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Abstract - Query optimization is an important factor in a distributed database system that finds the parameters for the 

optimal execution of a plan to reduce the runtime. Query optimization is a challenging task in a distributed system that helps 

improve the database's efficiency. Various pieces of research applied Ant Colony Optimization (ACO) based method to 

improve query optimisation performance. The Prime Learning - Ant Colony Optimization (PL-ACO) method is applied to 

increase query optimisation performance in this research. The Prime strategy method is applied in the ACO method to 

replace the worst learner with the best learner to improve the learning rate. The key idea of the proposed method is to use 

the Prime strategy on Ant Colony Optimization to reduce the search space-time for query joins in a distributed database 

system. For Query access, processing and resource processing cost, the fitness function is created for each possible query 

join solution. For fitter functions, queries are being taken for processing in the next round, and weaker ants are eliminated. 

This process reduces the number of ants at each iteration, and the optimal solution is achieved quicker. Various queries in 

the database were used to test the efficiency of PL-ACO in query optimization. The system model is developed to apply the 

query in the system and evaluate the cost of the model. The proposed PL-ACO method has 10 iterations for 0.2 cost and 

existing ACO method has 68 iterations, and the ACO-Genetic Algorithm (GA) method has 65 iterations. 

Keywords - Genetic Algorithm, Learning Rate, Prime Strategy, Query optimization. 

1. Introduction 
Multi-Query Optimization (MQO) is finding the 

essential keyword in a database system for query processing 

to find the related information. MQO method explains 

answers to a set of queries with a common task, and each 

query has alternate executive plans. Each plan has a set of 

common tasks among several queries [1]. The cost-based 

query optimization uses cost as a factor to provide answers 

to the queries. The query uses various methods based on 

sorting, conditions and indexes. Integrating tables with join 

orders cost was used for the query optimizer computed only 

once. Table integration of least cost is used in the database 

and for query optimization in the future process [2]. The 

straightforward way to break through query limitation is to 

reduce privacy cost in each query, and more query is 

answered in privacy protection. The privacy cost 

minimization and privately answer a query with the urgent 

issue in data publishing [3]. The MQO method finds 

similarities among a set of queries, and various methods 

were used to avoid the search process in query execution. 

The MQO method provides small optimization overheads to 

increase query performance using pipelining, materialized 

views selection and sharing sub-expressions [4]. Low-level 

expressions from high-level language are mapped in the 

query in major impulsion of query processing. The low-

level expressions are set to find a strategy for query 

execution [5]. 

 

The database community has studied the MQO, a well-

known database research problem. The MQO method 

constructs a global plan to take advantage of common tasks, 

and many algorithms are proposed, such as improved and 

heuristic algorithms, to solve this problem [6, 7]. Different 

forms can be used to access a database based on a query, 

and query clauses of order changing do not change query 

results that can change response time. In querying a large 

database, response time is important. The query 

optimization method involves finding a query path to reduce 

the joined number and evaluating a query to respond as soon 

as possible to improve query run time [8 – 10]. Existing 

query optimization techniques have limitations of lower 

learning and local optima trap that degrades the 

performance. The objectives and contribution of the 

research are discussed below: 

 

1. Prime strategy is applied to the Ant Colony 

Optimization method to replace the worst learner 

with the best learner, which helps improve the 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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model's learning efficiency. The Prime strategy with 

the ACO method reduces the search space-time for 

query joins in the distributed database system. 

2. A fitness function is created for each possible query 

join solution that helps Prime strategy with ACO to 

find the solution with less time and reduces resource 

processing costs in the system.  

3. Fitter functions measured in the optimization method 

are considered for processing in the next round, and 

weaker ants are removed. The number of ants is 

removed at each iteration, achieving an optimal 

solution quicker. 

 

This paper is organized as follows: Query optimization 

of the literature review is provided in Section 2, and the 

proposed method is explained in Section 3. The simulation 

setup is provided in Section 4, and the result is provided in 

Section 5. The conclusion of this research paper is provided 

in Section 6. 

 

2. Literature Review 
The query optimization is important for a database 

management system that performs the appropriate process 

for user query execution. Some of the research involved in 

the optimization of join queries were discussed in this 

section. 

