
International Journal of Engineering Trends and Technology Volume 70 Issue 8, 158-165, August 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I8P216 © 2022 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Prime Learning – Ant Colony Optimization Technique

for Query Optimization in Distributed Database System

Praveena Mydolalu Veerappa1, Ajeet Annarao Chikkamannur2

1Department of Computer Science and Engineering, Dr Ambedkar Institute of Technology, Karnataka, India
2Department of Computer Science and Engineering, Nagarjuna College of Engineering and Technology, Karnataka, India

1 mv_praveena@rediffmail.com

Received: 10 June 2022 Revised: 26 July 2022 Accepted: 01 August 2022 Published: 22 August 2022

Abstract - Query optimization is an important factor in a distributed database system that finds the parameters for the

optimal execution of a plan to reduce the runtime. Query optimization is a challenging task in a distributed system that helps

improve the database's efficiency. Various pieces of research applied Ant Colony Optimization (ACO) based method to

improve query optimisation performance. The Prime Learning - Ant Colony Optimization (PL-ACO) method is applied to

increase query optimisation performance in this research. The Prime strategy method is applied in the ACO method to

replace the worst learner with the best learner to improve the learning rate. The key idea of the proposed method is to use

the Prime strategy on Ant Colony Optimization to reduce the search space-time for query joins in a distributed database

system. For Query access, processing and resource processing cost, the fitness function is created for each possible query

join solution. For fitter functions, queries are being taken for processing in the next round, and weaker ants are eliminated.

This process reduces the number of ants at each iteration, and the optimal solution is achieved quicker. Various queries in

the database were used to test the efficiency of PL-ACO in query optimization. The system model is developed to apply the

query in the system and evaluate the cost of the model. The proposed PL-ACO method has 10 iterations for 0.2 cost and

existing ACO method has 68 iterations, and the ACO-Genetic Algorithm (GA) method has 65 iterations.

Keywords - Genetic Algorithm, Learning Rate, Prime Strategy, Query optimization.

1. Introduction
Multi-Query Optimization (MQO) is finding the

essential keyword in a database system for query processing

to find the related information. MQO method explains

answers to a set of queries with a common task, and each

query has alternate executive plans. Each plan has a set of

common tasks among several queries [1]. The cost-based

query optimization uses cost as a factor to provide answers

to the queries. The query uses various methods based on

sorting, conditions and indexes. Integrating tables with join

orders cost was used for the query optimizer computed only

once. Table integration of least cost is used in the database

and for query optimization in the future process [2]. The

straightforward way to break through query limitation is to

reduce privacy cost in each query, and more query is

answered in privacy protection. The privacy cost

minimization and privately answer a query with the urgent

issue in data publishing [3]. The MQO method finds

similarities among a set of queries, and various methods

were used to avoid the search process in query execution.

The MQO method provides small optimization overheads to

increase query performance using pipelining, materialized

views selection and sharing sub-expressions [4]. Low-level

expressions from high-level language are mapped in the

query in major impulsion of query processing. The low-

level expressions are set to find a strategy for query

execution [5].

The database community has studied the MQO, a well-

known database research problem. The MQO method

constructs a global plan to take advantage of common tasks,

and many algorithms are proposed, such as improved and

heuristic algorithms, to solve this problem [6, 7]. Different

forms can be used to access a database based on a query,

and query clauses of order changing do not change query

results that can change response time. In querying a large

database, response time is important. The query

optimization method involves finding a query path to reduce

the joined number and evaluating a query to respond as soon

as possible to improve query run time [8 – 10]. Existing

query optimization techniques have limitations of lower

learning and local optima trap that degrades the

performance. The objectives and contribution of the

research are discussed below:

1. Prime strategy is applied to the Ant Colony

Optimization method to replace the worst learner

with the best learner, which helps improve the

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Praveena Mydolalu Veerappa & Ajeet Annarao Chikkamannur / IJETT, 70(8), 158-165, 2022

159

model's learning efficiency. The Prime strategy with

the ACO method reduces the search space-time for

query joins in the distributed database system.

2. A fitness function is created for each possible query

join solution that helps Prime strategy with ACO to

find the solution with less time and reduces resource

processing costs in the system.

