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Abstract - Signal classification is an essential feature in cognitive science, which separates large datasets into classes based 

on frequency. This research was conducted to analyze the brain signals by signal classification using a convolutional neural 

network (CNN) to obtain the required frequency spectrum. The signals can be used for upper-limb prostheses, especially 

elbow joint applications. The feature extraction process is an important step in brain signal classification. During the current 

study, electroencephalography (EEG) signals are extracted using a 10-20 electrode system from the flexion and extension 

movement of the elbow joints. Using MATLAB tools, it is done through a user interface. The expected performance is obtained 

as an exact parameter analysis, e.g., the classifier's precision, simplicity, and sensitivity using a convolution neural network 

should be connected as a benchmark for applications for the upper-limb prosthesis. 
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1. Introduction 
Electroencephalography (EEG) is a technique of brain 

signal acquisition that enables the understanding of the 

brain's complicated internal machinery and abnormal brain 

waves associated with different brain malfunctions[1,2]. 

EEG examination is essential for treating significantly 

different symptoms and signs in the brain[3,4]. MATLAB 

offers a graphical user interface allowing users to channel 

their high-density EEG dataset [5] interactively. The EEG 

element technology has been slowly enabled for its great 

theoretical value and practical application. Its classification 

accuracy is used as an evaluation criterion to demonstrate the 

current system's effectiveness [6]. Brain signal classification 

is derived using certain previous information such as 

strength and other features[7]. There are currently no 

generally accepted methods; therefore, automated and 

accurate detection methods are greatly needed and 

important.  

Convolutional Neural Network's use in classifying data 

for the elbow joint EEG signals issues is not yet fully 

exploited. The data collection of EEG signals is performed 

in this project using a 10 – 20 electrode device in which all 

the electrodes are positioned on the scalp at different points. 

Such scalp electrodes record the EEG using a computer 

known as an electroencephalograph[8-10]. An experiment 

was conducted to acquire EEG data from subjects while 

conducting normal and motion signals with the open eye of 

the elbow joint, including flexion and extension, to obtain 

the frequency domain. The extraction function of both 

signals is produced via the Discrete Wavelet Transform 

(DWT) method[11,12]. The parameter analysis obtained 

from the signals is further processed by classification, using 

the neural network convolution in deep learning[13]. Using 

Alexnet, which offered better classification accuracy and 

sensitivity, the feature’s information from the data was 

extracted using CNN [14-16]. 

 

Browsed as the sample, this input signal is pre-

processed to filter the noise signals[17]. The DWT 

analogous to discrete filter banks should filter sub-bands 

before extracting the function. DWT plays an important role 

in signalling and image processing applications. Most 

researchers use various wavelet toolboxes for their 

application and analysis[18-20]. 

 

The next phase of EEG signal analysis is the extraction 

of features, where different signal processing techniques 

such as DWT are used to obtain features of the signal. The 

time-frequency domain allows for the simultaneous 

extraction of information in both domains; EEG analysis is 

based on the processing technique of time-frequency images 

which maps the signal into a two-dimensional frequency and 

time function[21,22]. This section presents a review of the 

literature using the Gray Level Co-occurrence matrix 

(GLCM) to extract features of EEG signals[23,24]. 

 

This research study aims to classify the elbow joint EEG 

brain signals to distinguish between normal and movement 

EEG signals from normal people to acquire better 
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classification accuracy. Using a CNN in the classification 

process, the values are trained after extracting the feature to 

classify the signals together to get the parameter analysis. 

The validation values for future applications of upper limb 

prosthesis and rehabilitation are taken as reference values. In 

this study, the system uses the convolutional neural network 

for signal classification using Alex net, which follows the 

supervised training and non-knowledge-based classification. 

For Neural network training, the principal statistical features 

will be extracted with the help of database samples[25]. The 

database sample will be classified using network parameters 

and feature extraction values. The system gives better 

performance accuracy for both normal and movement 

signals together. 

