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Abstract - This study compared the accuracy of existing and a proposed second-order least square based cell centre derivation 

of velocity within an unstructured mesh finite volume solver. We tested the algorithms in isolation on ideal data to determine 

their basic numerical accuracy on good quality and artificially distorted meshes. The study found that the least-square-based 

cell centre derivations were more accurate than Gauss divergence-based derivations. The preliminary interpolation stage in 

cell centre derivation increased L1 error and reduced the order of accuracy in the distorted mesh. The second-order least 

square-based cell centre derivations were the most accurate among the methods tested in this study. The Frink's cell centre 

derivation was the least accurate. 
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1. Introduction   
Unstructured and cell-centred finite volume solvers 

have great popularity in solving the general transport 

equation of heat and mass flow because of the ability of the 

methods to model actual engineering flow in complex 

domains [1] [2] [3]. However, the finite volume method still 

needs improvement, especially in terms of convergence and 

accuracy. Many things influence the accuracy of the finite 

volume method, one of them flows variable derivation at cell 

centres. The cell centre derivation in the unstructured mesh is 

generally based on the Gauss divergence theorem introduced 

by Bart and Jespersen [4]. The other is based on the least-

squares approximation of local Taylor series expansions 

described by Anderson and Bonhaus [5]. Anderson's least 

square-based methods were then improved by White [6] 

using a weighing function. Nishikawa [7] used two gradient-

stencil augmentation techniques in the least square-based 

derivation to overcome the stability issue of the finite volume 

solver. Athkuri [8] improved the Gauss divergence-based 

derivation by using an axillary cell around the cell interest; 

the gradient at the cell centre was then calculated using the 

face centre data of the auxiliary cell—the method known as 

the Circle Green Gauss (CGG) methods. The procedures 

were later improved by Athkuri [9] by reducing the 

complexity of the implementation of CGG. 

Aftosmis et al. [10] compared the Gauss divergence and 

the least square-based methods. They found the least square-

based approach was better than the Green-Gauss-based 

method in the distorted mesh. Mavriplis [11] found Gauss 

divergence base derivation more accurate than least square 

based derivation in the highly stretched mesh. Correa et al. 

[12] and Syrakos [13] found Gauss divergence-based 

derivations have poor performance for poorly shaped 

elements. Diskin [14] compared the effect of several cell 

centre derivations on inviscid flow solution and suggested 

that cell-centred nearest-neighbour derivation with smart 

augmentation of the LSQ stencil was the best choice for 

curved geometry.  

Some researchers have compared several cell centre 

derivation methods using certain test cases, and others have 

compared other methods with different test cases. The 

difference in test cases causes difficulties in determining the 

best among the existing methods. In this study, several cell 

derivation methods were compared using a flow past circular 

cylinder as a test case. This test case was chosen because of 

the availability of analytical solutions, and the flow has 

strong velocity gradients representing most of the fluid flow 

conditions. A second-order least square-based cell centre 

derivation was also proposed in this study. 

2. Methods for the derivation of flow variables 

at cell centres 
In the Navier-Stokes solver, two distinct algorithms 

have evolved for cell derivation evaluation on unstructured 

meshes: one, introduced by Barth and Jespersen [4], based on 

Gauss's divergence theorem, and the other based on least-

squares approximation of local Taylor series expansions, as 

described by Anderson and Bonhaus [5]. Both methods are 

presented briefly in this section. 

https://www.internationaljournalssrg.org/
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2.1. Determination of cell-centre derivation  using Gauss's 

divergence theorem 

Gauss's divergence theorem applies to a closed 

region V of space R bounded by a smooth surface A . If �⃗� 

is a smooth vector field over R, and �⃗⃗� is an outward-

facing unit vector locally normal to element dA of the 

surface, then 

∫ 𝛻 ⋅ �⃗� 𝑑𝑉
𝑅

= ∫ �⃗� ⋅ �⃗⃗� 𝑑𝑆
𝑆

     (1) 

Gauss's theorem may also be applied to a scalar𝜑in the 

form 

∫ 𝛻
𝑅

𝜑 𝑑𝑉 = ∮ 𝜑 �⃗⃗� 𝑑𝐴
𝑆

     (2) 

and so the average value of the gradient 𝛻𝜑 over the 

elementary  volume dV  is given by 

𝛻𝜑 =
1

𝑑𝑉
∮ 𝜑 �⃗⃗� 𝑑𝐴
𝑆

    (3) 

For the volume that has a finite number of plane faces, the 

surface integral 𝜑in Equation (3) can be estimated using 

second order accurate midpoint rule  

 𝛻𝜑 ≈
1

𝛥𝑉
∑ 𝜑𝑓𝑖

 �⃗⃗�𝑖 𝛥𝐴𝑖
𝑖=𝑘
𝑖=1     (4) 

where, �⃗⃗�𝑖 and 𝛥𝐴𝑖are normal vectors and area of the surface.  

