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Abstract - An elastic-plastic analytical solution is developed using a prestressing method for a hollow cylinder made of a 

ceramic–metal functionally gradient material (FGM) under internal and external pressures to design a cylinder that resists 

plastic internal pressure efficiently uses the material at the outer part of the cylinder. Based on the experimental results for a 

ceramic–metal (Al A359/SiCp) cylinder produced with an FGM, different components of the radial, hoop, and axial stresses 

were analysed to investigate the effects of pressure, cylinder wall thickness, and material distribution. It is assumed that 

mechanical properties, such as Young’s modulus and density, are governed by a power function along the wall thickness, owing 

to the functional gradation of the material. An elastic–perfectly plastic model and the von Mises criterion are used to obtain 

theoretical solutions for the stress distribution in the radial direction in the elastic and elastic–plastic areas and to determine 

different combinations of pressure. A finite element model was established to validate the analytical results by applying 

hypothetical thermal loads using Ansys Workbench. Thus, with an increasing ceramic volume fraction from the inner to outer 

radius, the reinforcement of the metal vessel by ceramic particles decreased the magnitude of the compressive hoop stresses at 

the inner section. It can improve the fatigue resistance and load-bearing capacity of the cylinder. 

Keywords - Metal–ceramic, Functionally graded materials, Elastic–perfectly plastic, Pressurized hollow cylinders. 

1. Introduction  
Materials have played an essential role in developing 

modern industries and processes. The scientific use of basic 

materials in various organic and inorganic compounds has 

facilitated the development of advanced polymers, alloys, and 

structural engineering ceramics. It has led to the discovery of 

a new class of composite materials called functionally gradient 

materials (FGMs). FGMs are nonhomogeneous materials with 

continuously varying mechanical properties. They are unique 

materials that can operate in a harsh environment without 

losing their properties or deteriorating over time (Mahamood 

and Akinlabi 2017). Their main advantage is that their 

physical properties gradually vary according to the 

composition and microstructure of the material (Boggarapu et 

al., 2021; Pasha and Rajaprakash, 2022). These materials have 

been widely applied in various engineering and technology 

fields to achieve optimal use (Ibnorachid et al., 2021). An 

overview of the methods of manufacturing FGMs, describing 

the main advantages and disadvantages of these methods 

based on the literature for more than 30 years, is reported by 

Saleh et al. (2020). 

 

In particular, ceramic–metal FGMs have potential 

applications in structures under severe operating conditions, 

including spacecraft heat shields (Bertolino et al. 2003; Zhang 

et al. 2018), heat exchanger tubes (Hassanzadeh and Bilgili 

2018), and plasma coatings in fusion reactors (Yan et al. 2010; 

Heuer et al. 2019). They are designed to reduce thermal 

stresses and utilise the heat resistance of ceramics and the 

mechanical strength and good machinability of metals without 

significant internal thermal stress (Chmielewski and Pietrzak 

2016; Ruys and Sutton 2021). Although the concept of 

ceramic–metal FGMs was initially proposed for super-heat-

resistant materials, FGM pressure vessels have attracted 

attention because of their excellent mechanical properties.  

 

The mechanical behaviours of FGM pressure vessels and 

cylinders subjected to internal pressure have been investigated 

extensively using different Young’s modulus functions (Ruys 

and Sutton 2021; Tutuncu and Ozturk 2001; Sburlati 2012; 

Benslimane et al. 2021; Chen and Lin 2008; Shi et al. 2007; 

Benslimane et al. 2018). Tutuncu and Ozturk (2001), Sburlati 

(2012) and Benslimane et al. (2021) analysed an elastic, linear, 

isotropic, compressible FGM cylinder using a power law 

Young’s modulus. Chen and Lin (2008) derived an 

exponential function to represent Young’s modulus for elastic 

analysis of thick cylinders and spherical pressure vessels made 

of FGMs. Shi et al. (2007) used a linear function to represent 

Young’s modulus of an FGM cylinder under pressure. In more 

complex cases, researchers have assumed that Young’s 
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modulus varies according to a general nonlinear expression 

(Benslimane et al., 2018). Studies have shown the effect of the 

gradient index on elastic solutions of a thick-walled 

pressurised cylinder made of an FGM and the effect of 

Poisson’s ratio on the latter (Mognhod and Engida 2021). 

