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Abstract - The objective of the manuscript is to find the effect of cosine shape stenosis on different physical properties such as 

skin friction, resistance to flow, and flow rate of the stenosed artery. The Casson fluid is a thin shear fluid at high viscosity, 

and blood can be considered an example of Casson fluid. Numerical computation for different flow quantities normalized with 

Newtonian and non-Newtonian fluid has been done with the help of the two-point Gauss quadrature formula. The normalized 

flow resistance with Newtonian fluid increases with stenosis depth. However, normalized flow resistance with non-Newtonian 

fluid reduces by enhancement of yield stress. The normalized skin friction with Newtonian fluid is increased by increasing the 

yield stress value; normalized skin friction with non-Newtonian fluid is highest at stenosis throat, and lowest at the artery 

ends.    
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1. Introduction  
Atherosclerosis is one of the main health risks, and it 

refers to the contraction of the artery. It increases by some 

greasy substances or cholesterol-enriched lipid substances. 

This unnatural and abnormal expansion in the artery is called 

stenosis, which distracts the blood flow. The atherosclerotic 

plaque results in high flow resistance, pressure, and velocity 

variations. The geometry of the stenosis has a great influence 

on pressure, directions, and wall shear stress.  The stenosis's 

physical properties, like shape and size, affect the flow 

behaviour through cylindrical arteries, as Lorenzini and 

Casalena [10]. The high strain in the artery is caused by 

stenosis, which has the geometry of trapezium plaque shape, 

resulting in more probability of artery blockage.    

Many researchers have different opinions on blood 

characteristics inside the arteries, and blood is assumed as 

Newtonian fluid in manuscripts [9],[18]. In contrast, blood 

flow is considered a non-Newtonian fluid in manuscripts 

[11], [15]. The blood was demonstrated by the power-law 

fluid model in many manuscripts. Casson [4] also examined 

the validity of the Casson model for blood flow. Blair [2] and 

Copley [5] also examined the validity of the Casson model 

for blood flow. They found that Casson fluid model could 

demonstrate shear behaviour in narrow-sized blood arteries. 

Merrill et al. [12] reported that the Casson model having 

tubes of a diameter of 130-1000µm could be used for blood 

flow. Charm and Kurland [6] found that blood flow in slim 

arteries at a small shear rate could be demonstrated by Casson 

fluid model, and it could be used for large range shear rates 

and hematocrit. Blair and Spanner [3] also found that the 

blood flow model was demonstrated by the Casson model at 

a medium shear rate of blood. As per the theory of Aroesty 

and Gross [1], pulsating blood flow can be demonstrated by 

the Casson model when the flow is through narrow arteries. 

Chaturani and Samy [7] used the perturbation method to 

represent pulsating blood in stenosed arteries by the Casson 

model. 

 

The equation of Herschel-Bulkley in Casson fluid can be 

designed to one parameter equation of Newtonian 

consecutive equations. Chaturani and Ponalagarsamy [8] 

demonstrated the blood flow in the arteries, which has a 

cosine form of stenosis.  Sriyab [16] demonstrated the blood 

flow across stenosis of bell and cosine form. Owasit and 

Sriyab [17] demonstrated the blood flow across stenosis of 

symmetric and asymmetric shapes by a power-law 

representation. Manisha et al. [13] studied the result of heat 

and mass transfer on blood flow having two layers in 

stenosed artery with porous medium. Manisha et al. [14] 

analyzed the power-law fluid model to find the effect of 

various shape stenosis. Kumar et al. [19] studied the 

prediction of heart diseases based on the classification model 

of Ensemble with Tuned Training Weights. They used an HD 

prediction system for the classification of heart diseases. 

  

The Casson fluid model in stenosed arteries with cosine 

form stenosis was not analyzed mathematically per the 

existing literature survey. This present work will design a 

mathematical study for blood flow with a Casson model with 

cosine curve-shaped stenosed arteries at a low shear rate. 
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2. Formulation of the Problem 
The blood flow is considered a steady non-Newtonian 

flow, and the artery is considered of cylindrical shape having 

cosine form stenosis. The flow is in the axial direction (z), the 

artery wall is considered rigid by the existence of stenosis, 

and the Casson model demonstrates the properties of blood. 