𝜑𝑓𝑖
is the interpolated value 𝜑 at the centre of 𝑖𝑡ℎthe face. 

Although the overbar has been dropped for simplicity, the 

gradient in Equation (4) is still a mean value for the 

element considered, so the representation is first- order 

accurate. 

Barth and Jespersen were the first workers to apply this 

numerical technique to gradient determination on 

unstructured meshes [4]. Working in two dimensions, they 

defined two regions around a mesh cell to apply Equation 

(4), as shown in Figure 1. The first region was triangular, 

with its vertices corresponding to cell centres for the grid 

cell's immediate or "face neighbour" cells for which the 

gradient was to be determined 𝑐0. The second region 

suggested was polygonal, linking cell centres at all cells 

which shared a vertex with the gradient cell 𝑐0. By arranging 

the boundaries of these regions to link cell centres, where 𝜑 

values are known as the face centre value, 𝜑𝑓𝑖
in  

 
 (a) (b)  

Fig. 1 Barth and Jespersen integration regions for Gauss's theorem 

Equation(4) can be estimated as the average of 𝜑 cells 

connected by face 𝑖𝑡ℎ. Barth and Jespersen rejected the 

simple triangular integration region, as in Figure 1a, because 

it could degenerate for highly skewed meshes and adopted 

the more complex stencil as in Figure 1b.  

 

To simplify the boundary definition, both Frink [15] 

and Mathur and Murthy [16] used an integration region that 

corresponded exactly to the grid cell for which the gradient 

was determined. To perform the face summations on the 

right-hand side of Equation (4) 𝜑𝑓𝑖
was estimated as the 

average of 𝜑 the vertices connected by the face 𝑖𝑡ℎ. Mathur 

and Murthy determined 𝜑 the vertex from 𝜑 at the cell center 

around the vertex using inverse distance interpolation, while 

Frink used simple average interpolation. 

2.2. Determination of cell-centre gradient by least-squares 

An alternative method for computation of cell centre 

gradient value, based solely on cell centre values 𝜑, uses a 

least-square approach. In the method, only 𝜑 values for the 

local cell centre 𝑐0and its immediate edge neighbours are 

used to provide a compact stencil, though additional points 

could be included. 

 

Referring to Figure 2, the first order expansion for�̃�𝑐𝑖,  

the approximate value at cell centre ci is 

�̃�𝑐𝑖
≈ 𝜑𝑐0

+ (
𝜕𝜑

𝜕𝑥
)

𝑐0

𝛥𝑥𝑖 + (
𝜕𝜑

𝜕𝑦
)

𝑐0

𝛥𝑦𝑖     𝑖 = 1. . . 𝑘 (5) 

The subscript  indicates values at the central point, whilst   

and  are the components of the vector displacement between 

the cell centre and the cell centre 𝑐𝑖. 𝑘 is the number of the 

cell immediately around the cell 𝑐0. The true value at the cell 

centre 𝑐𝑖 is known, so the local error is  

  

 
Fig. 2 Compact stencil for gradient determination by least-squares 

𝜀𝑐𝑖
= 𝜑𝑐𝑖

− 𝜑𝑐0
− (

𝜕𝜑

𝜕𝑥
)

𝑐0

𝛥𝑥𝑖 − (
𝜕𝜑

𝜕𝑦
)

𝑐0

𝛥𝑦𝑖     𝑖 = 1. . 𝑘 (6) 
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Eq.(6) provides 𝑘 equations, in this case, 3, with 2 

unknowns derived 𝜑 at the cell centre. Thus a least-squares 

solution is required to minimise the sum of the squares of the 

error terms. The normal equations for this least-squares 

approximation may be written in matrix form as 

𝐴𝑇𝐴 𝑥 = 𝐴𝑇 𝑏      (7) 

where 

𝐴 = [

𝛥𝑥1 𝛥𝑦1 1
𝛥𝑥2 𝛥𝑦2 1
⋮
𝛥𝑥𝑛𝑐

⋮
𝛥𝑦𝑛𝑐

⋮
1

]     (8) 

𝑥 = [

(
𝜕𝜑

𝜕𝑥
)

𝑐0

(
𝜕𝜑

𝜕𝑥
)

𝑐0

]     (9) 

and 

𝑏 = [

𝜑𝑐1
− 𝜑𝑐0

𝜑𝑐2
− 𝜑𝑐0

⋮
𝜑𝑐𝑛𝑐

− 𝜑𝑐0

]     (10) 

However, the normal equations are prone to ill-conditioning, 

so a direct solution of Equation (7) is not recommended. 

