" another case (0) does not 

present the separating hyperplane) 

Rho: Acceleration parameter 

lambda: Step size in each iteration 

initial point  𝜔0 = (𝑧0, 𝑣0, 𝑦0) ∈ ℝ𝑛+1 × ℝ2𝑚 × ℝ𝑚 an 

arbitrary starting point. 
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Fig. 1 SC-PMA Processing Diagram 

op_dis_f : Proximal distance for f 

op_dis_g : Proximal distance for g 

op_dis_x : Proximal Distance Type 

In the SC-PMA, it is necessary to have two proximal 

distances. The first distance related to the variable 𝒛 =
(𝒘,𝜶) ∈ ℝ𝒏+𝟏 (associated with op_disf): 

𝐻(𝑧, 𝑦) = √∑(𝑧𝑖 − 𝑦𝑖)
2

𝑛+1

𝑖=1

 

The other distance is related to the variable 𝒗 = (𝝃, 𝒖) ∈
ℝ𝟐𝒎(associated to op_dis_g). As this variable has conditions 

of nonnegativity, that is,  𝝃𝒊 ≥ 𝟎 and 𝒖𝒊 ≥ 𝟎, for i=1,2,...,m;  

we can choose the implementation of any of the following 

distances: 

Choosing the Kullback–Leibler Bregman distance: 

𝐻(𝑣, 𝑦) =∑(𝑣𝑖𝑙𝑜𝑔 (
𝑣𝑖
𝑦𝑖
) + 𝑦𝑖 − 𝑣𝑖) .

2𝑚

𝑖=1

 

Itakura saito proximal distance: 

𝐻(𝑣, 𝑦) = ∑  (
𝑣𝑖

𝑦𝑖
−  𝑙𝑜𝑔 (

𝑣

𝑦𝑖
)) − 12𝑚

𝑖=1 . 

 Second-order homogeneous proximal distance 

𝐻(𝑧, 𝑦) = ∑
𝑦

2
 (𝑧𝑖 − 𝑦𝑖)

2 + 𝜎(𝑦𝑖
2𝑙𝑜𝑔

𝑦𝑖

𝑧𝑖
+ 𝑧𝑖𝑦𝑖 − 𝑦𝑖

2)2𝑚
𝑖=1 . 

We should observe that these distances are used to 

measure the separation of the points to the separating 

hyperplane. Furthermore, as the implementation of the 

algorithm depends on the employed proximal distance, these 

distances are also used to compare which of them converges 

better. 

    The outputs after the process of the SC-PMA are the 

following: 

z: Solution vector of the separating hyperplane 

v: Solution vector of tolerances 

History: Convergence history and optimal value 

History is very important to obtain tables I, II and III, where 

we are going to show 

-the number of iterations 
 

-the number of inner iterations to solve each subproblem 

(3.8) and (3.10) denoted by 𝑁(𝑧{𝑘}), 𝑁(𝑣{𝑘}), respectively.  

- The difference between consecutive points of each 

variable:‖𝑧{𝑘} − 𝑧{𝑘−1}‖, ‖𝑣{𝑘} − 𝑣{𝑘−1}‖ and ‖𝑤{𝑘} −

𝑤{𝑘−1}‖ 

- The value of the objective function in each iteration. 

4.2. Linear Generation 

A linear generator was implemented to generate the data 

for the algorithm test, which randomly finds the points in the 

plane. We use the rand command of the Matlab software, and 

the number of points is chosen with the requirements 

described below. 

DATA 

MAX_ITER 

GRAF_CON 

op_dis_x 

Algorithm 

SC - PMA 

z: Solution vector of the separating hyperplane 

v: Solution vector of tolerance 

History: Convergence history and optimal value 

INPUT OUTPUT 

Processing 
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The input to generate the data are the following:  

• n_var: Number of variables (Depending on the 

dimension, it can be two-dimensional or three-

dimensional.) 