The entering and end effects are ignored because of the long 

length of the artery. Cylindrical polar coordinates 

(𝑟, 𝜓, 𝑧)are considered to study, where r represents axial 

direction,  𝜓 is the azimuthal angle, and z represents radial 

directions. The stenosed artery of cosine shape is represented 

in Fig. 1. 

 

 
Fig. 1 Geometry of artery having stenosis. 

 
Eq. 1 represents the governing motion equation of blood 

flow: -  
−𝑑𝑝

𝑑𝑧
=
1

𝑟

𝑑(𝑟𝜏)

𝑑𝑟
                            (1) 

 

Shear stress is represented by 𝜏, and p indicates the pressure 

at any point. 

 
−𝑑𝑢

𝑑𝑟
= 𝑓(𝜏) = {

1

𝑘
(√𝜏 − √𝜏𝑐)

2
𝜏 ≥ 𝜏𝑐

0, 𝜏 ≤ 𝜏𝑐
             (2) 

 

Eq. 2 represents the Casson fluid model constitutive equation. 

Where k indicates viscosity coefficient,𝜏𝑐 represents yield 

stress, and u states blood velocity. The mathematical 

expression of the geometry of the constriction artery with 

cosines-form stenosis is represented by Eq. 3. 

 

𝑅(𝑧) = 𝑅0 [1 −
𝛿

2
(1 + 𝑐𝑜𝑠

𝜋(𝑧−𝐿)

𝐿0
)]                     (3) 

 

Where L represents the artery half-length, the radius of 

the normal and stenosed artery is denoted by 𝑅0 and 𝑅(𝑧) 

respectively. 𝛿 Indicates stenosis depth at the throat.  The 

half-length of the stenosis is represented by𝐿0. 

Boundary conditions for the above problem can be stated as 

 

𝑢 = 0 at 𝑟 = 𝑅(𝑧)                    (4) 

 

𝜏 is finite at 𝑟 = 0                    (5) 

 

3. Method of Solution  
Integrating (1) and using (4), we find 

 

𝜏 =
−𝑟

2

𝑑𝑝

𝑑𝑧
                                   (6) 

 

From (6), the skin-friction  

  

𝜏𝑅 =
−𝑅

2

𝑑𝑝

𝑑𝑧
                                                                  

(7) 

 

Where, 𝑅 = 𝑅(𝑧) 
 

𝑄 =
𝜋𝑅3

𝜏𝑅
3 ∫ 𝜏2𝑓(𝜏)𝑑𝜏

𝜏𝑅
0

                                (8) 

 

Q is the flow rate in Eq. 8. 

Using eq. (2) in eq. (8) we have  

 

𝑄 =
𝜋𝑅3

𝜏𝑅
3 ∫ 𝜏2

1

𝑘
(√𝜏 − √𝜏𝑐)

2
𝑑𝜏

𝜏𝑅
𝜏𝑐

                 (9) 

 

Integrating eq. (9) and after simplifying, we obtain 

 

𝑄 =
𝜋𝑅3

4𝑘
𝜏𝑅 {1 −

16

7
(
𝜏𝑐

𝜏𝑅
)

1

2
+
4

3
(
𝜏𝑐

𝜏𝑅
) −

1

21
(
𝜏𝑐

𝜏𝑅
)
4
} (10) 

Since 
𝜏𝑐

𝜏𝑅
≤ 1, neglect the term(

𝜏𝑐

𝜏𝑅
)
4

 in eq. (10), we obtain 

the flow rate as  

 

𝑄 =
𝜋𝑅3

4𝑘
𝜏𝑅 {1 −

16

7
(
𝜏𝑐

𝜏𝑅
)

1

2
+
4

3
(
𝜏𝑐

𝜏𝑅
)}                 (11) 

 

Using eq. (6) in eq. (11) 

 

