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Abstract - Elastic distribution waves in lamellar bodies have been studied for more than a hundred years, but work in this 

direction continues, which indicates a continuing interest in this problem. In this paper, the wave propagation problem in 

a viscoelastic thin film is considered—a plate of variable cross-section subordinating to the Timoshenko hypothesis. The 

article's main purpose is to study the distribution of natural waves in an infinite viscoelastic lamellar waveguide with a 

wedge cross-section based on the Timoshenko hypothesis. The variation of complex natural frequencies and waveforms 

depending on various waveguide parameters (wavenumber and geometric parameters) is investigated. Integro-differential 

equations of waveguide motion are obtained based on the variational principle. After applying the freezing method, a 

system of differential equations with complex coefficients is obtained, which is further solved using the orthogonal run 

method with a combination of the Muller method on complex arithmetic. Based on the obtained results, it is established 

that with an increase in the wave number, the real and imaginary parts of normal modes in the Timoshenko wedge-shaped 

plate tend to have constant values. In this case, the localization of motion is observed near the sharp edge of the 

waveguide. It is also found that comparing the results obtained according to the Kirchhoff and Timoshenko theories for 

small wedge angles differs by up to 10%. Real and imaginary parts of a complex function of the propagation velocity of the 

Azov wave, the propagation velocity of the first mode in a wedge-shaped plate practically does not depend on the Poisson's 

ratio (a change within 0.5 %). In general, the numerical analysis of edge waves in Kirchhoff and Timoshenko plates allows 

us to conclude that Kirchhoff's hypotheses are quite suitable for calculating wave processes in wedge-shaped plates, 

including at frequencies with a wavelength of the order of plate thickness. This discrepancy with the classical results of the 

theory of Kirchhoff plates of constant thickness is explained by the phenomenon of localization of the waveform with 

increasing frequency, which occurs only in plates of variable thickness. At the same time, the relative simplicity of the 

mathematical apparatus of the Kirchhoff plate theory makes it possible to study the dispersion characteristics of 

waveguides with a more complex cross-section configuration, which is very difficult to construct in the framework of a 

three-dimensional theory. The results of this work can be applied in calculations of engineering structures consisting of 

extended plates of constant and variable cross-sections. 

 

Keywords - Damped wave, Viscoelastic plate sector cross-section, Navier equation, Spectral boundary value problem, 

Orthogonal run. 

 

1. Introduction 
To date, no general methods have been developed for 

calculating a plate of variable cross-section, considering 

the material's rheological properties. Results of 

investigations of elastic free wave propagation in 

plateschat rooms (and rectangular elastic rods) are given in 

the articles [1, 2, 3]. The paper [21] describes obtaining a 

system of independent differential equations for an 

unbounded axisymmetric rod. The solution is sought in the 

form of a traveling wave. As a result, the Bessel equation 

is obtained, the resolution of which is expressed in terms 

of the Bessel and Neumann functions. The problem is 

reduced to the propagation of plane waves in an equivalent 

plate. Dispersion curves are constructed for different 

angles of helical wave propagation. 

The article [5] discusses the applicability of Kirchhoff's 

hypotheses in the study of problems of propagation of 

magneto-elastic waves in a plate. A comparative analysis 

of approximate and exact solutions is given. The 

acceptability of Kirchhoff's hypotheses in the study of 

magneto-elastic wave propagation problems is proved [6].
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The existence of surface waves in elastic wedges was 

first discovered in [7-9]. Thus, the conclusion of y came 

based on the results obtained, which were obtained 

numerically and by the am I method. It was found that the 

waves have an oscillating character along the edge of the 

wedge and exponentially decrease with distance from the 

edge. The propagation speed of surface waves in elastic 

wedges depends on the angle of the edge. Therefore, 

depending on the angle, their speed can be significantly 

less than the speed of Rayleigh waves. This circumstance 

creates a very attractive opportunity for practice, expressed 

in the use of delay lines. At the same time, the question of 

proving, from a physical and mathematical point of view, 

the existence of such waves, taking into account physical, 

mechanical and geometric parameters, remained open. 

In [22], surface waves traveling along the edge of an 

elastic wedge were considered. In the last paper, the 

existence of surface waves in acute-angled wedges is 

mathematically proved for an isotropic elastic wedge. The 

proof is based on the variational approach of elasticity 

theory. 