 

However, in these studies, the analyses were limited to 

elastic fields. This study was based on the numerical method 

used in the elastic domain in Sburlati (2012). The aim is to 

adapt it to a cylinder made of an FGM plastically deformed 

under internal and external pressures to obtain optimal 

solutions.  

 

To reflect both elastic and plastic effects, Eraslan and 

Akis (2005) and Xin et al. (2016) obtained analytical solutions 

of stresses and radial displacements for the plastic analysis of 

a functionally graded thick-walled tube subjected to internal 

pressure. Thick-walled cylinders are typically subjected to 

extremely high pressures and thermal loads during their 

lifetimes. Therefore, several numerical methods have been 

used to evaluate the thermo-elasto-plastic behaviour of a 

thick-walled cylinder made of an FGM. Nayak et al. (2020) 

studied the elasto-plastic properties of thermomechanically 

loaded functionally graded (FG) disks using an iterative 

variational method. The response of an FG disk with arbitrary 

material composition in the radial direction under thermo-

mechanical loads was investigated using the differential 

transformation method (Heydari 2019) and successive 

approximation method (Saeedi et al. 2021). Considering the 

rotation effect, Benchallal et al. (2022) derived an exact 

analytical closed-form solution from the governing equations 

to compute the thermo-mechanical stress field for a rotating 

hollow cylinder made of FGMs subjected to internal pressure 

and uniform temperature. In the references cited above, using 

the modified mixing rule, the effective material properties 

were based on the two-phase volumetric fraction in the graded 

direction. Sim et al. (2021) developed a recursive algorithm to 

formulate an analytical solution for the thermo-elastic 

behaviour of a multilayered spherical pressure vessel. 

 

In these studies, advanced numerical methods were 

applied to solve complex problems, particularly for analysing 

the behaviour of the material or boundary conditions. 

However, these studies were limited to identifying the effect 

of material properties on the responses of stress, strain, and 

displacement profiles in thick-walled FGM cylinders under 

mechanical and thermal loads. This study aims to investigate 

the elasto-plastic response of stress in a pressurised FGM 

cylinder and the residual stress. It is well known that internal-

compressive residual stresses are generated after the pressure 

is released during prestressing techniques (Cui et al. 2021; 

Zheng et al. 2021; Mohan et al. 2020, 2021), such as 

autofrettage (Mohan et al. 2021). 

 

 

 

During the loading phase of the autofrettage process, a 

large part of the cylinder deforms plastically. When the load 

is removed, the inner part of the vessel develops compressive 

residual stresses, whereas the outer part develops tensile 

residual stresses. The inner part of the vessel is subjected to 

compressive residual stress, which improves the vessel's 

fatigue strength and load-bearing capacity (Molaie et al. 

2018), resulting in a longer service life under cyclic internal 

pressure. 

 

This study aims to determine the optimal autofrettage 

pressure and associated elastoplastic boundary radius for 

metal-ceramic FGM cylinders. To date, no experimental 

studies have been conducted on the elastoplastic analysis of 

actual metal or ceramic cylinders under internal and external 

pressure loads. This analysis reflected the experimental 

findings of Rodríguez-Castro (2002) for an FG Al A359/SiCp 

cylinder. In a metal cylinder, the residual compressive stresses 

generated during autofrettage are typically constrained by the 

plasticity of the metal. The properties of a homogenised Al 

A359 steel cylinder and an Al A359/SiCp cylinder were 

compared to demonstrate the advantages of an FGM and to 

support the current study. Based on the von Mises yield 

criterion, different components of the radial, hoop, and normal 

stresses are presented to analyse the effects of pressure, 

cylinder wall thickness, and material distribution. They were 

obtained in the cylinder's elastic, elastoplastic, and fully 

plastic zones. Finally, explicit analytical formulas for the 

residual elastic stress within the tube wall were derived based 

on the classical elastic–ideally, plastic solution, neglecting the 

Bauschinger effect. The optimal stress distribution, optimal 

autofrettage pressure, and optimal thickness were obtained. 