3. Fitter functions measured in the optimization method

are considered for processing in the next round, and

weaker ants are removed. The number of ants is

removed at each iteration, achieving an optimal

solution quicker.

This paper is organized as follows: Query optimization

of the literature review is provided in Section 2, and the

proposed method is explained in Section 3. The simulation

setup is provided in Section 4, and the result is provided in

Section 5. The conclusion of this research paper is provided

in Section 6.

2. Literature Review
The query optimization is important for a database

management system that performs the appropriate process

for user query execution. Some of the research involved in

the optimization of join queries were discussed in this

section.

Panahi and Navimipour [11] proposed a genetic

operator and artificial bee colony to increase efficiency for

join query optimization in database management. The

global-local search capability and genetic operator were

combined to create a candidate solution to improve

Artificial Bee Colony (ABC) algorithm performance. The

query cost evaluation was reduced, and the Top-K query

quality plan was improved. The genetic operator increases

the variety of solutions and reduces a query plan creating

cost. The developed method reduces the optimisation

overhead of the current query plan method. The developed

method has the limitation of a trap into local optima and

poor convergence, providing priority to local search. The

Artificial Bee Colony method processing cost is more due to

increases in the number of local features in the search.

Jafarineja and Amini [12] proposed an enhanced ACO

algorithm to reduce the required processing efforts in multi-

join query optimization. A bucked-based encrypted database

generated total false-positive results in the proposed model.

The enhanced method provides a quality solution with less

response time. The developed method significantly reduces

the multi-join query processing effort and the total amount

of false-positive results. The method prevents pointless

operations and produces feedback to find the best solution

from useful meta-data. The developed method finds a better

solution faster than successful methods in query

optimization. The developed method was not applicable for

large datasets due to the method solution rearranging the

bucket around a certain level.

Mohsin [13] proposed a quantum-inspired ACO method

based on the probabilistic algorithm of the hybrid method in

distributed database model to increase the query join cost.

The best trial selection in a large search space for diversified

ability in quantum computing. The developed model was

suitable for the distributed database and has higher

efficiency in query optimization. The result of the developed

method shows that the developed method handles simple

and complex queries with less cost than the existing method.

The searching efficiency of the model was lower than the

existing method in query optimization. The quantum-

inspired model applies a higher number of candidate

solutions for the search process, which tends to increase the

cost of processing.

Gao [25] proposed Histogram and Tuple Size in Join

Multi-query Optimization (J-MOTH) for sharing data

granularity, join granularity and implicit sort. The sort-based

optimization was applied to implicit sort among join

queries, and an additional model was used to optimize

shared work. The developed method avoided the implicit

sort operation and joined the redundant result. The result

shows that the developed J-MOTH performs better than the

naïve and fine-grained technique. The developed method

has the limitation of a trap into local optima and poor

convergence, providing more priority to exploration.

Kumar and Jha [15] proposed the ACO-GA method and

Hadoop Distributed File System (HDFS) map-reduce

method to improve query optimization in Big Data. The

developed method consists of two phases: Big Data (BD)

arrangement and query optimization phase. The SHA-512

algorithm was applied to pre-process the input data finding

the Hash Value and HDFC map removal function to remove

repeated data. The features such as confidence, support and

frequent pattern are extracted. The entropy calculation was

used to manage confidence and support. In the second

phase, BD queries are collected, and the same features are

extracted. The model losses the potential solution due to less

efficiency in the exploitation process in the optimization

model.

Mohsin [16] applied Quantum Inspired Ant Colony

Algorithm (QIACO), a probabilistic algorithm of a hybrid

method that was devised to improve joins query cost in the

distributed dataset. Quantum computing can expand and

diversify to cover large query search spaces. This process

helps avoid falling into a local optimum, speed up the

convergence, and select the best trails. The method

identifies the join order to reduce total execution time based

on faster convergence of Quantum inspired ant colony

model. The method's search space is high, affecting the

model's query cost.

Praveena Mydolalu Veerappa & Ajeet Annarao Chikkamannur / IJETT, 70(8), 158-165, 2022

160

Zheng [17] developed a mathematical model for query

optimization in a distributed database and applied an

Adaptive Genetic Algorithm On Double Entropy (ADEGA).