Instead, the matrix A is decomposed into an orthogonal 

matrix Q and an upper triangular matrix R. Gram-Schmidt 

decomposition method [17] was used in this work. Using this 

QR decomposition, the normal equations may be solved as 

[18]: 

 

 

 
Fig. 3 Extended stencil for higher order derivative determination by 

least-squares 

𝑥 = 𝑅−1𝑄𝑇𝑏      (11) 

 The least-squares method may be extended to second-

order accuracy by including second- order terms in the 

truncated Taylor series used to estimate the approximate 

scalar value �̃�𝑐𝑖
 at neighbour cell centres, such as𝑐𝑖 in 

Figure 9. 

 

�̃�𝑐𝑖
≈ 𝜑𝑐0

+ (
𝜕𝜑

𝜕𝑥
)

𝑐0

𝛥𝑥𝑖 + (
𝜕𝜑

𝜕𝑦
)

𝑐0

𝛥𝑦𝑖

+
1

2!
(
𝜕2𝜑

𝜕𝑥2
)

𝑐0

𝛥𝑥𝑖
2 

+(
𝜕2𝜑

𝜕𝑥𝜕𝑦
)

𝑐𝑜

𝛥𝑥𝑖𝛥𝑦𝑖 +
1

2!
(

𝜕2𝜑

𝜕𝑦2)
𝑐0

𝛥𝑦𝑖
2  

    (12) 

As previously mentioned, the error 𝜀𝑐𝑖
 between this 

approximation and the known value of 𝜑 at 𝑐𝑖may be 

found, and the sum of the squares of such errors taken over 

all neighbour cells 𝑐𝑖 to 𝑐𝑘 may be minimised to give a 

least-squares solution for the derivatives at the cell centre𝑐0. 

The number of neighbour cells used must exceed the 

number of unknowns, which is now 5, so immediate "face 

neighbours" are no longer sufficient. Instead, the 

neighbours are taken as all cells which share a vertex 

with t h e  cell 𝑐0, as shown in Figure 3. Solution of the 

least-squares equations is again obtained by the QR 

reduction method of  Equation (12), but now 

 

𝐴 =

[
 
 
 
𝛥𝑥1 𝛥𝑦1 0.5𝛥𝑥1

2 𝛥𝑥1𝛥𝑦1 0.5𝛥𝑦1
2

𝛥𝑥2 𝛥𝑦2 0.5𝛥𝑥2
2 𝛥𝑥2𝛥𝑦2 0.5𝛥𝑦2

2

⋮ ⋮ ⋮ ⋮ ⋮
𝛥𝑥𝑛𝑐

𝛥𝑦𝑛𝑐
0.5𝛥𝑥𝑛𝑐

2 𝛥𝑥𝑛𝑐
𝛥𝑦𝑛𝑐

0.5𝛥𝑦𝑛𝑐
2
]
 
 
 

 (13) 

and  
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3. Comparison of cell centre derivative 
In this study, the cell centre gradient algorithms were 

tested in isolation rather than their effect when used in 

governing equation solver. The algorithm's accuracy was 

determined by comparing the cell centre derivative of fluid 

velocity from the tested algorithm with the test-case analytic 
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solution in the form of the L1 norm of the errors. The past 

flow cylinder was used as a test case. The analytical solution 

of the flow was determined by modelling the flow as a 

superimposed source and sink of equal strength [19]. 

 

The test case domain has a mesh with three different 

amounts of three angular cells of 1364, 11976 and 131898. 

The mesh was created by Delaunay triangulation with an 

equal face length at the boundary domain. To simulate the 

performance cell centre derivation algorithm in distorred 

mesh, a randomised mesh was produced by a randomly 

perturbed vertex coordinate. The calculation domain with 

1364 cell standard and randomised meshes is shown in 

Figure 4. 

 

Figure 5 compares the performance of the cell centre 

derivative algorithms in the standard mesh. The figure 

shows that Frink, Bart and Jespersen (BJ), Mathur and 

Murthy (MM), and the first order least square (FLS) based 

cell centre derivation have approximately first-order 

accuracy for the good quality standard mesh, with little to 

choose between them in terms of absolute error.   

 

However, more significant differences are evident for 

the randomised mesh, as shown in Figure 6. Frink and the 

MM cell centre derivation exhibit increased absolute error 

values and were significantly poorer than first-order error 

reduction with grid refinement. This condition was due to 

the cell centre derivation algorithms involving a preliminary 

inverse interpolation from the cell centre to the cell vertex 

only having first-order accuracy in standard mesh 

 
Fig. 4 Standard (top) and randomised (bottom) test meshes (Tasri, 

2021a, 2021b) 

as reported by Tasri [3] and  Wang [20]. A similar condition 

was reported by Diskin [21], who found that the cell centre 

derivation that involves node averaging has only first-order 

accuracy. The errors of the inverse distance interpolation 

can be shown by writing 𝜑at a vertex as an interpolated of 

𝜑 at cells around the vertex. 