However, despite the lack of analysis software, it does not 

directly model the variation in Young’s modulus as a space 

function. A numerical study using the finite element method 

in Ansys Workbench was conducted. The analytical model's 

solutions were then compared with the numerical solutions.  

 

2. Materials and Methods    
2.1. Material Behavior and Geometry Characteristics  

An axisymmetric infinitely long cylinder is analysed. It is 

made of a metal-ceramic FGM with an inner radius 𝑅𝑖and an 

outer radius 𝑅0. The hollow cylinder is subjected to internal 

pressure  𝑃𝑖 and external pressure 𝑃𝑜. Poisson’s ratio ν is 

assumed to be constant. Finally, Young’s modulus 𝐸(𝑟) and 

yield stress 𝜎𝑦(𝑟) are power-law functions, expressed as 

follows, respectively:  

 𝐸(𝑟) = 𝐸𝑖 (
𝑟

𝑅𝑖
)

𝑛

 (1) 

 

 𝜎𝑦(𝑟) = 𝜎𝑖 (
𝑟

𝑅𝑖
)

𝑚

 (2) 
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where 𝑟 is the radius, 𝑛 and 𝑚 are material parameters. 

𝐸𝑖 and 𝜎𝑖are Young’s modulus and yield stress at the inner 

radius 𝑟 = 𝑅𝑖. 
 

 A schematic of the pressurized hollow cylinder is shown 

in Fig. 1. 

 
Fig. 1 The drawing of the ceramic/metal hollow cylinder under internal 

and external pressure. 

2.2. Loading Stress Analysis 

2.2.1. Elastic stress analysis 

The hollow cylinder is purely elastic, and the stress-

controlled boundary conditions are defined as follows.      

 𝜎𝑟|𝑟=𝑅𝑖
= −𝑃𝑖 , 𝜎𝑟(𝑟)|𝑟=𝑅0

= −𝑃0 (3) 

Based on these conditions, stress equations (4)–(5) can be 

written as follows (Sburlati 2012):  

𝜎𝑟(𝑟) =
𝑅

𝑖

−
𝑛
2

+1
𝑟

𝑛
2

−1

(𝑌−
𝑘
2 − 𝑌

𝑘
2)

[(
𝑟

𝑅0
)

−
𝑘
2

− (
𝑟

𝑅0
)

𝑘
2

] 𝑃𝑖  

 

             −
𝑅0

−
𝑛
2+1

𝑟
𝑛

2 −1

(𝑌
−

𝑘
2−𝑌

+
𝑘
2)

[(
𝑟

𝑅𝑖
)

−
𝑘

2
− (

𝑟

𝑅𝑖
)

𝑘

2
] 𝑃0 (4) 

 

𝜎𝜃(𝑟) =
𝑅

𝑖

−
𝑛

2
+1

𝑟
𝑛
2

−1

(𝑌−
𝑘
2 − 𝑌

𝑘
2)

[(
𝑟

𝑅0
)

−
𝑘
2

(
𝑛 − 𝑘

2
)

− (
𝑟

𝑅0
)

𝑘
2

(
𝑛 + 𝑘

2
)] 𝑃𝑖  

           −
𝑅0

−
𝑛

2 +1
𝑟

𝑛
2−1

(𝑌
−

𝑘
2−𝑌

𝑘
2)

[(
𝑟

𝑅𝑖
)

−
𝑘

2
(

𝑛−𝑘

2
) − (

𝑟

𝑅𝑖
)

𝑘

2
(

𝑛+𝑘

2
)] 𝑃0          (5)            

 