Two types of entropy, such as phenotype and genotype, are

applied to a genetic algorithm. The genotype entropy

method is applied for initial population distribution, and

good population diversity ensures the initial population. The

genetic strategy is applied to optimize using Phenotype

entropy that divides initial and population entropy. The

double entropy method increases the query cost of the

model.

3. Proposed Method

Fig. 1 The block diagram of the proposed PL-ACO method in query

optimization

The system model is created in the proposed method to

optimize the query and test the cost value of the method.

This research proposes the Prime Learning Ant Colony

Optimization (PL-ACO) method for query optimization.

The Prime strategy is applied in the PL-ACO method to

replace the worst learner with the best learner to improve

the model learning rate. The PL-ACO in query optimization

is shown in Fig. 1.

3.1. Ant Colony Optimization with Prime strategy

The number of iterations is set for the ACO algorithm.

Many ants collected experiences of previous populations,

and heuristic information was used to construct complete

solutions in each iteration. The pheromone trail consists of

elements of a solution to represent collected experiences.

The components are deposited with pheromone, and the

solving problem is based on connection [18, 19].

3.1.1. The Transition Rule

Ant acts as a computational agent in the ACO method

and develops a solution for the problem at hand [20 – 24].

At each iteration of the algorithm, each ant moves from 𝑟 to

𝑠state related to the complete intermediate solution. The

unvisited states memorized in 𝐽𝑟
𝑘the kth and from state 𝑟 to

state 𝑠is based on Eq. (1).

𝑠 =
𝑎𝑟𝑔𝑚𝑎𝑥[𝜏𝑖(𝑟, 𝑢)

𝛼 . 𝜂(𝑟, 𝑢)𝛽]

𝑢 ∈ 𝐽𝑟
𝑘

, 𝑖𝑓𝑞 ≤ 𝑞0(𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

(1)

Move desirability of posterior indication denotes trail

level. Trails are updated in ants to complete the solution,

trails level of increasing or decreasing is related to moves

that were part of ‘bad’ or ‘good’ solutions.

Generally, the probability 𝑝𝑘(𝑟, 𝑠) of the kth ant moves

from 𝑟𝑡𝑜𝑠state, as in Eq. (2).

𝑝𝑘(𝑟, 𝑠) = {

𝜏(𝑟,𝑠)𝛼,𝜂(𝑟,𝑠)𝛽

∑ 𝜏(𝑟,𝑢)𝛼,(𝑟,𝑢)𝛽
𝑢∈𝐽𝑟

𝑘
𝑖𝑓𝑠 ∈ 𝐽𝑟

𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

The uniform probability is denoted as 𝑞is in range of [0,

1], the control parameters are denoted as 𝛼𝑎𝑛𝑑𝛽the kth ant

in the ith population of the set of the unvisited state is

denoted as𝐽𝑟
𝑘, the trail length from the state 𝑟and state 𝑢 is

denoted as 𝜂(𝑟, 𝑢), ith iteration pheromone concentration

between state 𝑟 and the state 𝑢is represented as 𝜏(𝑟, 𝑢), and

the transition probability is denoted as 𝑝𝑘(𝑟, 𝑠).

3.1.2. The Pheromone Update Rule

The pheromone trails are measured to improve solution

quality. The local and global updating trails are updated.

The formula updating local trail is described as follows in

Eq. (3).

𝜏(𝑟, 𝑢) = (1 − 𝜌)𝜏(𝑟, 𝑠) + ∑ 𝛥𝜏𝑘
𝑚
𝑘=1 (𝑟, 𝑠) (3)

The evaporation rate of the pheromone trail is denoted

as 𝜌(0 < 𝜌 < 1). The pheromone trail amount is denoted as

𝛥𝜏𝑘(𝑟, 𝑠) and ant 𝑘 between time𝑡and 𝑡 + 𝛥𝑡in the tour is

added to the edge (𝑟, 𝑠) , as given in Eq. (4).

 𝛥𝜏𝑘(𝑟, 𝑠) = {
𝑄

𝐿𝑘
(𝑟, 𝑠) ∈ 𝜋𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

The constant parameter is denoted where ant toured with

sequence and distance 𝑄.