−𝑑𝑝

𝑑𝑧
=
128𝜏𝑐

49𝑅
+
8

𝑅
(
𝑄𝑘

𝜋𝑅3
−

𝜏𝑐
2

147
) +

64

7𝑅
√𝑘𝑄𝜏𝑐
𝜋𝑅3

−
𝜏𝑐
2

147
    (12) 

 

Neglecting the term involved𝜏𝑐
2  in eq. (12), we obtain 

 

−𝑑𝑝

𝑑𝑧
=
128𝜏𝑐

49𝑅
+
8𝑄𝑘

𝜋𝑅4
+
64

7𝑅
√
𝑘𝑄𝜏𝑐

𝜋𝑅3
                              (13) 

𝑝 = 𝑝1 at 𝑧 = −𝐿 and 𝑝 = 𝑝2 at 𝑧 = 𝐿. 
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𝑝1 − 𝑝2 =
128𝜏𝑐

49𝑅0
∫

𝑑𝑧

(
𝑅

𝑅0
)

𝐿

−𝐿
+
8𝑄𝑘

𝜋𝑅0
4 ∫

𝑑𝑧

(
𝑅

𝑅0
)
4

𝐿

−𝐿
+
64

7
√
𝑘𝑄𝜏𝑐

𝜋𝑅0
5 ∫

𝑑𝑧

(
𝑅

𝑅0
)

5
2

𝐿

−𝐿
                                                                                        (14) 

After simplifying eq. (14), we get 

𝑝1 − 𝑝2 =
256

49

𝜏𝑐

𝑅0
((𝐿 − 𝐿0) + ∫

𝑑𝑧

(
𝑅

𝑅0
)

𝐿0
0

) +
16𝑄𝑘

𝜋𝑅0
4 ((𝐿 − 𝐿0) + ∫

𝑑𝑧

(
𝑅

𝑅0
)
4

𝐿0
0

) +
128

7
√
𝑄𝑘𝜏𝑐

𝜋𝑅0
5

(

 (𝐿 − 𝐿0) + ∫
𝑑𝑧

(
𝑅

𝑅0
)

5
2

𝐿0
0

)

 

                     
      (15)

 

𝜆 is the resistance to flow in Eq. 16. 

 

𝜆 =
𝑝1−𝑝2

𝑄
                                                                                                    (16) 

𝜆 =
256

49𝑄

𝜏𝑐

𝑅0
((𝐿 − 𝐿0) + ∫

𝑑𝑧

(
𝑅

𝑅0
)

𝐿0
0

) +
16𝑘

𝜋𝑅0
4((𝐿 − 𝐿0) + ∫

𝑑𝑧

(
𝑅

𝑅0
)
4

𝐿0
0

) +
128

7
√

𝑘𝜏𝑐

𝜋𝑄𝑅0
5

(

 (𝐿 − 𝐿0) + ∫
𝑑𝑧

(
𝑅

𝑅0
)

5
2

𝐿0
0

)

 

             

(17) 

 

The resistance to flow is denoted 𝜆𝑁 in the normal artery when stenosis is not present in the artery. 

 

                                                     𝜆𝑁 =
16𝐿

𝑅0
(
𝑘

𝜋𝑅0
3 +

16𝜏𝑐

49𝑄
+
8

7
√

𝑘𝜏𝑐

𝜋𝑄𝑅0
3)                             (18) 

 

The expression for a dimensionless form of resistance to flow is found as follows 

                                                  𝜆̄1 =
𝜆

𝜆𝑁
= 1 −

𝐿0

𝐿
+
1

𝐿

(

 
 
(
16𝜏𝑐
49𝑄

)𝐼1+(
𝑘

𝜋𝑅0
3)𝐼2+

8

7√
𝑘𝜏𝑐

𝜋𝑄𝑅0
3𝐼3

16𝜏𝑐
49𝑄

+
𝑘

𝜋𝑅0
3+

8

7√
𝑘𝜏𝑐

𝜋𝑄𝑅0
3

)

 
 

               (19) 

 

Where, 𝐼1 = ∫
𝑑𝑧

(
𝑅

𝑅0
)