 𝜎𝑧(𝑟) =
𝜈 𝑅

𝑖

− 
𝑛
2+1

𝑟
𝑛
2 −1

(𝑌
− 

𝑘
2−𝑌

𝑘
2)

[(
𝑟

𝑅𝑜
)

− 
𝑘

2
(

2+𝑛−𝑘

2
) − (

𝑟

𝑅𝑜
)

𝑘

2
(

2+𝑛+𝑘

2
)] 𝑃𝑖  

             -
𝜈 𝑅𝑜

− 
𝑛

2 +1
𝑟

𝑛
2 −1

(𝑌
− 

𝑘
2−𝑌

𝑘
2)

[(
𝑟

𝑅𝑖
)

− 
𝑘

2
(

2+𝑛−𝑘

2
) − (

𝑟

𝑅𝑖
)

𝑘

2
(

2+𝑛 +𝑘

2
)] 𝑃𝑜(6) 

where 𝑘is defined by Sburlati (2012) as follows: 

 𝑘 = −√𝑛 ² + 4 −
4𝑛 𝜈

1−𝜈
 (7) 

Furthermore, if 𝑛 = 0the tube is homogeneous, Eqs. (2) and 

(3) reduce to the well-known equations derived by Vullo 

(2013). 

  

2.2.2.Elastic–plastic stress analysis 

For a hollow cylinder composed of homogeneous 

materials, the elastic limit pressure, 𝑃𝑙𝑖𝑚, exists 𝑟 = 𝑅𝑖 
(Laghzale and Bouzid 2016). However, the plasticity of an 

FGM hollow cylinder begins from either the inner or outer 

surfaces (Kalali and Hadidi-Moud 2013). For an Al 

A359/SiCp FG cylinder, the elastic part of the cylinder is 

considered to be under inside and outside pressures while 

reaching the yield at its inside radius. 

The von Mises equivalent stress is expressed as follows 

(Laghzale and Bouzid 2016).  

 

 𝜎𝑒𝑞 =
√3

2
(𝜎𝜃 − 𝜎𝑟) (8) 

 

Applying the von Mises yield criterion at 𝑟 = 𝑅𝑖yields Eq.  

(9).  

 𝜎𝑒𝑞(𝑟)|
𝑟=𝑅𝑖

= 𝜎𝑦(𝑟)|𝑟=𝑅𝑖
 (9) 

 

By substituting Eqs. (4) and (5) into Eq. (9), the elastic limit 

pressure 𝑟 = 𝑅𝑖is defined by Eq. (10)    

 

  𝑃
4𝜎𝑖

√3

(𝑌
− 

𝑘
2−𝑌

𝑘
2)

𝑌
𝑘
2 .(𝑛−𝑘−2)+𝑌

− 
𝑘
2 .(2−𝑛−𝑘)𝑙𝑖𝑚

 

 

                                                − 𝑌−
𝑛

2
+1  . 2. 𝑘. 𝑃𝑜                       (10) 

 

When internal pressure 𝑃𝑖increases beyond the yield 

point, a zone of total plasticity of radius (𝑅𝑐) develops as a 

function of the increase in the internal pressure in the cylinder. 

It results in the appearance of a plastic zone and an elastic 

zone. 
 

The equilibrium equation is expressed as follows 

(Laghzale and Bouzid 2016). 

 

 
𝑑𝜎𝑟

𝑑𝑟
=

2

√3

𝜎𝑒𝑞

𝑟
 (11) 
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The material was assumed to be non-work-hardened. In 

this case, the stresses in the plastic zone are determined as 

follows by integrating Eq. (11) between and  using Eq. (2). 

 

 𝜎𝑟(𝑟) =
2

√3
𝜎𝑖 [

1

𝑚
(

𝑟

𝑅𝑖
)

𝑚

+ 𝐶] (12) 

 

 𝜎𝜃(𝑟) =
2

√3
𝜎𝑖 [(

1

𝑚
+ 1) (

𝑟

𝑅𝑖
)

𝑚

+ 𝐶] (13) 

 

As the plastic region reaches the radius 𝑅𝑐 (Fig. 2), the 

following boundary conditions apply. 