3.2. Prime Strategy

This research developed an ACO with a Prime strategy

to improve this study's basic ACO search capability. The

proposed method is simpler, easier to implement, and costs

less than the basic ACO method. No need to manually tune

parameters in PL-ACO like basic ACO except for iteration

and population size. The teacher phase is simplified and

redefined in the proposed PL-ACO, while the learner phase

remains unchanged. The Prime strategy is applied to update

the current worst learner, and local search operation is

improved. The search phase is expressed in Eq. (5).

𝑁𝑒𝑤(1, 𝑘) = {
𝜏𝑒𝑓(𝑘, 𝑘 + 1) 𝑖𝑓𝑟𝑎𝑛𝑑 < 𝜇

𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑒𝑙𝑠𝑒
 (5)

Praveena Mydolalu Veerappa & Ajeet Annarao Chikkamannur / IJETT, 70(8), 158-165, 2022

161

Where 𝑟𝑎𝑛𝑑 is a uniformly distributed real value in a

range of [0, 1], the mutation probability is denoted as 𝑚, the

local search operation in random mutation variable is

denoted as𝑚𝑢, the solution kth decision variable in solution

is denoted as 𝑘𝑎𝑛𝑑𝑘 ∈ {1,2, . . . , 𝐷𝑖𝑚}, the current best

teacher is as a new solution which is denoted as𝑁𝑒𝑤.

A better solution around the current best is searched

using a local search attempt through a mutation variable.

The Prime technique selects a new solution and replaces the

worst solution, formulated as given in Eq. (6).

𝑊𝑠𝑡 = {
𝑁𝑒𝑤, 𝑖𝑓𝑓(𝑁𝑒𝑤) < 𝑓(𝑊𝑠𝑡)
𝑊𝑠𝑡 𝑒𝑙𝑠𝑒

 (6)

The corresponding solution of the objective function is

denoted as 𝑓(.), and a current population of the worst one is

denoted as 𝑊𝑠𝑡.

The elitist strategy is applied in ACO, and the solution

quantity update is given in Eq. (7) and (8).

𝜏𝑒𝑓(𝑘, 𝑘 + 1)𝜌 × 𝜏𝑒𝑓(𝑘) + 𝛥𝜏𝑒𝑓(𝑘, 𝑘 + 1) + 𝜏𝑒𝑓
∗ (7)

𝛥𝜏𝑒𝑓
∗ = 𝜎. 𝑔𝑓

∗𝑄 (8)

The pheromone amount increases on the path (𝑒, 𝑓)are

represented 𝛥𝜏𝑒𝑓
∗ in Eq. (7) and (8) based on Prime ants. The

Prime strategy with task assigning benefit value is denoted

as 𝑔𝑓
∗ the number of Prime ants is denoted as𝜎.

4. Simulation Setup
The implementation details of the proposed method,

such as dataset, and system configurations, are given in this

section.

System Configuration: The implementation is carried

out in the system consisting of windows 10 OS, Intel i9

processor, graphics card of 22 GB, and RAM of 128 GB.

The Python 3.7 tool is used to evaluate the efficiency of the

proposed method.

5. Results
The performance of the PL-ACO method in query

optimization is calculated and compared with existing

methods. The number of iterations for various costs and

plans is measured and compared with existing query

optimization methods.

Table 1 shows the working scenario, allocation of four

scenarios, and logical sites of the dataset. Scenario R1 has a

relation with various sites such as S1, S2, S5 and S6;

scenario R2 has a relation with various sites such as S1, S2,

S7, and S8.
Table 1. Query Cost

QP QAC QPC RPC

COST=

(QAC+QPC+RPC)