2. Experimental Methods 
2.1. Preprocessing  

Occasionally called post-processing, referring to being 

after purchase. Removal of unnecessary signals here is being 

taken[26,27]. The median filtering is mainly used to 

minimize the noise in an input signal, like the filtering 

process[28,29]. The key goal of the task is to discover the 

parameter analysis of available EEG data sets of the signals 

and other data acquisition techniques, pre-processing 

procedures, feature extraction methods, and the analysis of 

the results was implemented via the classification using 

Alexnet. 

 

2.2. Discrete Wavelet Transform (DWT) 

For numerous common signals, the DWT provides an 

inadequate representation. In other words, the important 

features of many natural signals are represented by a subset 

of DWT coefficients typically much smaller than the original 

one. This will 'compress' the signal. In the case of the DWT, 

usually, a few big DWT coefficients catch the suspense 

signal, while the noise generates several small DWT 

coefficients, which can be thrown away [30-32]. 

 

2.3. Feature Extraction technique 

EEG analysis is based on the processing technique of 

the time-frequency image or spectrogram, a method widely 

used in the short-term transformation of the Fourier, which 

maps the signal into a two-dimensional frequency and time 

function. This section summarizes the literature using 

GLCM to extract features of EEG signals[33-35]. Using 

Gray co matrix feature to build a GLCM. Since the signal 

processing needed for calculating a GLCM is restrictive for 

the maximum dynamic values of the signals, the gray matrix 

scales the input image. 

 

2.4. CNN Classification 

Convolutional neural networks reflect a generalization 

of methods used to process 1-D or 2-D signals (filtering, 

classification, etc.). Deep learning training normally needs a 

large number of data sets to be successful[9,22]. However, 

few EEG signal data are unlabelled, and the Classification 

process can be very difficult or even impossible manually. 

Convolutional neural network (CNN) architecture for EEG 

signal classification is proposed to address these challenges. 

2.5. MATLAB 

MATLAB is a technical-computing language of high 

performance. In a setting where questions and plans are 

expressed in common scientific notation, it integrates 

calculation, visualization, and programming, which is simple 

to use and assists the entire process of data analysis from 

acquiring databases employing Graphical User Interface, 

Pre-processing, Discrete Wavelet Transform sub-bands to 

render values the extraction of the function. It includes 

numerical, mathematical, and capability architecture to assist 

basic building and science activities since the processor 

libraries are designed for the various platforms supported by 

MATLAB[36-38]. 

 

3. Results and Discussion  
The proposed system approach was tested around sixty 

elbow joint EEG signals taken from the subjects' 

electroencephalogram. This study finds the percentage of 

classification of each parameter, such as accuracy, 

sensitivity, and simplicity, by the validation process using 

CNN classification. The results from the whole set of 

databases conducted in the experiments show that feature-

extraction values of each signal and classification part show 

whether the signal is normal or movement brain signals 

using the classifier Alexnet. The proposed method has tested 

for around sixty brain signals that combine both the normal 

and movement of elbow joint brain signals to evaluate the 

performance analysis from the signal classification using 

CNN by the process of feature extraction parameter. We 

achieved the results that show better classification accuracy 

and a few more in our experiment. Then the collected signals 

are processed in the excel format for every channel, 

including parental, frontal, etc., and the results are shown in 

Table 1. 

 

Preprocessing is usually done for experimental design, 

occasionally called pre-analysis, after the signals' acquisition 

process to filter the unwanted noise in the input signal under 

this method. Preprocessing a signal means preparing the 

signals to introduce it to an algorithm for further processes 

such as recognition, DWT, Feature extraction, etc. It mainly 

filters the dataset as an input of each signal to remove the 

noises. The result of the input signal and preprocessing 

signal is shown in Fig. 1. 