 

Panahi and Navimipour [11] proposed a genetic 

operator and artificial bee colony to increase efficiency for 

join query optimization in database management. The 

global-local search capability and genetic operator were 

combined to create a candidate solution to improve 

Artificial Bee Colony (ABC) algorithm performance. The 

query cost evaluation was reduced, and the Top-K query 

quality plan was improved. The genetic operator increases 

the variety of solutions and reduces a query plan creating 

cost. The developed method reduces the optimisation 

overhead of the current query plan method. The developed 

method has the limitation of a trap into local optima and 

poor convergence, providing priority to local search. The 

Artificial Bee Colony method processing cost is more due to 

increases in the number of local features in the search. 

 

Jafarineja and Amini [12] proposed an enhanced ACO 

algorithm to reduce the required processing efforts in multi-

join query optimization. A bucked-based encrypted database 

generated total false-positive results in the proposed model. 

The enhanced method provides a quality solution with less 

response time. The developed method significantly reduces 

the multi-join query processing effort and the total amount 

of false-positive results. The method prevents pointless 

operations and produces feedback to find the best solution 

from useful meta-data. The developed method finds a better 

solution faster than successful methods in query 

optimization. The developed method was not applicable for 

large datasets due to the method solution rearranging the 

bucket around a certain level. 

 

Mohsin [13] proposed a quantum-inspired ACO method 

based on the probabilistic algorithm of the hybrid method in 

distributed database model to increase the query join cost. 

The best trial selection in a large search space for diversified 

ability in quantum computing. The developed model was 

suitable for the distributed database and has higher 

efficiency in query optimization. The result of the developed 

method shows that the developed method handles simple 

and complex queries with less cost than the existing method. 

The searching efficiency of the model was lower than the 

existing method in query optimization. The quantum-

inspired model applies a higher number of candidate 

solutions for the search process, which tends to increase the 

cost of processing. 

 

Gao [25] proposed Histogram and Tuple Size in Join 

Multi-query Optimization (J-MOTH) for sharing data 

granularity, join granularity and implicit sort. The sort-based 

optimization was applied to implicit sort among join 

queries, and an additional model was used to optimize 

shared work. The developed method avoided the implicit 

sort operation and joined the redundant result. The result 

shows that the developed J-MOTH performs better than the 

naïve and fine-grained technique. The developed method 

has the limitation of a trap into local optima and poor 

convergence, providing more priority to exploration.   

 

Kumar and Jha [15] proposed the ACO-GA method and 

Hadoop Distributed File System (HDFS) map-reduce 

method to improve query optimization in Big Data. The 

developed method consists of two phases: Big Data (BD) 

arrangement and query optimization phase. The SHA-512 

algorithm was applied to pre-process the input data finding 

the Hash Value and HDFC map removal function to remove 

repeated data. The features such as confidence, support and 

frequent pattern are extracted. The entropy calculation was 

used to manage confidence and support. In the second 

phase, BD queries are collected, and the same features are 

extracted. The model losses the potential solution due to less 

efficiency in the exploitation process in the optimization 

model. 

 

Mohsin [16] applied Quantum Inspired Ant Colony 

Algorithm (QIACO), a probabilistic algorithm of a hybrid 

method that was devised to improve joins query cost in the 

distributed dataset. Quantum computing can expand and 

diversify to cover large query search spaces. This process 

helps avoid falling into a local optimum, speed up the 

convergence, and select the best trails. The method 

identifies the join order to reduce total execution time based 

on faster convergence of Quantum inspired ant colony 

model. The method's search space is high, affecting the 

model's query cost. 
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Zheng [17] developed a mathematical model for query 

optimization in a distributed database and applied an 

Adaptive Genetic Algorithm On Double Entropy (ADEGA). 

Two types of entropy, such as phenotype and genotype, are 

applied to a genetic algorithm. The genotype entropy 

method is applied for initial population distribution, and 

good population diversity ensures the initial population. The 

genetic strategy is applied to optimize using Phenotype 

entropy that divides initial and population entropy. The 

double entropy method increases the query cost of the 

model. 

 

3. Proposed Method 
 

 
Fig. 1 The block diagram of the proposed PL-ACO method in query 

optimization 

 

The system model is created in the proposed method to 

optimize the query and test the cost value of the method. 

This research proposes the Prime Learning Ant Colony 

Optimization (PL-ACO) method for query optimization. 

The Prime strategy is applied in the PL-ACO method to 

replace the worst learner with the best learner to improve 

the model learning rate. The PL-ACO in query optimization 

is shown in Fig. 1. 
 

3.1. Ant Colony Optimization with Prime strategy 

The number of iterations is set for the ACO algorithm. 