The paper [11] deals with the propagation of elastic 

waves in a wedge. The proposed approach to solving the 

problem was developed, and the propagation velocity of 

surface waves was determined for symmetric and 

antisymmetric modes of an isotropic wedge. 

The articles [12, 23] deal with new acoustic effects 

during wave propagation in wedge-shaped media. Studies 

of wave propagation in an elastic wedge-shaped plate have 

revealed new acoustic effects near the rib that are unknown 

in the technical literature. When a surface wave moves in 

this region, the acoustic field is continuously rearranged, 

and the volume waves are emitted. As we approach the 

edge, the surface wave velocity drops to zero, but in the 

opposite direction, the wave gains speed. 

Researchers selected viscoelastic infinite plates or 

strips of variable thickness and viscoelastic cylindrical 

bodies with radial cracks in the current job as objects. The 

relations between the parameters of harmonic wave 

processes are investigated [14,15,24]. On the other hand, 

knowledge of the propagation patterns of harmonic wave 

processes is of great interest in practice. Also, the study of 

harmonic vibrations is the shortest way to quantify the 

features of non-stationary processes occurring in 

deformable bodies. 

 

2. Methods 
2.1. Problem Statement and Solution Methods 

The wave propagation problem in a viscoelastic thin 

film is considered—a plate of variable cross-section 

subordinating to the Timoshenko hypothesis. Let in an 

infinite viscoelastic lamellar waveguide with a wedge 

cross-section that obeys the Timoshenko 

hypothesis, distributed by its waves. It is necessary to 

study the change in complex natural frequencies and 

waveforms depending on various waveguide parameters 

(wavenumber and geometric parameters). To obtain 

differential equations of vibrations of a plate of variable 

thickness, we use the principle of possible displacements 

[6]: 

δ(N – T) =0,                          (1) 

 

where δN is the variation of potential energy; δT is the 

variation of kinetic energy. 

Geometric and physical-mechanical parameters, 

thickness h, density p, and operator Young's modulus are 

given for a plate of variable thickness [2]: 

 

𝐸̃𝑛[𝜙(𝑡)] = 𝐸0𝑛 [𝜙(𝑡) − ∫ 𝑅𝐸𝑛(𝑡 − 𝜏)𝜙(𝑡)𝑑𝜏
𝑡

0
],  (2) 

                

Where 𝜙(𝑡) is an arbitrary time function 𝑅𝐸𝑛(𝑡 − 𝜏)–
is the relaxation kernel, 𝐸0𝑛and is the instantaneous elastic 

modulus. 

We assume that the integral terms in (1) are 

small. Then the functions 𝜙(𝑡)  can be represented in the 

form 𝜙(𝑡) = 𝜓(𝑡)𝑒−𝑖𝜔𝑅𝑡, where 𝜓(𝑡)-is a slowly 

changing function of time, 𝜔𝑅 -is a real constant. Then 

[13], we replace relations (1) with approximations of the 

form 

𝐸̄𝑛𝜙 = 𝐸0𝑗[1 − 𝛤𝑗
С(𝜔𝑅) − 𝑖𝛤𝑗

𝑆(𝜔𝑅)]𝜙, 

Where 

 

𝛤𝑛
𝐶(𝜔𝑅) = ∫ 𝑅𝑛(𝜏) 𝑐𝑜𝑠𝜔𝑅 𝜏𝑑𝜏

∞

0
, 

𝛤𝑛
𝑆(𝜔𝑅) = ∫ 𝑅𝑛(𝜏) 𝑠𝑖𝑛𝜔𝑅 𝜏𝑑𝜏

∞

0
- 

 

Here, the cosine and sine are Fourier images of the 

relaxation kernel of the material. As an example of a 

viscoelastic material, we take a three-parameter relaxation 

kernel𝑅𝑛(𝑡) = 𝐴𝑛𝑒
−𝛽𝑛𝑡/𝑡1−𝛼𝑗𝑛 . 