In our case, we use the value n_var =3 because the 

points belong to this dimension. 

• n_obs: Number of observations (Amount of data to be 

classified with the algorithm). 

The value of n_obs change depending on the amount of 

data used. In our implementation, we use the values of 

10, 50 and 100. 

• Minimo: Minimum value of the squares (Lower bound 

of the interval) 

• Maximo: Maximum value of the squares (Highest bound 

of the interval) 

• GRAF   : (1) for graphic(Presents the data set in three-

dimensional space) and (0) for no graphic(Does not 

present the data set in three-dimensional space). 

 

The output process of the SC-PMA is: 

• Data: Generated data that is linearly separable. 

We will generate points in ℝ3, so the value of n in the 

model (3.2) is 3, that is,𝑛 = 3. The implementation of this 

linear generation is shown in the appendix. 

4.3. Sub-program Main 

This program integrates the linear generator with the 

SC-PMA. After generating the data through the linear 

generator, the main subprogram of the implementation calls 

the SC-PMA. It proceeds to find the separating plane, the 

number of iterations and the execution time.  

Thus, we have as results the separation plane, the 

optimal value, as well as the solution points  "z" and "v". As  

𝑧 = (𝑤, 𝛼) ∈ ℝ𝑛+1, then we will obtain the optimal 

hiperplane defined by  

𝐻(𝑤. 𝛼) = {𝑥 ∈ ℝ𝑛: 𝑤𝑇𝑥 + 𝛼 = 0}. 

To execute the SC-PMA is necessary to solve the 

problem in each iteration of the  subproblems (3.9) and 
(3.10). In this paper, we use the fmincon command. 

We present three numerical examples of data created by 

an aleatory linear generator. For this presentation, we 

consider the second-order homogeneus proximal distance: 

𝐻𝜌(𝑢, 𝑣) =∑𝜌(𝑣𝑖
2 ln

𝑣𝑖
𝑢𝑖
+ 𝑢𝑖𝑣𝑖 − 𝑣𝑖

2)

𝑛

𝑖=1

+
𝜌

2
∑(𝑢𝑖 − 𝑣𝑖)

2

𝑛

𝑖=1

 

 

and different values for the proximal parameter: 𝜆 = 0.09 for 

the first example, 𝜆 = 0.05. For the second example and 𝜆 =
0.01 for the third example. We observe that as 𝜆 decreases, 

the iterations of the algorithm are smaller. 

4.3.1. Example 1 

For this example, we will consider the following data 

set, which is linearly separable, as shown in Fig 2. Also, we 

consider  

𝜆𝑘 = 0.09, 𝜌 = 1, 𝑡𝑜𝑙 = 10
−3 

and the maximum number of iterations 1500.  

In the following figure, Fig 3, we see the convergence of 

the objective function 𝑓 + 𝑔, the variable 𝑧 and 𝑣. When we 

write convergence of the objective function, we refer to the 

difference in absolute value between the objective function 

𝑓 + 𝑔 obtained by the SC-PMA and the objective function 

𝑓 + 𝑔 obtained by the CVX function of Matlab.  

Figure 4 shows the set of 10 observations distributed in 

three-dimensional space and are linearly separable.  

Elapsed time is 2344.122166 seconds; the convergence 

occurred in iteration  967. Fig 4 shows the data set separated 

by a plane, whose coefficients of the equation are: 

−0.2913;−0.1007;−0.4574; 0.0251; 

and its respective hyperplane is :  

−0.2913𝑋 − 0.1007𝑌 − 0.4574𝑍 + 0.0251 = 0. 

 Table I shows the computational results obtained after 

processing the data. Thus we see the convergence to the 

optimal value, the number of iterations, the module of the 

point difference of   𝑧𝑘 with respect to the previous 𝑧𝑘−1  in 

the same way, for 𝑣𝑘  with respect to the previous 𝑣𝑘−1  and 

so also from 𝑤𝑘  with respect to the previous 𝑤𝑘−1. 