/3

{6,8}
0.376

1

0.167

2
0.112 0.219

{6,5}
0.376

4

0.223

8

0.112

2
0.2379

{8,5}
0.376

7
0.279 0.112 0.2551

{3,5}
0.376

2
0.335

0.112

9
0.274

{8,8}
0.501

7
0.224

0.112

5
0.2789

{3,3}
0.501

8

0.334

8

0.112

7
0.3153

{6,4,8}
0.563

6
0.223

0.167

5
0.3185

{6,7,8}
0.564

4

0.278

1
0.167 0.3368

{6,8,5}
0.563

6

0.334

3

0.167

4
0.3552

{7,8,5}
0.563

8

0.389

9
0.168 0.3737

{6,8,8}
0.689

1

0.389

2

0.167

1
0.379

{7,3,5}
0.564

5

0.278

7
0.167 0.3922

{7,8,8}
0.689

2

0.445

8

0.167

3
0.397

{5,1,3}
0.564

0.501

4
0.168 0.4109

{7,7,5} 0.689

4
0.39 0.167 0.415

{7,3,3} 0.689

5

0.445

3

0.167

5
0.4337

{6,7,4,8

}

0.751

9

0.334

7

0.223

2
0.4365

{5,3,5} 0.689

4

0.501

4

0.167

3
0.453

{6,7,4,5

}
0.752 0.389

0.223

2
0.4548

{6,7,8,5

}

0.751

1

0.445

5

0.223

3
0.4735

The cost of queries is shown in Table 1 for various

queries. The individual cost of the query and the total cost

of the query are also shown in Table 2. This shows that the

two sets of queries have a lower cost than the three.

Praveena Mydolalu Veerappa & Ajeet Annarao Chikkamannur / IJETT, 70(8), 158-165, 2022

162

Table 2. Number of iterations taken to attain each level of cost

Cost ACO ACO-GA GA PL-ACO

0.2 73 67 68 13

0.3 68 64 59 9

0.4 63 60 42 7

0.5 60 49 40 6

0.6 57 42 35 7

0.7 55 38 22 5

Fig. 2 and Table 2 show that the proposed and existing

method requires some iteration to attain the query cost level.

The number of iterations for various cost values is measured

and compared with existing methods. This shows that the

number of iterations is less for higher cost value in the query

optimization. The PL-ACO has a lower cost value than the

traditional ACO and ACO-GA method. The PL-ACO has

the advantage of replacing low-performance ant with Prime

learning ant, which improves the learning rate of the

method. The traditional ACO method has 60 iterations for

0.4 cost, and the proposed PL-ACO method has 4 iterations

for 0.4 cost value. The learning rate improvement increases

the performance of the PL-ACO method more than the

traditional method.

Fig. 2 Number of iterations for various cost levels

Table 3. Plans with a cost of 0.2 required a number of iterations for

each method

No. of Plans ACO ACO-GA TLBO
PL-

ACO

5 77 75 70 6

10 82 78 73 9

20 93 84 78 11

30 103 94 83 12

40 118 105 88 15

50 126 115 92 15

Fig. 3 Number of iterations for various plans with a cost of 0.6

Table 4. Plans with a cost of 0.6 required a number of iterations

No. of Plans ACO ACO-GA TLBO PL-ACO

5 74 72 68 4

10 83 79 70 9

20 94 85 75 10

30 105 92 84 14

40 120 104 90 16

50 128 114 93 16

Fig. 4 Plans with a cost of 0.6 required number of iterations

Table 5. Plans with a cost of 0.6 required a number of iterations for

each method

No. of Plans ACO ACO-GA GA PL-ACO

5 75 75 67 7

10 83 80 70 10

20 95 83 78 10

30 103 92 82 12

40 117 105 89 15

50 128 112 95 16

0

20

40

60

80

0.2 0.3 0.4 0.5 0.6 0.7

N
u

m
b

er
 o

f
it

er
a

ti
o

n
s

Cost value

ACO ACO-GA GA PL-ACO

0

50

100

150

5 10 20 30 40 50

N
u

m
b

er
 o

f
it

er
a

ti
o

n
s

Number of plans

ACO ACO-GA TLBO PL-ACO

0

50

100

150

5 10 20 30 40 50

N
u

m
b

er
 o

f
it

er
a

ti
o

n
s

Number of plans

ACO ACO-GA TLBO PL-ACO

Praveena Mydolalu Veerappa & Ajeet Annarao Chikkamannur / IJETT, 70(8), 158-165, 2022

163

Fig. 5 Number of iterations for various plans with the cost of 0.6

The number of iterations for various plans with a cost

of 0.6 for proposed and existing methods are shown in

Table 3 and Fig. 3. The number of iterations is less for the

proposed method for the various number of plans than

existing methods. This is because the proposed method

replaces the best learning ants with the best. Easily trapped

into local optima, poor convergence affects existing

methods' performance.