𝐿0
0

, 𝐼2 = ∫
𝑑𝑧

(
𝑅

𝑅0
)
4

𝐿0
0

  and 𝐼3 = ∫
𝑑𝑧

(
𝑅

𝑅0
)

5
2

𝐿0
0

 

The resistance in the stenosed artery concerning the normal artery is denoted by  𝜆̄1 . The expression for  𝐼1, 𝐼2 and 𝐼3 can be 

represented as: - 

( )

0

1

0

0

1 1 cos
2

L
dz

I
z L

L

=
   −
− +  

  

  

𝐼2 = ∫
𝑑𝑧

[1 −
𝛿
2
(1 + 𝑐𝑜𝑠

𝜋(𝑧 − 𝐿)
𝐿0

)]
4

𝐿0

0

 

 

𝐼3 = ∫
𝑑𝑧

[1−
𝛿

2
(1+𝑐𝑜𝑠

𝜋(𝑧−𝐿)

𝐿0
)]

5
2

𝐿0
0

             (20) 

 

The integrals in eq. (20) are solved by applying the two-point Gauss quadrature formula we obtained, 

𝐼1 =
𝐿0

2(1 −
𝛿
2
[1 + 𝑐𝑜𝑠 (

𝜋(−1 + √3)

2√3
−
𝐿
𝐿0
)])

+
𝐿0

2(1 −
𝛿
2
[1 + 𝑐𝑜𝑠 (

𝜋(1 + √3)

2√3
−
𝐿
𝐿0
)])
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𝐼2 =
𝐿0

2(1 −
𝛿
2
[1 + 𝑐𝑜𝑠 (

𝜋(−1 + √3)

2√3
−
𝐿
𝐿0
)])

4 +
𝐿0

2(1 −
𝛿
2
[1 + 𝑐𝑜𝑠 (

𝜋(1 + √3)

2√3
−
𝐿
𝐿0
)])

4 

 

                  𝐼3 =
𝐿0

2(1−
𝛿

2
[1+𝑐𝑜𝑠(

𝜋(−1+√3)

2√3
−
𝐿

𝐿0
)])

5
2

+
𝐿0

2(1−
𝛿

2
[1+𝑐𝑜𝑠(

𝜋(1+√3)

2√3
−
𝐿

𝐿0
)])

5
2

                                    (21) 

 

 

The non-dimensional flow resistance of non-Newtonian behaviour is derived as follows: - 

 

𝜆̄2 =
resitance to flow of the non Newtonian fluid

resitance to flow of the Newtonian fluid in the same stenosed artery
 

 

 

 

𝜆̄2 = [
16

49
(
𝜋𝜏𝑐𝑅0

3

𝑄𝑘
) + 1 +

8

7
√
𝜋𝜏𝑐𝑅0

3

𝑄𝑘
] ⋅ (1 −

𝐿

𝐿0
) +

1

𝐿
[
16

49
(
𝜋𝜏𝑐𝑅0

3

𝑄𝑘
) 𝐼1 + 𝐼2 +

8

7
√
𝜋𝜏𝑐𝑅0

3

𝑄𝑘
𝐼3]  (22) 

 

                            Where, 𝜆𝑁𝑒 =
16𝑘𝐿

𝜋𝑅0
4                                           (23) 

Which is found from eq. (17), by  

𝛿 = 0, 𝑅(𝑧) = 𝑅0 and 𝜏𝑐 = 0. 

 

The derivation of skin friction is derived from eq. (7) and eq. (13), 

𝜏𝑅 =
−𝑅

2

𝑑𝑝

𝑑𝑧
=
𝑅

2
[
128𝜏𝑐
49𝑅

+
8𝑄𝑘

𝜋𝑅4
+
64

7𝑅
√
𝑘𝑄𝜏𝑐
𝜋𝑅3

] 

 

                                                  𝜏𝑅 =
64𝜏𝑐

49
+
42𝑘

𝜋𝑅3
+
32

7
√
𝑘𝑄𝜏𝑐

𝜋𝑅3
    (24) 

 