 

𝜑𝑣 =
∑

1

𝑙𝑖
𝜑𝑖

𝑛
𝑖=1

∑
1

𝑙𝑖

𝑛
𝑖=1

      (15) 

 

Where 𝑙𝑖 represents a Euclidean distance from cell i to 

vertex v. While 𝜑𝑖 can be determined using Taylor series 

expansion 𝜑at the vertex v 

 

𝜑𝑖 = 𝜑𝑣𝑒 + 𝛥𝑥𝑖
𝜕𝜑𝑖

𝜕𝑥
+ 𝛥𝑦𝑖

𝜕𝜑𝑖

𝜕𝑦
+ 𝑂(𝛥2)   (16) 

 

Where 𝜑𝑣𝑒 is the exact value of 𝜑 at the vertex v. 𝜑𝑣 −
𝜑𝑣𝑒 is the error of the inverse distance interpolation. The 

error can be determined by substituting 𝜑𝑖 in Equation (15) 

with Equation (16), yield: 

 

𝜑𝑣 − 𝜑𝑣𝑒 =
𝜕𝜑

𝜕𝑥

∑ (𝛥𝑥𝑖
1

𝑑𝑖
)𝑛

𝑖=1

∑ (
1

𝑑𝑖
)𝑛

𝑖=1

+
𝜕𝜑

𝜕𝑦

∑ (𝛥𝑦𝑖
1

𝑑𝑖
)𝑛

𝑖=1

∑ (
1

𝑑𝑖
)𝑛

𝑖=1

+ 𝑂(𝛥2)  (17) 

 

Equation (17) shows that 𝜑𝑣is second-order accurate if the 

conditions in Equations (18) and (19) are satisfied: 

 

∑ 𝛥𝑥𝑖
1

𝑑𝑖

𝑛
𝑖=1 = 0     (18) 

 

∑ 𝛥𝑦𝑖
1

𝑑𝑖

𝑛
𝑖=1 = 0     (19) 

 

The second-order accurate condition in Equations (18) 

and (19) will only be met if cell centres are evenly 

distributed around the vertices. This condition is only 

possible if a rectangular structured mesh is used. The cell 

centre is randomly distributed in an unstructured mesh so 

that the accuracy will be less than second-order. The 

interpolation error increases if the mesh is distorted. Thus, 

the error of the cell centre derivation algorithms involving a 

preliminary interpolation also increases. In contrast, FLS 

and BJ do not involve the preliminary interpolation and 

exhibit very little increasing error in the distorted mesh.   

 

The first order least-squares method shows almost 

identical results with the best Gauss's theorem algorithm 

due to BJ, the differences being less than plotting accuracy. 

 

The second order least-squares (SLS) based method 

returns a truly second order increase in accuracy with grid 

refinement, at least with this ideal data, and a significant 

decrease in absolute error level. 

 



Adek Tasri / IJETT, 70(8), 166-171, 2022 

 

170 

Based on these results, the least-squares methods 

appear to offer significant advantages. The first order least-

squares scheme seems slightly more accurate than the best 

of Gauss's theorem methods, is at least as efficient in terms 

of storage requirements and arithmetic operation count, and 

is very easy for the programmer. In common with all the 

least-squares methods, the sensitivity to mesh distortion is 

very low, whilst modifications at mesh boundaries are 

relatively easily handled. 

 

Using the QR algorithm to solve the least-squares 

equations, least-square-based cell centre derivations are 

efficient and robust. For the limited range of test cases 

studied, the present authors did not encounter any 

degeneration problems or ill-conditioning suggested in 

previous work, even when using randomised meshes. If cell 

distortion is large enough for such problems to appear, other 

aspects of the CFD solution are likely to be inadequate. 

 
Fig. 5 The L1 error of  cell centre derivative of velocity in standard 

mesh 

 

 
Fig. 6  The L1 error of cell centre derivative of velocity in distorted 

mesh 

4. Conclusion 
The accuracy of cell centre derivation algorithms was 

tested in this study. Based on the test data, the following 

conclusions may be drawn: 

1. The least-squares-based cell centre derivations and 

Barth and Jespersen's derivation operate directly on 

the stored data at cell centres without a preliminary 

interpolation stage. The algorithms were more 

accurate than those relying on a preliminary 

interpolation stage. Mesh quality did not affect the 

L1 error and order of accuracy of the algorithms. 

 

2. The first order least-square based cell centre 

derivation and Bart and Jespersen's derivation have 

similar L1 errors and order of accuracy for standard 

and distorted mesh.  

 

3. The second-order least-square-based cell centre 

derivation has the lowest L1 error and the highest 

order of accuracy among the algorithm tested in this 

study. The Frink's cell centre derivation was the 

least accurate. 

 

4. Compared to Gauss divergence-based derivation, 

the least square base derivation has a lower error. 
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