Many ants collected experiences of previous populations, 

and heuristic information was used to construct complete 

solutions in each iteration. The pheromone trail consists of 

elements of a solution to represent collected experiences. 

The components are deposited with pheromone, and the 

solving problem is based on connection [18, 19]. 
 

3.1.1. The Transition Rule 

Ant acts as a computational agent in the ACO method 

and develops a solution for the problem at hand [20 – 24]. 

At each iteration of the algorithm, each ant moves from 𝑟 to 

𝑠state related to the complete intermediate solution. The 

unvisited states memorized in 𝐽𝑟
𝑘the kth and from state 𝑟 to 

state 𝑠is based on Eq. (1). 
 

𝑠 =
𝑎𝑟𝑔𝑚𝑎𝑥[𝜏𝑖(𝑟, 𝑢)

𝛼 . 𝜂(𝑟, 𝑢)𝛽]

𝑢 ∈ 𝐽𝑟
𝑘

, 𝑖𝑓𝑞 ≤ 𝑞0(𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)  

 

(1) 

 

Move desirability of posterior indication denotes trail 

level. Trails are updated in ants to complete the solution, 

trails level of increasing or decreasing is related to moves 

that were part of ‘bad’ or ‘good’ solutions. 

Generally, the probability 𝑝𝑘(𝑟, 𝑠) of the kth ant moves 

from 𝑟𝑡𝑜𝑠state, as in Eq. (2). 

 

𝑝𝑘(𝑟, 𝑠) = {

𝜏(𝑟,𝑠)𝛼,𝜂(𝑟,𝑠)𝛽

∑ 𝜏(𝑟,𝑢)𝛼,(𝑟,𝑢)𝛽
𝑢∈𝐽𝑟

𝑘
𝑖𝑓𝑠 ∈ 𝐽𝑟

𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (2) 

 

The uniform probability is denoted as 𝑞is in range of [0, 

1], the control parameters are denoted as 𝛼𝑎𝑛𝑑𝛽the kth ant 

in the ith population of the set of the unvisited state is 

denoted as𝐽𝑟
𝑘, the trail length from the state 𝑟and state 𝑢 is 

denoted as 𝜂(𝑟, 𝑢), ith iteration pheromone concentration 

between state 𝑟 and the state 𝑢is represented as 𝜏(𝑟, 𝑢), and 

the transition probability is denoted as 𝑝𝑘(𝑟, 𝑠). 
 

3.1.2. The Pheromone Update Rule 

The pheromone trails are measured to improve solution 

quality. The local and global updating trails are updated. 

The formula updating local trail is described as follows in 

Eq. (3). 

 

𝜏(𝑟, 𝑢) = (1 − 𝜌)𝜏(𝑟, 𝑠) + ∑ 𝛥𝜏𝑘
𝑚
𝑘=1 (𝑟, 𝑠)          (3) 

 

The evaporation rate of the pheromone trail is denoted 

as 𝜌(0 < 𝜌 < 1). The pheromone trail amount is denoted as 

𝛥𝜏𝑘(𝑟, 𝑠) and ant 𝑘 between time𝑡and 𝑡 + 𝛥𝑡in the tour is 

added to the edge (𝑟, 𝑠) , as given in Eq. (4). 

 

 𝛥𝜏𝑘(𝑟, 𝑠) = {
𝑄

𝐿𝑘
(𝑟, 𝑠) ∈ 𝜋𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (4) 

 
The constant parameter is denoted where ant toured  with 

sequence and distance 𝑄. 

 

3.2. Prime Strategy 

This research developed an ACO with a Prime strategy 

to improve this study's basic ACO search capability. The 

proposed method is simpler, easier to implement, and costs 

less than the basic ACO method. No need to manually tune 

parameters in PL-ACO like basic ACO except for iteration 

and population size. The teacher phase is simplified and 

redefined in the proposed PL-ACO, while the learner phase 

remains unchanged. The Prime strategy is applied to update 

the current worst learner, and local search operation is 

improved. The search phase is expressed in Eq. (5). 