When 𝑅(𝑧) = 𝑅0,  the skin friction is:- 

                                                                    𝜏𝑁 =
64𝜏𝑐

49
+
4𝑄𝑘

𝜋𝑅0
3 +

32

7
√
𝑘𝑄𝜏𝑐

𝜋𝑅0
3                                                                   (25) 

 

Skin friction in non-dimensional form is defined as the skin friction in the stenosed artery concerning its value in the 

normal artery. From eq.  (24) and eq. (25), the dimensionless skin friction is obtained as:- 

 

                       𝜏̄1 =
𝜏𝑅

𝜏𝑁
  =

4𝑄𝑘+(
32

7
)(𝑄𝑘𝜏𝑐𝜋𝑅0

3)
1
2(

𝑅

𝑅0
)

3
2+(

64

49
)𝜏𝑐𝜋𝑅0

3(
𝑅

𝑅0
)
3

(
𝑅

𝑅0
)
3
[4𝑄𝑘+(

32

7
)(𝑄𝑘𝜏𝑐𝜋𝑅0

3)
1
2+(

64

49
)𝜏𝑐𝜋𝑅0

3]

                                                                (26) 

 

The dimensionless skin friction for non-Newtonian behaviour of blood is derived as: - 

 𝜏2 =
𝜏𝑅

𝜏𝑁𝑒
=

1

(
𝑅

𝑅0
)
3 +

16

49
(
𝜋𝑅0

3𝜏𝑐

𝑄𝑘
) +

8

7
(

1

(
𝑅

𝑅0
)

3
2

)√
𝜋𝑅0

3𝜏𝑐

𝑄𝑘
                                                                      (27) 

 

Where𝜏𝑁𝑒 =
4𝑘𝑄

𝜋𝑅0
3                                                                                                                 (28) 
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4. Results and Analysis  
The analytical expressions from equations (19), (22), 

(26), and (27) have been executed in MATLAB to show 

the results graphically. The effect of different flow 

properties on the flow resistance, flow rate, and skin 

friction are examined for different k, Q, and L values 𝑅0. 

In this work, the range of these parameters has been 

considered as k=2.0-7.0, 𝜏𝑐=0.0-0.5dyne/𝑐𝑚2, Q=0-1, 

L=5cm, and 𝑅0=0.40 to get data for plotting the graphs. 

 

Fig. 2 to 6 represents the stenosis effects on flow 

resistance normalized with non-Newtonian fluid. A 

comparison of the non-dimensional flow resistance 𝜆̅1 of 

cosine shape stenosis and bell shape stenosis for different 

models has been represented in Fig. 2. It is analyzed that 

resistance to flow for cosine form is more than bell form 

for a different kind of model. However, resistance to flow 

is enhanced along stenosis depth for both bell and cosine 

forms for different fluid types. 

 

Fig. 2 Graph of dimensionless resistance to flow 𝜆1̅ versus stenosis 

depth δ for various shapes. 

The profile of flow resistance normalized with non-

Newtonian fluid 𝜆̅1 along the depth of stenosis δ for the 

various magnitude of 𝐿0/𝐿 and k=7, Q=0.4, 𝜏𝑐=0.01 is 

displayed in Fig. 3. The flow resistance increases with the 

enhancement of the magnitude of stenosis length 𝐿0/𝐿 , 

and it has also been observed that flow resistance increases 

along the stenosis depth. The results of flow resistance 

along stenosis depth in the stenotic region are similar to the 

results obtained by Misra and Shit [11], contrary to the 

results of Sriyab [16]. 

 

Fig. 3 Graph of flow resistance 𝜆̅1 versus depth of stenosis δ for the 

different magnitude of 𝐿0/𝐿 (k=7, Q=0.4, 𝜏𝑐=0.0) 

The deviation in resistance to flow normalized with 

non-Newtonian fluid 𝜆̅1 at the different magnitudes of 

yield stress 𝜏𝑐 along stenosis depth δ is shown in Fig. 4. It 

is illustrated in Fig. 4 that resistance to flow enhances when 

the magnitude of yield stress reduces and it enhanced along 

stenosis depth. 