Let us apply the principle of possible displacements 

(1) and (2), taking into account the Timoshenko 

hypotheses:

  𝜎33 = 0; 𝜎3𝑖 =
𝜒𝐸̄

2(1+𝑣)
(

д𝑊

д𝑥𝑖
− 𝜃𝑖) 

 

𝑢𝑖
(𝑥3) = 𝑥3𝜃𝑖; 𝑊

(𝑥3) = 𝑊; 𝑖 = 1,2,
     

(3) 

 

where i – angles of rotation of the normal (fig. 1),  – 

correction factor that considers the distribution of shear 

stresses over the thickness. In this case, the components of 

the strain and stress tensors will take the form: 

 

𝜀𝑖𝑗 = −
1

2
𝑥3 (

д𝜃𝑖

д𝑥𝑗
+

д𝜃𝑗

д𝑥𝑖
);𝜀3𝑖 =

1

2
(

д𝑊

д𝑥𝑖
− 𝜃𝑖); 

1. 𝜎11 = −
𝐸Г𝑘

1−𝑣2
𝑥3 (

д𝜃1

д𝑥1
+ 𝜈

д𝜃2

д𝑥2
); 

𝜎22 = −
𝐸Г𝑘

1−𝑣2
𝑥3 (

д𝜃2

д𝑥2
+ 𝜈

д𝜃1

д𝑥1
); 

𝜎12 = −
𝐸Г𝑘

2(1+𝑣)
𝑥3 (

д𝜃1

д𝑥2
+ 𝜈

д𝜃2

д𝑥1
); 

𝜎3𝑖 =
𝜒𝐸Г𝑘

2(1+𝑣)
(

д𝑊

д𝑥𝑖
− 𝜃𝑖), i, j=1,        (4) 
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 Substituting the expression for working on virtual 

movements, we get: 

 

𝛿𝐴 = ∫ ∫

[
 
 
 
 −𝜎𝑖𝑗

𝑥3

2
(

д𝛿𝜃𝑖
д𝑥𝑗

+
д𝛿𝜃𝑗

д𝑥𝑖
) +

+𝜎3𝑖 (
д𝛿𝑊

д𝑥𝑖
− 𝛿𝜃𝑖) +

𝑠

ℎ/2

−ℎ/𝑠

 

+ 𝜌𝑊̈𝛿𝑊 + 𝜌𝑥3
2𝜃̈𝑖𝛿𝜃𝑖] 𝑑𝑆𝑑𝑥3 = 0. (5)                       

 

 
 Fig. 1 Normal rotation angle  

 

 

Or, by introducing notation for the corresponding 

moments: 

𝑀̄11 = 𝐷1Г𝑘 (
д𝜃1

д𝑥1
+ 𝑣

д𝜃2

д𝑥2
) = Г𝑘𝑀11; 

𝑀̄22 = 𝐷1Г𝑘 (
д𝜃2

д𝑥2
+ 𝑣

д𝜃1

д𝑥1
) = Г𝑘𝑀22;                             

𝑀̄12 = 𝐷2Г𝑘 (
д𝜃1

д𝑥2
+

д𝜃2

д𝑥1
) = Г𝑘𝑀12 (6) 

where     

𝐷2 = 𝐷1/2,   𝑀22 = −𝐷1 (
𝜕𝜃2

𝜕𝑥2
+ 𝜈

𝜕𝜃1

𝜕𝑥1
), 

𝑀11 = −𝐷1 (
𝜕𝜃1

𝜕𝑥1
+ 𝜈

𝜕𝜃2

𝜕𝑥2
),   𝑀12 = 𝐷2 (

𝜕𝜃1

𝜕𝑥2
+

𝜕𝜃2

𝜕𝑥1
), 

and integrating over x 3, we have 

𝛿𝐴 = −∫
𝑠

[−
д

д𝑥𝑗
(𝑀̄𝑖𝑗𝛿𝜃𝑖) +

д

д𝑥𝑗
(ℎ𝛿3𝑗𝛿𝑊)] 𝑑𝑆 + 

+∫
𝑠

(−
д𝑀̄𝑖𝑗

д𝑥𝑗
𝛿𝜃𝑖 +

д(ℎ𝜎̄3𝑗)

д𝑥𝑗
𝛿𝑊 + ℎ𝜎̄3𝑖𝛿𝜃𝑖 − 

−𝜌ℎ𝑊̈𝛿𝑊 −
𝜌ℎ
3

12
𝜃̈𝑖𝛿𝜃𝑖) 𝑑𝑆 = 0.          (7) 

 

Integrating (7) in parts and equating the coefficients for 

variations to zero W and I   inside the body and at its 

boundaries, we obtain the following system of differential 

equations 

{
 
 