  

 𝜎𝑟(𝑟)|𝑟=𝑅𝑐

𝑝𝑙𝑎𝑠𝑡𝑖𝑐
= 𝜎𝑟(𝑟)|𝑟=𝑅𝑐

𝑒𝑙𝑎𝑠𝑡𝑖𝑐
= −𝑃𝑐 (14) 

 

The constant 𝐶, is obtained, and the stresses in the plastic 

zone are determined as follows. 

  

 𝜎𝑟(𝑟) =
2

√3

1

𝑚
𝜎𝑖 [(

𝑟

𝑅𝑖
)

𝑚

− (
𝑅𝑐

𝑅𝑖
)

𝑚

] − 𝑃𝑐 (15) 

 

 𝜎𝜃(𝑟) =
2

√3
𝜎𝑖 [(

1

𝑚
+ 1) (

𝑟

𝑅𝑖
)

𝑚

−
1

𝑚
(

𝑅𝑐

𝑅𝑖
)

𝑚

] − 𝑃𝑐 (16) 

 

By applying the von Mises yield criterion at 𝑟 = 𝑅𝑐, Eq. 

(17) is derived.  

 𝜎𝑒𝑞(𝑟)|
𝑟=𝑅𝑐

= 𝜎𝑦(𝑟)|𝑟=𝑅𝑐
 (17) 

The critical pressure at the elastic-plastic interface 𝑟 =
𝑅𝑐is expressed as follows.   

  𝑃𝑐 =
4𝜎𝑖

√3
.

(
𝑅𝑐
𝑅𝑖

)
𝑚

(𝑌𝑐
− 

𝑘
2−𝑌𝑐

𝑘
2)

𝑌𝑐

𝑘
2 .(𝑛−𝑘−2)+𝑌𝑐

− 
𝑘
2 .(2−𝑛−𝑘)

   

 

                                           − 𝑌𝑐
−

𝑛

2
+1  . 2. 𝑘. 𝑃𝑜                                          (18) 

 

By substituting Eqs. (17) into Eqs. (15) and (16), the 

radial and hoop stress distributions at any position (𝑟) and for 

different values of (𝑅𝑐) are expressed as follows.  

 

 𝜎𝑟(𝑟) =
2

√3

1

𝑚
𝜎𝑖 [(

𝑟

𝑅𝑖
)

𝑚

− (
𝑅𝑐

𝑅𝑖
)

𝑚

] 

           −
4𝜎𝑖

√3
.

(
𝑅𝑐

𝑅𝑖
)

𝑚

(𝑌𝑐
− 

𝑘
2 − 𝑌𝑐

𝑘
2)

𝑌𝑐

𝑘
2. (𝑛 − 𝑘 − 2) + 𝑌𝑐

− 
𝑘
2. (2 − 𝑛 − 𝑘)

   

          + 𝑌𝑐
−

𝑛

2
+1  . 2. 𝑘. 𝑃𝑜                                                      (19) 

 

 𝜎𝜃(𝑟) =
2

√3
𝜎𝑖 [(

1

𝑚
+ 1) (

𝑟

𝑅𝑖
)

𝑚

−
1

𝑚
(

𝑅𝑐

𝑅𝑖
)

𝑚

] 

 

            -
4𝜎𝑖

√3
.

(
𝑅𝑐

𝑅𝑖
)

𝑚

(𝑌𝑐
− 

𝑘
2 − 𝑌𝑐

𝑘
2)

𝑌𝑐

𝑘
2. (𝑛 − 𝑘 − 2) + 𝑌𝑐

− 
𝑘
2. (2 − 𝑛 − 𝑘)

   

         + 𝑌𝑐
−

𝑛

2
+1  . 2. 𝑘. 𝑃𝑜                                                      (20) 

 

2.2.3. Fully Plastic Stress Analysis 

The cylinder becomes fully plastic when 𝑅𝑐 it becomes 

equal to the outer radius 𝑅𝑜. In this case, the pressure 𝑃𝑝 

required to plasticise the entire cylinder is determined by 

considering the radial stress expressed by Eq. (15) at an outer 

radius equal to Eq. (22).  