  

Fig. 4 Graph of resistance to flow 𝜆̅1 versus stenosis depth δ at yield 

stress 𝜏𝑐 and k=4, Q=0.2, 𝐿0/𝐿=0.4). 

Fig. 5 represents the resistance profile to flow 

normalized with Newtonian fluid 𝜆̅2 along stenosis depth 

δ, and the graph is plotted for various values of stenosis 

length 𝐿0/𝐿 and k=7, Q=0.4, 𝜏𝑐=0. The flow resistance 

increases across stenosis depth, but its value reduces for the 

different magnitude of the stenosis length. It is examined 

from the figure that when the magnitudes of stenosis length 

increase, flow resistance diminishes. 
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Fig. 5 Graph of resistance to flow 𝜆̅2 versus stenosis depth δ at stenosis length 𝐿0/𝐿 (k=7, Q=0.4, 𝜏𝑐=0.0) 

The deviation in resistance to flow Normalised with Newtonian fluid 𝜆̅2 for the various magnitude of yield stress 𝜏𝑐  

along stenosis depth δ is represented by Fig. 6. It is examined from the figure that its value increases when the magnitude 

of yield stress is enhanced. It is also enhanced along stenosis depth. The outcome for resistance to flow normalized with 

Newtonian fluid is similar to the results of Misra and Shit [11] but the opposite of Sriyab [16]. It can be investigated from 

fig. 2 to 6 that the effect of resistance to flow normalized with Newtonian fluid and normalized with non-Newtonian fluid 

exhibit different behaviour. 

 

Fig. 6 Graph of resistance to flow 𝜆̅2 versus stenosis depth δ for the different magnitude of yield stress 𝜏𝑐 (k=4, Q=0.2, 𝐿0/𝐿=0.4) 

A comparison of resistance to flow normalized with the non-Newtonian fluid 𝜆̅1 of cosine form and bell shape stenosis 

having Casson fluid with different types of arteries for the various value of radii and with different parameters a, δ, 𝐿0 and 

m have been demonstrated in Table 1. It is evident from Table 1 that the flow resistance for cosine form stenosis increases 

greatly when the length of stenosis and stenosis height increase, and it increases inconsiderably for different values of radii. 

The resistance to the flow of bell shape stenosis is also increasing with the increase of stenosis length, and it considerably 

magnifies with the increase of stenosis height. But it slightly diminishes with the enhancement of stenosis length parameter 

m. The estimated value of resistance to flow for cosine form is moderately greater than that of bell shape stenosis. However, 

resistance to flow considerably increases for both shapes of stenosis for different parameter values. The comparison of the 

estimated value of skin friction 𝜏̅2 for cosine shape stenosis (present study) and bell shape stenosis with different 

magnitudes of coefficient of viscosity k, yield stress 𝜏𝑐 = 0.05 , and axial variable z has been shown in Table 2. The skin 

friction normalized with Newtonian fluid is higher for bell shape than cosine shape for different values of viscosity 

coefficient. It is also examined that skin friction reduces moderately for both bell and cosine shapes when the magnitude 

of viscosity coefficient k enhances. 
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Table 1. Estimates in resistance to flow 𝜆̅1  for different arteries with variation in radii and 𝜏𝑐 = 0.05δ is the stenosis depth. 

 

Table 2. Variation in skin friction 𝜏̅2 for the different magnitude of viscosity coefficient k at yield stress 𝜏𝑐 = 0.05 and with 𝐿0/𝐿=0.5. 

 

 A comparison of dimensionless skin friction 𝜏̅2 for various models has been demonstrated in Figure 7. It is analyzed 

from the figure that skin friction in bell form stenosis is higher than in cosine form (for any type of fluid). However, skin 

friction normalized with Newtonian fluid increases for both bell and cosine shapes from the artery entry point to the mid-

point, decreasing from the artery mid-point to the exit point.

Fig. 7 comparison of normalized skin friction 𝜏̅2 along z for various 

fluids. 