The number of iterations for various proposed and

existing methods with a cost of 0.6 is shown in Table 4 and

Fig. 4. The proposed method has fewer iterations than

existing methods due to improvement in the learning

process. The existing methods have the limitation of local

optima and poor convergences that affects model

performance.

The number of iterations of the proposed method and

existing method for various plans with the cost of 0.6 is

given in Fig. 5 and Table 5. The PL-ACO has less number

of iterations than existing methods due to its advantage of

replacing the worst learner with the best learner. It helps the

model to increase convergence rate and escape from local

optima of the query optimization.

Table 6. Query cost of PL-ACO method for various iterations

No. of

Entity

ACO [16] QIACO [16] PL-ACO

No. of

iterations

Worst

Cost

Averag

e Cost

Best

Cost

No. of

iteratio

ns

Worst

Cost

Averag

e Cost

Best

Cost

No. of

iterati

ons

Worst

Cost

Average

Cost

Best

Cost

5 100
0.013

41

0.0130

4

0.012

39
100

0.011

38

0.0113

8

0.011

38
100

0.009

53
0.00908

0.088

5

10 100
0.889

99

0.3526

26

0.103

01
100

0.239

63

0.1192

9

0.069

68
100

0.231

21
0.11541

0.058

22

15 300
6538.

6434

2367.6

559

158.8

261
100

58.25

45

18.661

7

2.347

1
100

48.43

57
16.54782

2.014

8

20 300
51574

.727

20818.

5094

1506.

295
100

9689.

5597

4627.8

784

890.4

05
100

9420.

2549

4421.589

63

784.5

621

Table 7. Query cost of PL-ACO method for various number of tables

Number of

tables
4 6 8 10 12

GA [17] 26.5 73
83.5

3

107.7

1

96.6

4

EGA [17] 26.5
72.5

5

78.2

5
96.98

92.8

4

ADEGA [17] 26.5
70.9

5

76.3

1
85.96

81.6

6

ACO 24.7
68.5

4

75.8

2
83.65

78.2

2

PL-ACO 24.7
67.9

3

72.3

4
82.14

77.5

1

Table 8. Iterations of the PL-ACO method for various number of

tables

Number of tables 4 6 8 10 12

GA [17] 105 117 167 178 216

EGA [17] 104 110 139 155 186

ADEGA [17] 102 108 122 145 178

ACO 100 106 118 136 172

PL-ACO 100 102 110 128 164

Table 9. Search time of PL-ACO method for various number of tables

Number of tables 4 6 8 10 12

GA [17] 5.62 11.44 19.61 30.59 42.37

EGA [17] 5.55 9.61 15.32 24.27 28.5

ADEGA [17] 5.38 7.89 12.9 18.67 20.52

ACO 5.24 7.54 10.82 12.56 18.47

PL-ACO 5.10 6.93 9.41 8.29 15.13

0

50

100

150

5 10 20 30 40 50

N
u

m
b

er
 o

f
it

er
a

ti
o

n
s

Number of plans

ACO ACO-GA GA PL-ACO

Praveena Mydolalu Veerappa & Ajeet Annarao Chikkamannur / IJETT, 70(8), 158-165, 2022

164

The proposed method is evaluated for TPC-H

benchmark queries per the criteria of [16] and [17]. The

query processing cost of PL-ACO and existing methods are

given in Table 6 for the various numbers of entities and

iterations. The PL-ACO method has a lower query

processing cost due to its ability to create the fitness

function for each possible query join helps to find the

optimal solutions. The existing method increases the search

space to find the solution that increases the query cost of the

model. The PL-ACO method maintains the search space

based on the join query search in the model.

The PL-ACO method query cost is compared with

existing methods such as GA, EGA, and ADEGA, as shown

in Table 7. The PL-ACO method has lower query cost due

to its measured fitness value for every query joint in the

system and limits the search space based on available query

joints. The existing method ADEGA [17] measure double

entropy for query joints in the system, which tends to

increase the query cost of the model.