 

The discrete transformation of the wavelet equals 

discrete filter banks. They are discrete filter banks that are 

tree-structured, where the signal is filtered. The filter outputs 

at each successive stage are sampled in the DWT. The DWT 

sub-bands (Low Low, Low High, High Low, and High High 

Pass filter) are shown in Fig. 2. During the experiment, 

features are extracted from both normal and movement 

signals, namely flexion, and extension of the elbow joint, the 

feature extracted includes Entropy, Skewness, Kurtosis, 

Mean, Standard deviation, and Variance. These are the 

features extracted from around sixty signals of the subject. 

This result will be applied to the classification process. 
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Table 1. Elbow joint EEG input signal in excel format 

P2 

- 

F4 

F4 

- 

C4 

C4  

- 

P4 

P4 

- 

O2 

FP1 

- 

F3 

F3 

- 

C3 

C3 

- 

P3 

P3 

- 

O1 

FP2 

- 

F8 

F8 

- 

T4 

T4 

- 

T6 

T6 

- 

O2 

FP1 

- 

F7 

F7 

- 

T3 

T3 

- 

T5 

T5 

- 

O1 

-5 -200 200 -1 -3 3 -3 -183 -4 0 0 -2 -65 61 3 -184 

-4 -678 678 -1 -3 3 -3 -673 -4 0 0 -1 -217 213 3 -675 

-146 -744 743 -1 -159 193 -128 -890 -146 0 22 -24 -178 19 132 -955 

-486 -104 104 -1 -531 648 -427 -483 -485 0 76 -78 148 -680 440 -702 

-484 369 -588 116 -646 838 -698 231 -572 -119 52 52 477 -1099 473 -126 

113 228 -971 395 -347 479 -774 1087 -187 -404 -89 446 634 -898 76 634 

834 -193 -1024 649 8 -115 -609 1766 341 -662 -229 815 546 -401 -355 1260 

1332 -595 -817 751 264 -617 -338 2112 734 -719 -336 992 330 105 -633 1620 

1468 -921 -348 671 323 -864 -50 2035 865 -526 -399 930 35 470 -663 1602 

1264 -1094 157 471 138 -808 213 1561 715 -226 -341 650 -295 637 -450 1213 

833 -860 310 216 -239 -453 432 1102 346 91 -146 209 -407 421 -91 921 

428 -369 207 -32 -556 -97 687 802 26 372 77 -242 -309 41 198 906 

250 1 36 -140 -606 20 860 713 -40 412 233 -459 -176 -147 237 1074 

295 -27 119 -121 -424 -178 1025 613 181 219 316 -450 -214 15 73 1163 

389 -270 451 -121 -186 -505 1215 356 470 45 332 -398 -412 327 -72 1037 

306 -267 750 -261 -71 -685 1418 72 607 87 329 -494 -533 378 -22 910 

218 -95 989 -466 47 -840 1726 -193 735 266 328 -684 -544 331 25 927 

256 -1 1081 -603 129 -884 1920 -306 769 491 300 -827 -493 312 12 1027 

547 -295 1300 -656 233 -967 2137 -444 819 741 242 -906 -503 515 -134 1082 

968 -783 1617 -622 449 -1201 2390 -633 1002 890 173 -885 -585 943 -427 1074 

1220 -1061 1849 -576 675 -1412 2446 -676 1190 962 70 -790 -587 1268 -724 1076 

 
Fig. 1  Input signal and Pre-processing signal 

It is rather easy to classify with these feature values. 

This process aims to identify the features that contain the 

signal information to strengthen the classifier efficiency. It is 

used to accomplish the classification process. Table 2 shows 

the result of the Feature Extraction output of the normal 

EEG signals in the eyes-closed condition. 