 

 𝜎𝑟(𝑟)|𝑟=𝑅𝑜
= −𝑃𝑜 (22) 

 

𝑃𝑝 =
4𝜎𝑖

√3
.

𝑌𝑚 (𝑌− 
𝑘
2 − 𝑌

𝑘
2)

(𝑌)
𝑘
2. (𝑛 − 𝑘 − 2) + (𝑌) − 

𝑘
2. (2 − 𝑛 − 𝑘)

   

         − (𝑌)−
𝑛

2
+1  . 2. 𝑘. 𝑃𝑜 −

2

√3
.

1

𝑚
. 𝜎𝑖 . (1 − 𝑌𝑚)       (23) 

Therefore, the stresses in a fully plastic cylinder are 

determined using Eq. (24). 

𝜎𝑟(𝑟) =
2

√3

1

𝑚
𝜎𝑖 [(

𝑟

𝑅𝑖
)

𝑚

− 𝑌𝑚] − 𝑃𝑖                     (24) 

      

  𝜎𝜃(𝑟) =
2

√3
𝜎𝑖 [(

1

𝑚
+ 1) (

𝑟

𝑅𝑖
)

𝑚

−
1

𝑚
𝑌𝑚] − 𝑃𝑖        (25) 

 

2.3. Autofrettage Process 

2.3.1. Autofrettage Pressure 

By applying the stress-controlled boundary conditions in 

Eqs. (2), the autofrettage pressure𝑃𝑖, is obtained from the 

numerical solution of the following nonlinear equation.  

 

 

1  

2 2

2

2 2

4
.

3

.( 2) .(

    

2 1

2 )

. 1.2. . . .
3

         

k k
m

c o o

i c c

i
i k k

o o

c c

m

o c

c i

n

io

R R R

R R R

P

R R
n

k P

k n k
R R

R R

R Rm





−

−

−

+

 
      

−      
      

 
=

   
− − + − −   

   

    
 −   
     

− −

 (21) 

 

When the autofrettage pressure is completely removed, 

unloading pressure *P equals iP  . Unloading is perfectly 

elastic. There is no reverse yielding.  The elastic unloading 

process is analysed using
*

limP P . The stresses expressed 

by Eqs. (18) and (19) are modified by subtracting the solution 

for the purely elastic stresses expressed by Eqs. (4) and (5) 

such that the final residual stresses are as follows. 
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Plastic loading and elastic unloading zone ( i cR r R  ): 

2 2

2 2

1 1
2 2 2 2

0 0

1  
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Elastic loading and unloading zone ( c oR r R  ): 
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When the operating pressure is applied, the total stress of the 

partially autofrettaged cylinder becomes the sum of the 

residual stress and the stress generated by the operating 

pressure; that is, 

T R
r r r

T R
  

  

  

= +

= +
.    (30) 

2.3.2.Optimal Autofrettage Pressure 

The cylinder is expected to be under high internal 

pressure during operations; therefore, we employ the 

autofrettage process to increase the pressure-bearing capacity 

of the cylinder before use. An approach is defined by Molaie 

et al. (2018) under working conditions to determine the 

optimal level of autofrettage, and minimal hoop stress is 

generated. The various states of the total hoop stress, 

depending on the autofrettage pressure levels, were plotted 

together. The angled points on each curve indicate the elasto-

plastic boundary, which must be shown. The maximum point 

of each curve indicates the total hoop stress 𝑅𝑐. Hence, the 

envelope curve is defined as follows (Molaie et al. 2018). 
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                                                       (31) 