 

Fig. 8 represents the profile of skin friction normalized 

with non-Newtonian fluid versus stenosis depth δ at the 

various magnitude of yield stress 𝜏𝑐  (k=4, Q=0.4, =0.3). It 

can be observed from the figure that normalized skin 

friction of the stenotic region reduces inconsiderably as the 

magnitude of yield stress enhances. It is also detected that 

normalized skin friction increases along stenosis depth. 

Fig. 9 shows the graph of skin friction normalized with 

non-Newtonian fluid 𝜏̅1 versus axial distance for the 

magnitudes of 𝜏𝑐 and 𝐿0/𝐿. The skin friction has the least 

value at the edges of the stenosis; however, it has the 

maximum value at the throat of stenosis. Furthermore, it is 

also illustrated from Fig.9 that skin friction normalized 

with non-Newtonian fluid enhances when the magnitude of 

stenosis length increases for a fixed magnitude of yield 

stress. Furthermore, it is also examined that skin friction 

reduces when the magnitude of yield stress diminishes for 

a fixed magnitude of stenosis length.  

 

Blood vessel        Cosine shape stenosis (𝜆̅1)                                                Bell shape stenosis(𝜆̅1) 

Radius 𝑅𝑜(cm) 

Flow rate Q 

(𝑐𝑚3𝑠−1)                      a=0.1    a=0.2                 a=0.1             a=0.1              a=0.2              a=0.1               a=0.2 

                                                     m=2              m=2                 m=3                 m=3                 m=2 

                                      𝐿0=1.0          𝐿0=1.5               𝐿0=1.0         𝐿0=1.5             𝐿0=1.5             𝐿0=1.5            

𝐿0=1.5 

Aorta 

(1.71.67) 

1.411 3.011   1.116 1.422 3.506 1.431 2.768 

Femoral 

(0.3,19.63) 

1.462 3.028 1.240 1.495 3.854 1.672 2.798 

Carotid 

(0.2.12.57) 

1.464 3.032 1.309 1.516 3.864 1.684 2.809 

Coronary 

(0.05,3.47) 

1.468 3.050 1.329 1.536 3.879 1.732 2.829 

Arteriole 

(0.002,0.00002) 

1.463 3.029 1.240 1.495 3.854 1.673 2.799 

z              𝜏̅2(present study)                                   𝜏̅2 ( bell shape stenosis) 

                      k=2              k=4               k=7                 k=2              k=4              k=7 

-1.5 1.395 1.311 1.263                          1.755 1.651                     1.591  
-1 1.857 1.747 1.684 2.445 2.303 2.220  
-0.5 2.550 2.402 2.316 3.525 3.323 3.204  
0 2.940 2.771 2.672 4.181 3.942 3.802  
0.5 2.550 2.402 2.316 3.525 30323 3.204  
1 1.857 1.747 1.684 2.445 2.303 2.220  
1.5 1.395 1.311 1.263 1.755 1.651 1.591 
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Fig. 8 Graph skin friction 𝜏̅1 versus stenosis depth δ at various yield 

stress 𝜏𝑐 (k=4, Q=0.4, 𝐿0/𝐿=0.3). 

 
  

Fig. 9 Graph skin friction  𝜏̅1  versus axial distance at various yield 

stress 𝜏𝑐 and stenosis length 𝐿0/𝐿(k=4, Q=0.4). 

The profile of skin friction normalized with Newtonian 

fluid 𝜏̅2 with the stenosis depth is represented in Fig. 10. 

The skin friction is enhanced slightly as the magnitude of 

yield stress is enhanced, and it is also detected that the skin 

friction is enhanced along stenosis depth. The variation in 

the profile of skin friction 𝜏̅2 along the stenosis depth at the 

different magnitude of viscosity coefficient is represented 

in Fig. 11. The skin friction reduces when the viscosity 

coefficient k increases, and the skin friction enhances along 

stenosis depth.  

 

Fig. 10 variation in skin friction𝜏̅2with stenosis depth δ for various 

yield stress 𝜏𝑐 (k=4, Q=0.4). 

 

 

Fig. 11 Graph of skin friction 𝜏̅2 versus depth of stenosis δ for the 

different magnitudes of the coefficient of viscosity k (𝜏𝑐=0.05, 

Q=0.4). 
 