 

The feature extraction of the EEG signals with the 

movement (i.e., flexion and extension of elbow joint) was 

shown in Table 3. Table 4 shows the average values of 

feature extraction of both normal and elbow joint movement. 
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Fig. 2 DWT sub-bands (Low Low, Low High, High Low, and High High Pass filter) 

 

Table 2. Feature extraction of normal EEG signals in eyes closed condition 

Signal P-P Mean Median Entropy Skewness Kurtosis Variance SD 

Normal ec1 65.057 26.988 27.295 1.1380 0.5744 3.858 11.0703 3.326 

Normal ec2 65.201 26.907 27.219 1.1378 0.5747 3.902 11.0757 3.329 

Normal ec3 65.107 26.886 27.050 1.1386 0.5747 3.916 11.0659 3.327 

Normal ec4 65.048 27.113 27.181 1.1386 0.5747 3.898 11.0707 3.326 

Normal ec5 65.082 26.932 27.110 1.1379 0.5748 4.026 11.0774 3.329 

Normal ec6 65.455 27.143 26.912 1.1395 0.5748 4.129 11.0843 3.329 

Normal ec7 65.330 26.949 26.965 1.1395 0.5746 3.811 11.0664 3.330 

Normal ec8 65.080 27.158 27.214 1.1388 0.5745 3.861 11.0796 3.328 

Normal ec9 65.008 26.916 27.105 1.1382 0.5747 4.129 11.0639 3.328 

Normal ec10 65.326 27.097 27.088 1.1399 0.5746 4.104 11.0768 3.326 

Normal ec11 65.394 27.096 27.038 1.1387 0.5747 4.097 11.0810 3.329 

Normal ec12 65.459 27.192 26.989 1.1395 0.5745 4.183 11.0821 3.326 

Normal ec13 65.352 26.960 27.072 1.1379 0.5746 4.080 11.0759 3.328 

Normal ec14 65.043 27.019 27.226 1.1386 0.5746 3.942 11.0624 3.330 

Normal ec15 65.442 27.104 26.978 1.1390 0.5747 4.069 11.0798 3.327 

Normal ec16 65.225 27.039 26.953 1.1372 0.5748 3.983 11.0717 3.327 

Normal ec17 65.199 27.148 27.086 1.1387 0.5747 3.804 11.0866 3.328 

Normal ec18 65.384 27.171 27.230 1.1377 0.5746 3.961 11.0645 3.329 

Normal ec19 65.397 26.964 27.107 1.1396 0.5746 3.804 11.0710 3.329 

Normal ec20 65.266 26.850 27.274 1.1392 0.5747 3.868 11.0766 3.329 
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Table 3. Feature extraction of movement EEG signals in eyes closed condition 