 
 −

д𝑀12

д𝑥2
−

д𝑀11

д𝑥1
+ ℎ𝜎31 −

𝜌ℎ
3

12Г𝑘
𝜃̈1 = 0;

−
д𝑀22

д𝑥2
−

д𝑀12

д𝑥1
+ ℎ𝜎32 −

𝜌ℎ
3

12Г𝑘
𝜃̈2 = 0;

д(ℎ𝜎32)

д𝑥2
+

д(ℎ𝜎31)

д𝑥1
−

𝜌ℎ𝑊̈

Г𝑘
= 0

 (8)                

with natural boundary conditions: 

{

𝑀12 = 0;
𝑀11 = 0;

ℎ𝜎31 = 0, 𝑥1 = 0, 𝑙1

 

The main alternatives to which will be the following: 

{

𝜃1 = 0;
𝜃2 = 0;

𝑊 = 0, 𝑥1 = 0, 𝑙1

 

Equations (8) are differential equations with complex 

coefficients, and it can be written in the following form 

(

 
 
 
 
−
𝜕𝑀12
𝜕𝑥2

−
𝜕𝑀11
𝜕𝑥1

+ ℎ𝜏31 −
𝑠ℎ3

12Г𝐾𝑅
𝜃1

″

−𝜕𝑀22

𝜕𝑥2
−
𝜕𝑀12
𝜕𝑥1

+ ℎ𝜏32 −
𝑠ℎ3

12Г𝐾𝑅
𝜃″

𝜕(ℎ𝜏32)

𝜕𝑥2
+
𝜕(ℎ𝜏31)

𝜕𝑥1
−
𝑠ℎ3

Г𝐾12
𝑊̈

)

 
 
 
 

+ 

+𝑖Г𝐾𝐼

(

 
 
 
 
−
𝜕𝑀12
𝜕𝑥2

−
𝜕𝑀11
𝜕𝑥1

+ ℎ𝜏31

−𝜕𝑀22

𝜕𝑥2
−
𝜕𝑀12
𝜕𝑥1

+ ℎ𝜏32

𝜕(ℎ𝜏32)

𝜕𝑥2
+
𝜕(ℎ𝜏31)

𝜕𝑥1 )

 
 
 
 

= 0 

 

The main variables in this system will 

be: W 1, 1, 2, M12, M11, Q1=h  31. Exclude the   variables 

M22 and Q from the last equations, where 

 

𝑀22 = −
𝐸ℎ

3

12

д𝜃2

д𝑥2
+ 𝑣𝑀11;   𝑄2 = ℎ𝜎32 =

𝜒𝐸ℎ

2(1+𝑣)
(

д𝑊

д𝑥2
− 𝜃2). 

 

Then we arrive at the following system of equations: 

{
 
 
 
 
 

 
 
 
 
 

д𝑊

д𝑥1
= 𝜃1 +

2(1+𝑣)

𝜒𝐸ℎ
𝑄1;

д𝜃2

д𝑥1
= −

д𝜃1

д𝑥2
−

24(1+𝑣)

𝐸ℎ
3 𝑀12;

д𝜃1

д𝑥1
= −𝑣

д𝜃2

д𝑥2
−

12(1−𝑣2)

𝐸ℎ
2 𝑀12;

д𝑀11

д𝑥1
= −

д𝑀12

д𝑥2
+ 𝑄1 −

𝑝ℎ
3

12Г𝑘
𝜃̈1;

д𝑀22

д𝑥1
= −

𝐸ℎ
3

12

д
2𝜃2

д𝑥2
2 − 𝑣

д𝑀11

д𝑥2
+

𝜒𝐸ℎ

2(1+𝑣)
(

д𝑊

д𝑥2
− 𝜃2) −

𝑝ℎ
3

12Г𝑘
𝜃̈2;

д𝑄1

д𝑥1
= −

𝜒𝐸ℎ

2(1+𝑣)
(

д
2𝑊

д𝑥2
2 −

д𝜃2

д𝑥2
) +

𝜌ℎ𝑊̈

Г𝑘
.