 

𝑁𝑒𝑤(1, 𝑘) = {
𝜏𝑒𝑓(𝑘, 𝑘 + 1) 𝑖𝑓𝑟𝑎𝑛𝑑 < 𝜇

𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑒𝑙𝑠𝑒
        (5) 
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Where 𝑟𝑎𝑛𝑑 is a uniformly distributed real value in a 

range of [0, 1], the mutation probability is denoted as 𝑚, the 

local search operation in random mutation variable is 

denoted as𝑚𝑢, the solution kth decision variable in solution 

is denoted as 𝑘𝑎𝑛𝑑𝑘 ∈ {1,2, . . . , 𝐷𝑖𝑚}, the current best 

teacher is as a new solution which is denoted as𝑁𝑒𝑤. 

 

A better solution around the current best is searched 

using a local search attempt through a mutation variable. 

The Prime technique selects a new solution and replaces the 

worst solution, formulated as given in Eq. (6). 

 

𝑊𝑠𝑡 = {
𝑁𝑒𝑤, 𝑖𝑓𝑓(𝑁𝑒𝑤) < 𝑓(𝑊𝑠𝑡)
𝑊𝑠𝑡 𝑒𝑙𝑠𝑒

                     (6) 

 

The corresponding solution of the objective function is 

denoted as 𝑓(. ), and a current population of the worst one is 

denoted as 𝑊𝑠𝑡. 
 

The elitist strategy is applied in ACO, and the solution 

quantity update is given in Eq. (7) and (8). 

 

𝜏𝑒𝑓(𝑘, 𝑘 + 1)𝜌 × 𝜏𝑒𝑓(𝑘) + 𝛥𝜏𝑒𝑓(𝑘, 𝑘 + 1) + 𝜏𝑒𝑓
∗         (7)  

                                       

𝛥𝜏𝑒𝑓
∗ = 𝜎. 𝑔𝑓

∗𝑄                            (8) 

 

The pheromone amount increases on the path (𝑒, 𝑓)are 

represented 𝛥𝜏𝑒𝑓
∗  in Eq. (7) and (8) based on Prime ants. The 

Prime strategy with task assigning benefit value is denoted 

as 𝑔𝑓
∗ the number of Prime ants is denoted as𝜎. 

 

4. Simulation Setup 
The implementation details of the proposed method, 

such as dataset, and system configurations, are given in this 

section. 

 

System Configuration: The implementation is carried 

out in the system consisting of windows 10 OS, Intel i9 

processor, graphics card of 22 GB, and RAM of 128 GB. 

The Python 3.7 tool is used to evaluate the efficiency of the 

proposed method.  

 

5. Results 
The performance of the PL-ACO method in query 

optimization is calculated and compared with existing 

methods. The number of iterations for various costs and 

plans is measured and compared with existing query 

optimization methods. 

 

Table 1 shows the working scenario, allocation of four 

scenarios, and logical sites of the dataset. Scenario R1 has a 

relation with various sites such as S1, S2, S5 and S6; 

scenario R2 has a relation with various sites such as S1, S2, 

S7, and S8. 
Table 1. Query Cost  

QP QAC QPC RPC 

COST= 

(QAC+QPC+RPC)

/3 

{6,8} 
0.376

1 

0.167

2 
0.112 0.219 

{6,5} 
0.376

4 

0.223

8 

0.112

2 
0.2379 

{8,5} 
0.376

7 
0.279 0.112 0.2551 

{3,5} 
0.376

2 
0.335 

0.112

9 
0.274 

{8,8} 
0.501

7 
0.224 

0.112

5 
0.2789 

{3,3} 
0.501

8 

0.334

8 

0.112

7 
0.3153 

{6,4,8} 
0.563

6 
0.223 

0.167

5 
0.3185 

{6,7,8} 
0.564

4 

0.278

1 
0.167 0.3368 

{6,8,5} 
0.563

6 

0.334

3 

0.167

4 
0.3552 

{7,8,5} 
0.563

8 

0.389

9 
0.168 0.3737 

{6,8,8} 
0.689

1 

0.389

2 

0.167

1 
0.379 

{7,3,5} 
0.564

5 

0.278

7 
0.167 0.3922 

{7,8,8} 
0.689

2 

0.445

8 

0.167

3 
0.397 

{5,1,3} 
0.564 

0.501

4 
0.168 0.4109 

{7,7,5} 0.689

4 
0.39 0.167 0.415 

{7,3,3} 0.689

5 

0.445

3 

0.167

5 
0.4337 

{6,7,4,8

} 

0.751

9 

0.334

7 

0.223

2 
0.4365 

{5,3,5} 0.689

4 

0.501

4 

0.167

3 
0.453 

{6,7,4,5

} 
0.752 0.389 

0.223

2 
0.4548 

{6,7,8,5

} 

0.751

1 

0.445

5 

0.223

3 
0.4735 

 
The cost of queries is shown in Table 1 for various 

queries. The individual cost of the query and the total cost 

of the query are also shown in Table 2. This shows that the 

two sets of queries have a lower cost than the three.
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Table 2. Number of iterations taken to attain each level of cost 