Signal P-P Mean Median Entropy Skewness Kurtosis Variance SD 

Movement E1 61.13 31.643 32.098 1.0386 -0.6201 4.448 41.4350 6.437 

Movement E2 57.994 28.871 28.855 1.0307 0.1242 4.694 54.2432 7.365 

Movement E3 66.992 28.283 28.218 1.0446 -0.0881 4.093 56.1001 7.49 

Movement E4 64.622 28.819 28.655 1.4361 1.037 4.744 54.6269 7.391 

Movement E5 62.642 28.491 28.525 1.0334 1.0115 3.995 57.2292 7.565 

Movement E6 72.962 25.686 25.346 1.4148 0.0043 4.418 42.5887 6.526 

Movement E7 58.794 26.781 31.138 1.0633 0.0096 4.343 52.9256 7.275 

Movement E8 67.992 27.184 27.875 1.0357 0.0605 4.394 54.0225 7.35 

Movement E9 65.722 27.356 28.324 1.0075 0.0941 4.626 55.9654 7.481 

Movement E10 61.442 29.381 27.845 1.0445 0.0048 4.296 58.7522 7.665 

Movement F1 72.962 31.426 32.079 1.234 -0.1032 4.441 39.4384 6.28 

Movement F2 71.363 28.268 28.524 1.1097 0.2864 4.335 47.0596 6.86 

Movement F3 72.761 27.167 27.207 1.0094 0.3496 4.329 54.5973 7.389 

Movement F4 67.663 29.164 29.438 1.0286 -0.0657 4.287 50.3816 7.098 

Movement F5 71.66 27.375 27.508 1.0042 0.0325 4.817 51.2226 7.157 

Movement F6 62.137 29.359 29.203 1.0104 0.0786 4.418 38.9376 6.24 

Movement F7 52.961 30.316 27.424 1.0036 0.0179 4.675 45.6976 6.76 

Movement F8 73.365 27.168 28.307 1.0281 -0.0868 4.158 52.9838 7.279 

Movement F9 71.763 28.267 28.238 1.0067 0.0206 4.551 51.8112 7.198 

Movement F10 68.662 29.765 28.708 1.0308 0.0245 4.263 51.6530 7.187 

 

Table 4. Average of feature extraction output 

S.No Features 
Normal 

Signals 

Movement 

Signals 

1 
Peak-to-

peak 
65.2428 66.2795 

2 Mean 27.0316 28.5385 

3 Median 27.1046 28.6758 

4 Entropy 1.1386 1.0807 

5 Skewness 0.5747 0.1096 

6 Kurtosis 3.9713 4.4163 

7 Variance 11.0741 50.5836 

8 SD 3.328 7.0997 

Fig. 3 shows the variance feature comparison of normal 

and movement signals of all the samples. It shows that the 

variance of the elbow joint movement is increasing 

concerning the normal condition. From Fig. 4, the current 

study shows the variance of an average elbow movement 

signal is as high as the normal signal. Other features are 

showing almost slight changes concerning the normal signal. 

After the process of database training, the signals have 

to be classified using CNN (Convolutional neural network) 

with the classifier Alexnet. It shows whether the given signal 

is normal or movement in the classification process. This 

process helps to determine the classification accuracy by the 

validation process. The classification output shows whether 

the given input is normal or movement, and the result is 

shown in Fig. 5. 

 

Fig. 3 Variance output of normal and movement signal 

Fig. 4 Average features output 
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Fig. 5 Classification output 

Fig. 6 shows the validation values by the classification 

process that shows the performance analysis from the whole 

data set. The system performance was evaluated using a 

Convolutional neural network using the accuracy, 

sensitivity, and specificity measures under the validation 

process. 

Many researchers make use of the feature extraction and 

neural networks of brain signals for research purposes to 

identify brain disorders to evaluate certain information in 

upper limb prosthesis applications or need to develop the 

prosthetic device for the subject[39]. It is done with the help 

of the MATLAB function. This project's main purpose is to 

acquire brain signals by flexion and extension of elbow 

joints to obtain the frequency domain based on DWT and the 

feature extraction process. 

 

Fig. 6 Validation process 

The obtained frequency domain from the whole signals 

is further processed by classification using a convolutional 

neural network in deep learning. The classified signals 

collect the required parameter analysis from the whole 

dataset. The acquired parameter analysis is used as the 

reference for applying upper limb prosthesis and 

rehabilitation, etc. Moreover, in the existing system, signal 

processing is done with a Brain-computer interface. The 

proposed technique processed the elbow joint brain signal 

based on discrete wavelet transformation and is done for 

both normal and elbow joint EEG signals. Backpropagation 

and custom neural networks are not available for upper limb 

action or movement, especially for elbow joint EEG signals. 

Several methods for EEG monitoring of upper limb strength 

assist artificial limbs in perceiving joint elbow speeds using 

these EEG signals.  

   

Using different classification methods, the discrete 

wavelet transform method can be used for epileptic detection 

from brain signals. The other existing method is done with 

wavelet analysis to obtain the automated artifact rejection 

from the multichannel EEG Scalp, which is slightly similar 

to the acquisition process of EEG signals. Still, the proposed 

technique consists of a Discrete wavelet transform for EEG 

signal processing to compress the signals into sub-bands 

such as low and high pass bands as discrete filter banks 

before the Preprocessing of brain signals to filter the noise 

over the signals for the next process such as Feature 

extraction. In the proposed system, Electroencephalogram 

(EEG) signals given as input are composed of narrowband 

signal series with the help of DWT.  