The PL-ACO method is compared with existing

methods for the required number of iterations to find the

optimal solutions, as given in Table 8. The PL-ACO method

finds the optimal solutions for fewer iterations than existing

methods. The PL-ACO method replaces weaker ants with

the best fitness ant to increase the learning rate that helps

find optimal value with fewer iterations.

The PL-ACO method is compared with existing

methods for search time for query optimization, as given in

Table 9. The PL-ACO method has less search time than

existing methods for query optimization. The PL-ACO

method limits the search space based on available query

joints in the system, which helps reduce the method's search

time. The existing ADEGA [17] method increases the

search space and measures two entropy that increases the

method's search time.

6. Conclusion
Query optimization helps to improve database

efficiency and query cost reduction. The existing methods

have applied ACO based query optimization method to

reduce the query cost. The existing ACO-based methods

have limitations of local optima and poor convergence in the

optimization. This research applied the PL-ACO method to

improve the performance of query optimization. The system

model and the dataset are used to test the PL-ACO method

efficiency in query optimization. The PL-ACO method has

higher efficiency in query optimization than the existing

method. The proposed method provides a lower cost of a

query with fewer iterations in query optimization. The PL-

ACO method has the advantage of creating fitness value for

available query joints that help to find the optimal solution

for the query. The PL-ACO method replaces the worst

learning ant with the best learning ant to improve the

learning rate. The PL-ACO method limits the search space

based on available query joins, which helps reduce the

system's query cost. The PL-ACO method has an average

cost of 16.54 for 100 iterations, and the existing QIACO

method has an average cost of 18.66 for 100. The PL-ACO

method has 82.14 query costs for 10 tables, and ADEGA

has 85.96 query costs for 10 tables. A hybrid optimization

method is applied for query optimization to improve query

optimisation performance.

References
[1] R. Sahal, M.H. Khafagy, F.A. Omara, “Exploiting Coarse-Grained Reused-Based Opportunities in Big Data Multi-Query

Optimization,” Journal of Computational Science, vol. 26, pp. 432-452, 2018.

[2] M. Renukadevi, E.M. Anita, D. Mohana Geetha, “An Efficient Privacy‐Preserving Model Based on OMFTSA for Query Optimization

in Crowdsourcing,” Concurrency and Computation: Practice and Experience, vol. 33, pp. e6447, 2021.

[3] Y. Jiang, K. Zhang, Y. Qian, L. Zhou, “Reinforcement Learning based Query Optimization in Differentially Private IoT Data

Publishing,” IEEE Internet of Things Journal, 2021.

[4] P. Michiardi, D. Carra, S. Migliorini, “Cache-based Multi-Query Optimization for Data-Intensive Scalable Computing Frameworks,”

Information Systems Frontiers, vol. 23, pp. 35-51, 2021.

[5] M. Sharma, G. Singh, R. Singh, “A Review of Different Cost-Based Distributed Query Optimizers,” Progress in Artificial Intelligence,

vol. 8, pp. 45-62, 2019.

[6] L. Chen, Y. Lin, J. Wang, H. Huang, D. Chen, Y. Wu, “Query Grouping–Based Multi‐Query Optimization Framework for Interactive

SQL Query Engines on Hadoop,” Concurrency and Computation: Practice and Experience, vol. 30, pp. e4676, 2018.

[7] A. Sebaa, A. Tari, “Query Optimization in Cloud Environments: Challenges, Taxonomy, and Techniques,” The Journal of

Supercomputing, vol. 75, pp. 5420-5450, 2019.

[8] Z.B. Ozger, N.Y. Uslu, “An Effective Discrete Artificial Bee Colony Based SPARQL Query Path Optimization by Reordering

Triples,” Journal of Computer Science and Technology, vol. 36, pp. 445-462, 2021.

[9] E. Mella, M.A. Rodríguez, L. Bravo, D. Gatica, “Query Rewriting for Semantic Query Optimization in Spatial Databases,”

Geoinformatica, vol. 23, pp. 79-104, 2019.

[10] J. Kossmann, T. Papenbrock, F. Naumann, “Data Dependencies for Query Optimization: A Survey,” The VLDB Journal, pp. 1-22,

2021.