The variation of skin friction normalized with 

Newtonian fluid 𝜏̅2 along axial distance z for the different 

magnitude of yield stress and viscosity coefficient has been 

represented by Fig. 12 and Fig. 13. It is examined from 

figures that the skin friction enhances from the artery entry 

point to the mid-point of the artery. It reduces from the mid-

point to the outlet of the artery. A comparison between 

Fig.12 and Fig.13 shows that skin friction is varied slightly 

by the magnitude of yield stress, and the skin friction is 

highly affected by the magnitude of the viscosity 

coefficient. The result is similar to the results of Misra and 

Shit [11]. 
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Fig. 12 variation in skin friction 𝜏̅2 at an axial distance for various 

yield stress 𝜏𝑐 (k= 4, Q=0.4). 

 

Fig. 13 variation in skin friction 𝜏̅2 at an axial distance for various 

magnitudes of yield stress 𝜏𝑐 (k= 2, Q=0.4). 

The comparison of flow rate along axial distance for 

various types of fluid has been represented in Fig. 14. It is 

revealed from the figure that the flow rate for the cosine 

shape is higher than for the bell shape. Furthermore, it is 

found that the flow rate curve for bell shape with the 

Casson model lies between the plots of bell form with 

Herschel-Bulkley fluid and cosine form of Power-law 

fluid. 

 
Fig. 14 Graph flow rate Q versus axial distance for various types of 

the fluid model. 

  Fig. 15 shows the plot of flow rate Q versus z at the 

various magnitude of the coefficient of viscosity k and 

yield stress 𝜏𝑐. The flow rate decreases with either the 

viscosity coefficient or yield stress. The flow rate is highest 

at the edges of the stenosed artery and lowest at the stenosis 

throat.  

 
Fig. 15 Graph flow rate versus z at the different magnitudes of yield 

stress 𝜏𝑐 and viscosity coefficient k. 

The variation in flow rate for the different magnitude 

of stenosis length along axial direction has been shown in 

Fig.16. It is observed from the figure that flow rate 

decreases when the length of stenosis increases and flow 

rate is minimum at the neck of the artery. It achieves 

maximum at the edge of the artery. 



Manisha & Surendra Kumar / IJETT, 70(8), 336-346, 2022 

 

345 

 
Fig. 16 Graph flow rate versus z at the different magnitudes of 

stenosis length and k=4. 

5. Conclusion 
 A mathematical analysis of a non-Newtonian blood 

flow model with cosine-shaped stenosis in the artery is 

presented by considering blood as Casson fluid. The 

outcomes of this work have been compared with the 

outcomes of Misra and Shit for bell shape (Herchel-

Bulkley fluid) [11] and Sriyab for cosine and bell shape 

(Power-law fluid) [16]. The main observations are as 

follows: 

 

1. Skin friction for bell shape for a different type of fluid 

is higher than cosine shape. It can be detected that the 

bell shape greatly impacts skin friction (friction 

against the artery membrane) more than the cosine 

shape. 

2. Flow resistance for cosine form for a different fluid 

type is higher than bell shape. This implies that 

resistance to flow for cosine shape stenosis greatly 

impacts blood to flow more than bell shape stenosis. 

3. Resistance to flow for normalized with Newtonian 

fluid and normalized with non-Newtonian fluid (i.e. 

the effect of stenosis and non-Newtonian fluid) 

different exhibit behaviour. 

4. Flow rate for cosine shape stenosis is higher than bell 

shape stenosis in the stenotic region. It can be 

determined that cosine shape stenosis with Casson 

fluid greatly influences flow rate more than bell shape 

stenosis with Casson fluid. 

 

Therefore, it is investigated that different geometry of 

stenosis like cosine and bell shape stenosis, length, yield 

stress, viscosity coefficient, and depth of stenosis are the 

important aspects that affect the blood flow in the stenosed 

artery. Further, the study of non-Newtonian blood flow 

with various models could be an important step in curing 

and diagnosing cardiovascular diseases.
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