   

Extraction of the function reduces the input signal 

dimensions by maintaining the informative features. The 

current research presents successful feature extraction 

techniques for classifying the elbow joined EEG signal. This 

proposed method includes this process to create a dataset 

with a reduced number of features that contain the signals 

information, including the Peak-to-peak value, Mean, 

Median, Entropy, Skewness, Kurtosis, Variance, and 

Standard deviation of the given input. This extracted feature 

helps the classifier classify the signals to compare the normal 

movement of the elbow joint for the classification process.  

   

For the diagnosis of brain disorders, the development of 

prosthetic devices is mainly useful for the upper-limb 

prosthesis and rehabilitation of the subject. These obtained 

performance analyses help the researchers identify and 

evaluate or understand the problem related to the upper limb 

prosthesis or elbow joint region for better understanding and 

diagnosis. Many researchers have found the process of 

feature extraction and deep learning method for upper-limb 

prosthesis or controlling the movement of the upper limb. 

No other field of research has effectively contributed to the 

diagnostic purposes. In the existing approach of 

classification method containing continuous small 

convolutional neural network, this method’s classification 

accuracy and kappa value are used as evaluation criteria to 

verify the effectiveness of the method of study and the 

performance of Continuous small convolutional neural 

networks is better with an average value of 0.663. This 

method is similar to the proposed method of classification. 

   

The current investigation uses a convolutional neural 

network for the classification process to obtain the 

performance analysis of the brain signals of the elbow joint 

to compare the normal and movement, which is done by a 

classifier, namely Alexnet. The result of one of the existing 

methods for classifying speed across seven subjects was an 

average of 83.71 percent accuracy using a Fisher Linear 
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Discriminant classifier. Other methods are done with CNN 

for achieving the Single-trial EEG classification of motor 

imagery. The proposed approach is to compare the different 

signals such as normal and movement signals, for better 

classification accuracy, which is used as a reference for 

upper-limb prosthesis application. The obtained 

classification method extracts the validation process's 

accuracy, specificity, and sensitivity as a final output. This 

automated classification process is helpful for the 

researchers as well as the doctors. It supports diagnosis and 

research purposes related to upper limb prosthesis because it 

provides feature extraction values and better classification 

accuracy when CNN Classification achieves this. Until now, 

others have not evaluated the performance analysis that the 

CNN classification has done. It would be helpful to the 

researchers to have research for treatment or diagnosis of 

upper limb prosthesis and rehabilitation using the elbow 

joint brain signals as a reference from the classification 

output. It can be useful for future work to develop the 

prosthetic device related to the upper limb prosthesis. 

 

4. Conclusion 
In the proposed research, the feature extraction and 

classification of elbow joint EEG signal output is mainly 

used as a reference value for upper limb prosthesis 

application and rehabilitation purposes. With the help of 

experimental results, (i.e.) validation values of the whole 

data set as the graphical representation to show the better 

classification. These proposed techniques are also used for 

diagnosis and medical purposes related to upper limb 

movement. The scope of this proposed method can be useful 

to the researcher regarding the brain disorders correlated 

with the upper limb. In the existing method, no records are 

related to the elbow joint EEG signals to achieve the upper 

limb prosthesis application. But the proposed method has a 

better classification accuracy of brain signals. The proposed 

method included an enhancement stage that compresses the 

signals without any loss to obtain the information on elbow 

joint EEG signals. Overall, the proposed approach achieved 

a better classification that shows the validation part, such as 

accuracy of 93.33%, sensitivity of 90%, and simplicity of 

80% from the whole process, which can be taken as a 

reference for upper-limb prosthesis applications. 
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