Praveena Mydolalu Veerappa & Ajeet Annarao Chikkamannur / IJETT, 70(8), 158-165, 2022

165

[11] V. Panahi, N.J. Navimipour, “Join Query Optimization in the Distributed Database System using an Artificial Bee Colony Algorithm

and Genetic Operators,” Concurrency and Computation: Practice and Experience, vol. 31, pp. e5218, 2019.

[12] M. Jafarinejad, and M. Amini, “Multi-Join Query Optimization in Bucket-Based Encrypted Databases using an Enhanced Ant Colony

Optimization Algorithm,” Distributed and Parallel Databases, vol. 36, pp. 399-441, 2018.

[13] S.A. Mohsin, S.M. Darwish, A. Younes, “QIACO: A Quantum Dynamic Cost Ant System for Query Optimization in Distributed

Database,” IEEE Access, vol. 9, pp. 15833-15846, 2021.

[14] L. G. Igakeh, V. I. E. Anireh, D. Matthias, "Implementation of Ant Colony Optimization For Call Drop In Gsm Network," SSRG

International Journal of Computer Science and Engineering, vol. 7, no. 2, pp. 57-67, 2020. Crossref,

https://doi.org/10.14445/23488387/IJCSE-V7I2P107

[15] D. Kumar, and V.K. Jha, “An Improved Query Optimization Process in Big Data Using ACO-GA Algorithm and HDFS Map Reduce

Technique,” Distributed and Parallel Databases, vol. 39, pp. 79-96, 2021.

[16] S.A. Mohsin, A. Younes, S.M. Darwish, “Dynamic Cost Ant Colony Algorithm to Optimize Query for Distributed Database Based on

Quantum-Inspired Approach,” Symmetry, vol. 13, no. 1, pp. 70, 2021.

[17] B. Zheng, X. Li, Z. Tian, L. Meng, “Optimization Method for Distributed Database Query Based on An Adaptive Double Entropy

Genetic Algorithm,” IEEE Access, vol. 10, pp. 4640–4648, 2022.

[18] W. Deng, J. Xu, and H. Zhao, “An Improved Ant Colony Optimization Algorithm Based on Hybrid Strategies for Scheduling

Problem,” IEEE Access, vol. 7, pp. 20281-20292, 2019.

[19] J. Uthayakumar, N. Metawa, K. Shankar, S.K. Lakshmanaprabu, “Financial Crisis Prediction Model Using Ant Colony Optimization,”

International Journal of Information Management, vol. 50, pp. 538-556, 2020.

[20] M. Paniri, M.B. Dowlatshahi, H. Nezamabadi-pour, “MLACO: A Multi-Label Feature Selection Algorithm Based on Ant Colony

Optimization,” Knowledge-Based Systems, vol. 192, pp. 105285, 2020.

[21] Y. Li, H. Soleimani, M. Zohal, “An Improved Ant Colony Optimization Algorithm for the Multi-Depot Green Vehicle Routing

Problem with Multiple Objectives,” Journal of Cleaner Production, vol. 227, pp. 1161-1172, 2019.

[22] C. Xu, B. Gordan, M. Koopialipoor, D.J. Armaghani, M.M. Tahir, X. Zhang, “Improving Performance of Retaining Walls Under

Dynamic Conditions Developing an Optimized ANN Based on Ant Colony Optimization Technique,” IEEE Access, vol. 7, pp. 94692-

94700, 2019.

[23] M.A. Ariffin, R. Ibrahim, I.S. Ibrahim, J.A. Wahab, “Test Cases Prioritization Using Ant Colony Optimization and Firefly Algorithm,”

International Journal of Engineering Trends and Technology, vol. 70, no. 3, pp. 22-28, 2022.

[24] N Bhushana Babu D, E V Krishna Rao, K.S.N. Murthy, “Inter-Gateway Handoff Management Using Ant Colony Optimization (ACO)

for Wireless Mesh Networks,” International Journal of Engineering Trends and Technology, vol. 68, no. 11, pp. 63-71, 2020.

[25] X.Y. Gao, R. Sahal, G.X. Chen, M.H. Khafagy, F.A. Omara, “Exploiting Sharing Join Opportunities in Big Data Multiquery

Optimization with Flink,” Complexity, 2020.