 

(9) 

  

or 
д𝑦1

д𝑥1
= 𝑦2 +

𝑦4

𝜒ℎ
;      

д𝑦2

д𝑥1
= −𝑣

д𝑦3

д𝑥2
−

6(1−𝑣)

ℎ3
𝑦5; 

д𝑦3

д𝑥1
=

−
д𝑦2

д𝑥2
−

12

ℎ
3 𝑦6; 

 
д𝑦4

д𝑥1
= 𝜒ℎ

д

д𝑥2
(𝑦3 −

д𝑦1

д𝑥2
) +

ℎ

Г𝑘

д
2𝑦2

д𝑡̃2
;                  

д𝑦5

д𝑥1
= −

д𝑦6

д𝑥2
+ 𝑦4 −

ℎ
3

12Г𝑘

д
2𝑦2

д𝑡̃2
; 

д𝑦6
д𝑥1

=
д

д𝑥2
(
(1 + 𝑣)ℎ3

6
⋅

д𝑦3
д𝑥2

− 𝑣𝑦5) + 

+𝜒ℎ (
д𝑦1

д𝑥2
− 𝑦3) −

ℎ
3

12Г𝑘

д
2𝑦3

д𝑡̃2
     (10) 

 

 



I. I. Safarov et al. / IJETT, 71(1), 25-30, 2023 

 

28 

where 

𝑦1 = 𝑊;  𝑦2 = 𝜃2;  𝑦3 = 𝜃/𝜈;  𝑦4 =
2(1 + 𝜈)

𝐸
𝑄1;  

𝑦5 =
4(1 + 𝜈)

1 − 𝜈
𝑀12;  𝑦6 =

ℎ(1 − 𝜈2)

𝐸𝜈
𝑀12 

𝑀22 = −𝐷 (
𝜕𝜃2
𝜕𝑥2

+ 𝜈
𝜕𝜃1
𝜕𝑥1

) + 𝜈𝑀11 − 𝜈𝑀11 = 

= −𝐷(1 − 𝜈2)
𝜕𝜃2
𝜕𝑥2

+ 𝜈𝑀11 = 

= −
𝐸ℎ

3

12(1 − 𝜈2)
(1 − 𝜈2)

𝜕𝜃2
𝜕𝑥2

+ 𝜈𝑀11 = 

= −
𝐸ℎ

3

12

𝜕𝜃2
𝜕𝑥2

+ 𝜈𝑀11 

Finding, as before, solutions describing plane harmonic 

waves propagating along the axes x1, we will look for a 

solution of system (10) in the form 

 

{
  
 

  
 
𝑦1 = 𝑧1(𝑥1) 𝑐𝑜𝑠(𝑘𝑥2 − 𝜔𝑡) ;

𝑦2 = 𝑧2(𝑥1) 𝑐𝑜𝑠(𝑘𝑥2 − 𝜔𝑡) ;

𝑦3 = 𝑧3(𝑥1) 𝑠𝑖𝑛(𝑘𝑥2 − 𝜔𝑡) ;

𝑦4 = 𝑧4(𝑥1) 𝑐𝑜𝑠(𝑘𝑥2 −𝜔𝑡) ;

𝑦5 = 𝑧5(𝑥1) 𝑐𝑜𝑠(𝑘𝑥2 − 𝜔𝑡) ;

𝑦6 = 𝑧6(𝑥1) 𝑠𝑖𝑛(𝑘𝑥2 − 𝜔𝑡) .

       (11)                           

 

Substituting relations (11) into the system of partial 

differential equations (10), we obtain a system of first-

order ordinary differential equations resolved with respect 

to derivatives: 
 

( )

( )























+



























−++−−=

++−=














−+=

−=

−
−−=

+=

.12
12

;
12

;

;
12

;
3

16

;

53

232

16

2
2

3

465

1

2
2

34

6323

532

21

vккz
Г

с
v

Г

hк
hhккz

z
Г

h
zкzz

z
Г

hc
hкhккz

z
h

кzz

z
v

vккz

h

z
zz

лл

л

л

n









    

(12)          

The boundary conditions for this system can be written 

as follows: 

a) free left edge of the plate: 

z4 =z5 = z6 =0,  x1 = 0;       (13) 
 

b) free right edge of the record: 

z4 =z5 = z6 =0,     x1 = l1             (14) 
 

c) pinched right edge of the plate: 

z1 =z2 = z3 =0,  x1 = l1;                      (15)  

                  

Thus, we formulate the spectral boundary value 

problem (12-15) with respect to the parameter , 

describing the propagation of bending plane edge waves in 

the Timoshenko plate. 
 