Cost ACO ACO-GA GA PL-ACO 

0.2 73 67 68 13 

0.3 68 64 59 9 

0.4 63 60 42 7 

0.5 60 49 40 6 

0.6 57 42 35 7 

0.7 55 38 22 5 

 
Fig. 2 and Table 2 show that the proposed and existing 

method requires some iteration to attain the query cost level. 

The number of iterations for various cost values is measured 

and compared with existing methods. This shows that the 

number of iterations is less for higher cost value in the query 

optimization. The PL-ACO has a lower cost value than the 

traditional ACO and ACO-GA method. The PL-ACO has 

the advantage of replacing low-performance ant with Prime 

learning ant, which improves the learning rate of the 

method. The traditional ACO method has 60 iterations for 

0.4 cost, and the proposed PL-ACO method has 4 iterations 

for 0.4 cost value. The learning rate improvement increases 

the performance of the PL-ACO method more than the 

traditional method. 

 

 
Fig. 2 Number of iterations for various cost levels 

Table 3. Plans with a cost of 0.2 required a number of iterations for 

each method 

No. of Plans  ACO ACO-GA TLBO 
PL-

ACO 

5 77 75 70 6 

10 82 78 73 9 

20 93 84 78 11 

30 103 94 83 12 

40 118 105 88 15 

50 126 115 92 15 

 
Fig. 3 Number of iterations for various plans with a cost of 0.6 

Table 4. Plans with a cost of 0.6 required a number of iterations 

No. of Plans  ACO ACO-GA TLBO PL-ACO 

5 74 72 68 4 

10 83 79 70 9 

20 94 85 75 10 

30 105 92 84 14 

40 120 104 90 16 

50 128 114 93 16 

 

 
Fig. 4 Plans with a cost of 0.6 required number of iterations 

Table 5. Plans with a cost of 0.6 required a number of iterations for 

each method 

No. of Plans  ACO ACO-GA GA PL-ACO 

5 75 75 67 7 

10 83 80 70 10 

20 95 83 78 10 

30 103 92 82 12 

40 117 105 89 15 

50 128 112 95 16 
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Fig. 5 Number of iterations for various plans with the cost of 0.6 

The number of iterations for various plans with a cost 

of 0.6 for proposed and existing methods are shown in 

Table 3 and Fig. 3. The number of iterations is less for the 

proposed method for the various number of plans than 

existing methods. This is because the proposed method 

replaces the best learning ants with the best. Easily trapped 

into local optima, poor convergence affects existing 

methods' performance. 

 

The number of iterations for various proposed and 

existing methods with a cost of 0.6 is shown in Table 4 and 

Fig. 4. The proposed method has fewer iterations than 

existing methods due to improvement in the learning 

process. The existing methods have the limitation of local 

optima and poor convergences that affects model 

performance. 

 

The number of iterations of the proposed method and 

existing method for various plans with the cost of 0.6 is 

given in Fig. 5 and Table 5. The PL-ACO has less number 

of iterations than existing methods due to its advantage of 

replacing the worst learner with the best learner. It helps the 

model to increase convergence rate and escape from local 

optima of the query optimization. 

 

 

 

 
Table 6. Query cost of PL-ACO method for various iterations 

No. of 

Entity 

ACO [16] QIACO [16] PL-ACO 

No. of 

iterations 

Worst 

Cost 

Averag

e Cost 

Best 

Cost 

No. of 

iteratio

ns 

Worst 

Cost 

Averag

e Cost 

Best 

Cost 

No. of 

iterati

ons 

Worst 

Cost 

Average 

Cost 

Best 

Cost 

5 100 
0.013

41 

0.0130

4 

0.012

39 
100 

0.011

38 

0.0113

8 

0.011

38 
100 

0.009

53 
0.00908 

0.088

5 

10 100 
0.889

99 

0.3526

26 

0.103

01 
100 

0.239

63 

0.1192

9 

0.069

68 
100 

0.231

21 
0.11541 

0.058

22 

15 300 
6538.