Table 1. Computational Results for Example 1 

Iteration 𝑵(𝒛{𝒌}) 𝑵(𝒗{𝒌}) ‖𝒛{𝒌} − 𝒛{𝒌−𝟏}‖ ‖𝒗{𝒌} − 𝒗{𝒌−𝟏}‖ ‖𝒘{𝒌} −𝒘{𝒌−𝟏}‖ Objective function 

𝟏 4 14 0.78167 0.32408 1.43995 3.18318 

𝟐 9 22 0.48174 0.23141 1.25799 2.56337 

𝟑 8 19 0.87878 0.25250 0.87878 1.51274 

𝟒 8 24 0.93322 0.25200 0.93322 1.00437 

𝟓 8 20 0.72358 0.20552 0.72358 1.05220 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝟗𝟔𝟔 5 33 0.00014 0.00087 0.00104 0.50203 

𝟗𝟔𝟕 5 32 0.00015 0.00093 0.00098 0.50188 
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Fig. 2 Linear separable data 

 
Fig. 3 Convergence of the objective function and the  norms 

‖𝒛𝒌 − 𝒛𝒌−𝟏‖ 𝐲 ‖𝒗𝒌 − 𝒗𝒌−𝟏‖ 

 
Fig. 4 The data set is separated by a plane 

 
 

 
Fig. 5 Linear separable data 

 
Fig. 6 Convergence of the objective function and the norms ‖𝒛𝒌 −

𝒛𝒌−𝟏‖ 𝐲 ‖𝒗𝒌 − 𝒗𝒌−𝟏‖ 

 
Fig. 7 The  Data set is separated by a plane 
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Table 2. Computational Results for Example 2 

Iteration 𝑵(𝒛{𝒌}) 𝑵(𝒗{𝒌}) ‖𝒛{𝒌} − 𝒛{𝒌−𝟏}‖ ‖𝒗{𝒌} − 𝒗{𝒌−𝟏}‖ ‖𝒘{𝒌} −𝒘{𝒌−𝟏}‖ Objective function 

𝟏 12 29 2.73490 0.44568 3.48678 13.55714 

𝟐 10 22 1.78088 0.33687 2.36787 8.60897 

𝟑 9 29 2.31439 0.33125 2.31439 4.92598 

𝟒 10 29 1.37369 0.25792 1.37369 4.92598 

𝟓 8 28 0.34034 0.20416 1.01441 4.96926 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝟏𝟗𝟗𝟗 6 29 0.00014 0.00265 0.00430 1.19902 

𝟐𝟎𝟎𝟎 4 29 0.00013 0.00220 0.00423 1.19951 

 

 
Fig. 8 Linear separable data 

 
Fig. 9 Convergence of the objective function and the  norms 

‖𝒛𝒌 − 𝒛𝒌−𝟏‖ 𝐲 ‖𝒗𝒌 − 𝒗𝒌−𝟏‖ 

4.3.2. Example 2 

For this example, we will consider 𝜆 = 0.05, 𝜌 =
1, 𝑡𝑜𝑙 = 10−3 as also Max.Iterations = 2000. Fig 5 shows 

the set of 50 observations distributed in three-dimensional 

space and are linearly separable. In Fig 6, we see converging 

to the objective function and the variables "z" and "v" to an 

optimal point. 

 
Fig. 10 Data set is separated by a plane 

It can be observed that the convergence of the optimal 

value is fast in the same way as z. Still, it is slower to the 

parameter v. As in the previous example, the convergence of 

the objective function refers to the difference in absolute 

value between the objective function 𝑓 + 𝑔 obtained by the 

SC-PMA and the objective function 𝑓 + 𝑔 obtained by the 

CVX function of Matlab.  