3. Results and Analysis 
For a Kirchhoff plate of variable thickness, the first 

five modes with the lowest complex phase propagation 

velocities 𝐶 = 𝐶𝑅 + 𝑖𝐶𝐼were studied, where 𝐶𝑅- is the 

phase velocity of wave propagation; 
IC  - damping 

speed. The following dimensionless shell parameters are 

used in all calculation variants: 
 

𝐸 = 1, 𝜌 = 1, 𝜈 = 0,25, 𝐺 = 1 ,𝐴 = 0,048;  

𝛽 = 0,05;  𝛼 = 0,10. 
 

The boundary conditions for the resolving system of 

equations (12) of the Timoshenko plate have the form: 
 

x=0,1; z4=z5=z6=0 . (16) 
 

Then the expressions for the waveforms are 

z1 = A1 cos2  n x2;  z4 = A4 sin2  n x2; 

z2 = A2 cos2  n x2;  z5 = A5 sin2  n x2;          (17) 

 

 z3 = A3 sin2  n x2;  z6 = A6 cos2  n x2; 

 

In relations (17), the constants Ai ( i=1,…,6) are 

determined from the solution of a linear algebraic system 

of equations 

    

{
 
 
 
 

 
 
 
 𝐴3 +

𝐴4

𝜒ℎ
= 0;

к𝐴3 −
12

ℎ
3 𝐴5 = 0;

−𝑣к𝐴2 −
6(1−𝑣)

ℎ
3 𝐴6 = 0;

𝜒ℎк𝐴2 + к2(𝜒ℎ− ℎ𝑐2)𝐴1 = 0;

−𝜒ℎк𝐴1 − [
(1−𝑣)ℎ3

6
к2 + 𝜒ℎ−

ℎ
3

12
𝜔2] 𝐴2 + 𝑣к𝐴6 = 0;

−к𝐴5 + 𝐴4 +
ℎ
3

12
𝜔2𝐴3 = 0.

               

(18)   

  

The system of equations (18) is obtained by 

substituting expressions (17) into the resolving system of 

differential equations (12). Conditions for the determinant 

of the matrix of system (18) being equal to zero is the 

dispersion equation of the boundary value problem (12) - 

(13). 

Figure 2 shows the first three modes of the real part of 

the complex phase velocities of the Timoshenko plate (b) 

in comparison with the corresponding modes of the 

Kirchhoff plate (a) with a Poisson's ratio of 0.25. In the 

case of the Kirchhoff plate, the limiting phase velocities 

are higher at modes II and III, and this difference increases 

as the mode number increases. 

The obtained discrepancies with the results of [17] 

indicate the need for a more detailed study within the 

framework of the general theory of elasticity. However, in 

general, the numerical analysis of edge waves in 

Kirchhoff-Love and Timoshenko plates allows us to 

conclude that the Kirchhoff-Love hypotheses are quite 

suitable for calculating wave processes in wedge-shaped 

plates, including at frequencies with a wavelength of the 

order of plate thickness. This discrepancy with the 

classical results of the theory of Kirchhoff-Love plates of 

constant thickness is explained by the phenomenon of 

localization of the waveform with increasing frequency, 

which occurs only in plates of variable thickness.   
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Fig. 2 Dispersion curves of phase velocities a-Kirchhoff-Love; b-

Timoshenko  

 

At the same time, the relative simplicity of the 

mathematical apparatus of the Kirchhoff plate theory 

makes it possible to study the dispersion characteristics of 

waveguides with a more complex cross-section 

configuration, which is very difficult to construct in the 

framework of a three-dimensional theory. 

 

4. Conclusion 
Based on the results obtained, the following 

conclusions are made: 

 

• As the wave number increases, the propagation 

velocities of the real and imaginary parts of normal 

modes in the Timoshenko wedge-shaped plate tend to 

have constant values. In this case, the localization of 

motionis observed near the sharp edge of the 

waveguide; 

• For small wedge angles, a comparison of the results 

obtained according to the Kirchhoff and Timoshenko 

theories shows a satisfactory match; 

• The real and imaginary parts of the complex phase 

velocity of the first mode propagation in a wedge-

shaped plate are practically independent of Poisson's 

ratio (variation within 0.5 %). 
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