6434 

2367.6

559 

158.8

261 
100 

58.25

45 

18.661

7 

2.347

1 
100 

48.43

57 
16.54782 

2.014

8 

20 300 
51574

.727 

20818.

5094 

1506.

295 
100 

9689.

5597 

4627.8

784 

890.4

05 
100 

9420.

2549 

4421.589

63 

784.5

621 

 
Table 7. Query cost of PL-ACO method for various number of tables 

Number of 

tables 
4 6 8 10 12 

GA [17] 26.5 73 
83.5

3 

107.7

1 

96.6

4 

EGA [17] 26.5 
72.5

5 

78.2

5 
96.98 

92.8

4 

ADEGA [17] 26.5 
70.9

5 

76.3

1 
85.96 

81.6

6 

ACO 24.7 
68.5

4 

75.8

2 
83.65 

78.2

2 

PL-ACO 24.7 
67.9

3 

72.3

4 
82.14 
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Table 8. Iterations of the PL-ACO method for various number of 

tables 

Number of tables 4 6 8 10 12 

GA [17] 105 117 167 178 216 

EGA [17] 104 110 139 155 186 

ADEGA [17] 102 108 122 145 178 

ACO 100 106 118 136 172 

PL-ACO 100 102 110 128 164 

  
Table 9. Search time of PL-ACO method for various number of tables 

Number of tables 4 6 8 10 12 

GA [17] 5.62 11.44 19.61 30.59 42.37 

EGA [17] 5.55 9.61 15.32 24.27 28.5 

ADEGA [17] 5.38 7.89 12.9 18.67 20.52 

ACO 5.24 7.54 10.82 12.56 18.47 

PL-ACO 5.10  6.93 9.41 8.29 15.13 
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The proposed method is evaluated for TPC-H 

benchmark queries per the criteria of [16] and [17]. The 

query processing cost of PL-ACO and existing methods are 

given in Table 6 for the various numbers of entities and 

iterations. The PL-ACO method has a lower query 

processing cost due to its ability to create the fitness 

function for each possible query join helps to find the 

optimal solutions. The existing method increases the search 

space to find the solution that increases the query cost of the 

model. The PL-ACO method maintains the search space 

based on the join query search in the model. 

 

The PL-ACO method query cost is compared with 

existing methods such as GA, EGA, and ADEGA, as shown 

in Table 7. The PL-ACO method has lower query cost due 

to its measured fitness value for every query joint in the 

system and limits the search space based on available query 

joints. The existing method ADEGA [17] measure double 

entropy for query joints in the system, which tends to 

increase the query cost of the model. 

 

The PL-ACO method is compared with existing 

methods for the required number of iterations to find the 

optimal solutions, as given in Table 8. The PL-ACO method 

finds the optimal solutions for fewer iterations than existing 

methods. The PL-ACO method replaces weaker ants with 

the best fitness ant to increase the learning rate that helps 

find optimal value with fewer iterations. 

 

The PL-ACO method is compared with existing 

methods for search time for query optimization, as given in 

Table 9. The PL-ACO method has less search time than 

existing methods for query optimization. The PL-ACO 

method limits the search space based on available query 

joints in the system, which helps reduce the method's search 

time. The existing ADEGA [17] method increases the 

search space and measures two entropy that increases the 

method's search time. 

 

6. Conclusion 
Query optimization helps to improve database 

efficiency and query cost reduction. The existing methods 

have applied ACO based query optimization method to 

reduce the query cost. The existing ACO-based methods 

have limitations of local optima and poor convergence in the 

optimization. This research applied the PL-ACO method to 

improve the performance of query optimization. The system 

model and the dataset are used to test the PL-ACO method 

efficiency in query optimization. The PL-ACO method has 

higher efficiency in query optimization than the existing 

method. The proposed method provides a lower cost of a 

query with fewer iterations in query optimization. The PL-

ACO method has the advantage of creating fitness value for 

available query joints that help to find the optimal solution 

for the query. The PL-ACO method replaces the worst 

learning ant with the best learning ant to improve the 

learning rate. The PL-ACO method limits the search space 

based on available query joins, which helps reduce the 

system's query cost. The PL-ACO method has an average 

cost of 16.54 for 100 iterations, and the existing QIACO 

method has an average cost of 18.66 for 100. The PL-ACO 

method has 82.14 query costs for 10 tables, and ADEGA 

has 85.96 query costs for 10 tables. A hybrid optimization 

method is applied for query optimization to improve query 

optimisation performance. 
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