Elapsed time is 4930.763008 seconds, and Fig 7 shows 

the data set separated by a plane, whose coefficients of the 

equation are: −0.7259; −0.1075; −0.4545; 1.1248; its 

respective plane is:  
 

−0.7259𝑋 − 0.1075𝑌 − 0.4545𝑍 + 1.1248 = 0 

Table II shows the computational results for data from 

50 observations, 

4.3.3. Example 3  

For this example, we will consider 𝜆 = 0.01, 𝜌 =
1, 𝑡𝑜𝑙 = 10−3 as also Max.Iterations = 4000. Fig 8 shows 

the set of 100 observations distributed in three-dimensional 

space and are linearly separable. 

In Fig 9, we see converging to the objective function, 

the variable "z" and "v", respectively. As in the previous 

example, the convergence of the objective function refers to -  
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Table 3. Computational Results for Example 3 

Iteration 𝑵(𝒛{𝒌}) 𝑵(𝒗{𝒌}) ‖𝒛{𝒌} − 𝒛{𝒌−𝟏}‖ ‖𝒗{𝒌} − 𝒗{𝒌−𝟏}‖ ‖𝒘{𝒌} −𝒘{𝒌−𝟏}‖ Objective function 

𝟏 14 14 1.77667 0.14247 1.77667 15.20005 

𝟐 15 14 1.48693 0.12906 1.48693 20.64252 

𝟑 14 14 1.13701 0.11379 1.40472 26.19932 

𝟒 11 13 0.75213 0.09911 1.57305 30.44459 

𝟓 13 14 0.36797 0.08776 1.64786 32.42724 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝟑𝟗𝟗𝟗 8 14 0.00022 0.00814 0.00835 3.99335 

𝟒𝟎𝟎𝟎 14 29 0.00020 0.00817 0.00830 3.98625 

 
the difference in absolute value between the objective 

function 𝑓 + 𝑔 obtained by the SC-PMA and the objective 

function 𝑓 + 𝑔 obtained by the CVX function of Matlab.  

 

Elapsed time is 30687.695116 seconds. The 

coefficients of the equation are 

−0.6274;  0.0156; −0.5672;    0.2475. Fig 10 shows the 

data set separated by a plane, whose equation of its 

respective plane is −0.6274𝑋 + 0.0156 − 0.5672𝑍 +
0.2475 =  0. 

Table III presents computational results. 

5. Conclusion 
The present article introduces a symmetric cone 

proximal multiplier algorithm (SC-PMA) to solve separable 

optimization problems. The point of convergence of the 

primal-dual variables is proved to be a saddle point of the 

Lagrangian associated with the problem; therefore, we solve 

the optimization problem. Then, we apply SC-PMA to find 

linear hyperplanes in binary classification in support vector 

machines. This is the first time the SC-PMA has been 

implemented to solve this class of problems applied to 

artificial intelligence, and the obtained results motivate more 

investigations. 

 

This paper is the continuation of previously published 

papers developed by the authors. In the papers [26, 27], we 

developed a systematic review of support vector machines 

applied to classification and regression. In the paper [18], we 

developed a methodology to Construct proximal distances 

over symmetric cones and in the proceeding paper [28], we 

obtained preliminary mathematical results of the SC-PMA. 

In this paper, we consolidated the convergence results of the 

SC-PMA and applied them to find linear hyperplanes to 

binary classification in SVM, thus complementing the result 

of the paper. 

 

To improve the computational results, it is necessary to 

solve problems (3.9) and (3.10) efficiently. For those cases, 

we think that the Bundle family of methods [6, chap. 9] is 

perhaps the most practical computational tool for nonsmooth 

optimization. It may be considered future research to 

improve the algorithm's efficiency. 

 

  Another future research may be to compare the SC-

PMA with the different classification algorithms, such as 

neural networks, Bayesian classifiers, and support vector 

machines, among others. 

 We will mention that there are several applications of 

the support vector machine technique; see [29 -31] 

 That is why it is important to develop this algorithm 

applied to a support vector machine.
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