3. Results and Discussion  
In this study, an elastic-plastic stress analysis was 

performed for a hollow cylinder made of ceramic–metal 

FGMs under internal and external pressures Using analytical 

and numerical methods. Axisymmetric elements were used to 

model and mesh the cylinder in Ansys for the numerical 

method (Bist and Bhatt, 2021). Ansys enables the description 

of attributes that depend on temperature; in particular, one can 

assign temperature values that depend on position. These two 

scenarios act simultaneously to make the material quality 

dependent on the position. The effect of temperature was 

neglected in this study. For an Al A359/SiCp FG material with 

various SiC volume fractions, Rodriguez-Castro et al. (2002) 

reported the experimental data presented in Fig. 2. 

The cylinder was made of an FGM; an aluminium-alloy 

matrix reinforced with silicon carbide particles at 30% of the 

inner surface and 20% of the outer surface (Rodríguez-Castro 

et al. 2002). The geometrical and mechanical properties of the 

cylinder are listed in Table I using data extracted from Parvizi 

et al. (2011). 

 

 

 

 

 

Table 1. Geometrical and mechanical characteristics  

(Parvizi et al. 2011) 

𝑹𝒊 
(𝒎𝒎) 

𝑹𝒐 
(𝒎𝒎) 

𝑬𝒊 
(𝑮𝑷𝒂) 

𝜎𝑖 
(𝑀𝑃𝑎) 

𝑛 𝑚 

20  40 108.97 93.06 -0.28 -0.28 

 

Fig. 2 Stress–strain curves for monolithic Al A359 alloy and Al 

A359/SiCp composite at different volume fraction 

(Rodríguez-Castro et al. 2002) 
 
Fig. 2 shows the variations in the elasticity modulus 𝐸(𝑟) 

(a) and yielding stress 𝜎𝑦(𝑟) (b) in the radial direction of the 

FG Al A359/SiCp cylinder. 𝐸 and 𝜎𝑦 were assumed to exhibit 

similar variations, as shown in Fig. 2. However, they varied at 

different rates. The values of 𝐸and 𝜎𝑦 decreased from the 

inner surface to the outer surface. These variations were also 

observed in the numerical (Ansys) solutions.  
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Fig. 3 Variations of the (a) elasticity modulus and (b) yielding stress. 

Figs. 4–7 show the variations in the radial, hoop, normal, 

and equivalent stresses in elastic, elasto-plastic, and fully 

plastic cases. In the elastic case 𝑃𝑖 < 𝑃𝑙𝑖𝑚, all the stresses 

reach their maximum at the inner surface of the cylinder. The 

radial stress is always compressive, as it has negative values 

in all three cases. However, the hoop stress always has a 

positive value and represents the tensile stress. In the elasto-

plastic case, as the pressure increases above the elastic limit 

𝑃𝑖 > 𝑃𝑙𝑖𝑚, the plastic zone of radius (𝑟) propagates, and the 

maximum of the hoop, normal, and equivalent stresses 

relocate from the bore of the cylinder to half the thickness of 

the cylinder (𝑅𝑐/𝑅𝑜 = 0.75) and then decrease in the elastic 

zone. For the fully plastic condition 𝑃𝑖 = 𝑃𝑝, the stresses 

increase through the entire cylinder thickness, with the 

maximum stress at the outside radius. 

 
Fig. 4 Variations of the elastic, elastic–plastic and fully plastic radial 

stress in a  FG Al A359/ SiCp cylinder. 

 

Fig. 5 Variations of elastic, plastic, and fully plastic hoop stress in a  FG 

Al A359/ SiCp cylinder. 

 

Fig. 6 Variations of the elastic, elastic-plastic and fully plastic normal 

stress in an FG Al A359/ SiCp cylinder. 

 
Fig. 7 Variations of the elastic, elastic-plastic and fully plastic equivalent 

stress in an FG Al A359/ SiCp. 
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Fig. 8 shows the results for several values of (𝑅𝑜/𝑅𝑐). The 

hoop stress increases as a function of the widening of the 

radius of plasticity𝑅𝑐, particularly at 𝑅𝑐 = 𝑅𝑜. Hence, the 

existence of a pressure difference explains the presence of 

residual stresses. 

 

Fig. 8 Variations of radial and hoop stress in an FG Al A359/ SiCp 

cylinder for different pressure levels. 

The progress of the plastic zone is shown in Fig. 9. The 

equivalent stresses in the FG Al A359/ SiCp cylinder, and 

homogenous Al A359 cylinder (𝜎𝑦 = 200𝑀𝑃𝑎) are plotted 

for different 𝑅𝑜/𝑅𝑐 ratios in the radial direction. It was found 

that a plastic zone developed from the inner surface. 

Therefore, pressure 𝑃𝑖 is a function of the plasticity radius 

(𝑅𝑐). 

 
Fig. 9 The advance of the plastic zone for different ratios of FG Al 

A359/ SiCp cylinder and homogenous Al A359 cylinder. 

 

 

 

 

Fig. 10 and 11 show the residual stresses generated in the 

FG Al A359/SiCp and homogenous Al A359 cylinders. Both 

cylinders had already been loaded to pressure 𝑃𝑖 >
𝑃𝑙𝑖𝑚beyond the elastic range and then unloaded and reloaded 

with working pressure 𝑃𝑤. The plastic zone in the FG cylinder 

is less uniformly distributed; hence, the FG cylinder can resist 

a higher pressure to become fully plastic. 

 
Fig. 10 Radial stress distribution in a self-shrinking FG Al A359/ SiCp 

cylinder and homogenous Al A359 cylinder. 

 
Fig. 11 Hoop stress distribution in an autofrettaged FG Al A359/ SiCp 

cylinder and homogenous Al A359 cylinder. 

The curve shown in Fig. 13, which passes through the 

maximum values, has a minimum value whose corresponding 

pressure is the optimal autofrettage pressure. 
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Fig. 12 Variation of total hoop stress for different elasto-plastic 

boundaries 

 

 
Fig. 13 The envelope curve for several elasto-plastic boundaries going 

through the points of maximum total hoop stress 

 
The pressure required to start the yield and the pressure 

required to cause collapse to depend on the material behaviour 

and geometric characteristics. Fig. 14 shows the variations in 

these two limiting pressures for different inside-to-outside 

ratios of the FG Al A359/SiCp and homogenous Al A359 

cylinders. For the homogenous cylinder, the thicker the 

cylinder, the higher the two pressures, and the more significant 

the difference between the two. However, in the case of the 

FG Al A359/SiCp, the thicker the cylinder, the lower the 

pressure to start yielding, and the higher the pressure to cause 

collapse. 

 

 

Fig. 14 Variations of the pressure’s limit for different ratios of FG Al 

A359/ SiCp cylinder and homogenous Al A359 cylinder. 

4. Conclusion  
In the context of the small-deformation theory and von 

Mises criteria, this paper presents analytical solutions for the 

elastic-plastic stress behaviour of a hollow cylinder made of 

ceramic–metal FGMs under internal and external pressures. 

New mathematical and numerical methods for analysis under 

plane strain conditions are presented based on available 

experimental data for FG Al 359/SiCp. Purely elastic, partially 

plastic, and fully plastic stress states of the tube were 

investigated with continuously increasing internal pressure. 

As the pressure increased, the yielding region expanded 

throughout the outer surface of the cylinder. The pressure 

variation inside the cylindrical tube is a function of plasticity 

radius; however, the risk of crack evolution is lower for an FG 

Al A359/SiCp cylinder than for a homogeneous Al A359 

cylinder. It is crucial to determine the residual stress level to 

prevent the rupture of a cylindrical tube before it reaches its 

elastic limit. The results show that compared with a 

homogeneous Al A359 cylinder, an FG Al A359/SiCp 

cylinder exhibits increased load-bearing capacity. 

This study is a reference for designing hollow FG Al 

A359/SiCp cylinders with optimal constituents. 
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