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Abstract - Glycosylation is the most common post-translational modification of protein in all territories, which plays a 

significant role in biological processes. Amongst them, n-linked glycosylation is the most crucial modification, which is closely 

related to certain diseases such as cancer, diabetes, HIV infection, Alzheimer's disease and atherosclerosis, and liver 

cirrhosis. Recent advancements in biological knowledge are depicted in this article, ultimately targeting the computer science 

field. Machine learning and deep learning techniques are major keys to predicting various protein modifications. Through the 

review of several models which have been made existing for prediction and show high accuracy but result as false positives 

due to the poor biological knowledge, updated datasets and techniques used. Targeting precise prediction, drawbacks of the 

existing model and discussed parameters and techniques were emphasized to model solution in this paper. In this study, 

databases were combined, namely UniprotKB, dbPTM, and nGlycositeAtlas, which are experimentally verified and updated 

with window size 21. This window size is best for the n-linked glycosylation. After combining datasets and removing the 

redundancy, 11254 unique proteins and 33859 glycosites were received for further study. CD-HIT algorithm was implemented 

to remove the redundancy with threshold 0.9. These nearby locations for similar pattern sequences have been identified for 

asparagine residue for n-linked glycosylation. The protein sequence is a combination of 20 amino acids, which were required 

to convert into numerical form through encoding methods. Various encoding methods have conversed for n-linked 

glycosylation. With the biological features, amino acid encoding methods such as substitution matrices - Position Specific 

Scoring Matrix (PSSM) and Physicochemical properties encoding VHSE8 are the vital methods which improve the accuracy 

in n-linked glycosylation prediction. 

Keywords - Artificial intelligence, Deep learning, Human protein, Machine learning, N-linked glycosylation.  

1. Introduction 
Amongst Eukarya, Bacteria, and Archaea, glycosylation 

is the common protein post-translational modification (PTM) 

[1]. Protein glycosylation is the process of adding sugar 

molecules to a protein, lipids, and other organic molecules 

inside and outside the Cell. In this process, the carbohydrates 

attached to lipids and proteins, specifically to a residue which 

makes a glycosidic bond, are called glycan. It is a covalent 

modification which plays a vital role in immune protein 

localization, system responses [2], Intracellular signaling, 

folding, trafficking, and cell-cell interactions [3][4]. Any 

dysfunctional glycan can lead to diseases such as cancer, 

diabetes, HIV infection, Alzheimer's disease and, 

atherosclerosis, liver cirrhosis. In addition, glycosylation 

plays a key role in SARS-CoV-2 infection [5]. Many authors 

state that more than 50% of plasma proteins are glycosylated 

[6][7][8]. As glycosylation plays a vital role in biological 

processes within the human body, the detection of protein 

glycosylation is also mandatory. However, Experimental 

detection of glycosylation is possible; it is also challenging 

and requires extensive laboratory work and expense. Due to 

this limitation of laboratory experiments, there is a need to 

develop a tool which predicts glycosylation. To overcome 

the limitations such as accuracy, speed and cost, 

computational analysis of Protein glycosylation is important. 

In this current era, Deep learning and Machine learning, the 

subset of Artificial Intelligence, is booming in all areas, 

including healthcare and bioinformatics. [9] 

Glycosylation occurs in Endoplasmic Reticulum (ER) – 

which helps in protein folding, and Golgi Apparatus – which 

informs protein where to go. Glycosylation usually occurs in 

the side chain of residues such as Tryptophan (Trp), Alanine 

(Ala), Serine (Ser), Threonine (Thr), Asparagine (Asn), 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Arginine (Arg), Aspartic acid (Asp), Isoleucine (Ile), Lysine 

(Lys), Valine (Val), Glutamic acid (Glu), Proline (Pro), 

Tyrosine (Tyr), Cysteine (Cys) and Glycine (Gly) [10]. 

However, all residue glycosylation occurs more frequently 

on Ser, Thr, Asn and Trp residue [11]. Glycosylation can be 

classified into N-linked glycosylation, O-linked 

glycosylation, C-linked glycosylation, S-linked 

glycosylation, phoglycosylation and glypiation [12]. Three 

main types of glycosylation are N-linked, O-linked and C-

linked. All these three types differ in terms of location in the 

protein chain and targeted residue within the protein 

sequence. 

Amongst all the types, the most profound type is N-

linked glycosylation. If done experimentally, the 

characterization process of N-linked glycosites in 

glycoproteins is technically tough, costly, and takes lots of 

time.   It plays a vital role in protein folding and protein 

stability. So, it is closely related to the development of drug 

design. N-linked glycosylation occurs in both ER and the 

Golgi complex. According to biochemistry, an 

oligosaccharide (glycan) attachment to the amide nitrogen of 

an asparagine (Asn) residue of protein is called n-linked 

glycosylation. Mainly N-linked glycosylation happens in N-

X-S/T (N – Asparagine, S – Serine, T – Threonine) sequence 

and occasionally in N-X-C (C – Cysteine) where X can be 

any amino acid except Proline [13]. 

 

1.1. Introduction to Problem Statement and Research Gape 

Identification 

As discussed above, detecting glycosylation using 

experimental techniques is still challenging and takes a long 

time and cost. Moreover, it is also quite challenging to 

understand glycosylation because of the various diversity of 

glycan attached to proteins which limits the consideration of 

the specific function of glycosylation. Because of the larger 

number of enzymatic steps involved, glycosylation is the 

most intricate post-translational modification. Recent 

advancements in Artificial Intelligence overcome the 

drawbacks of detecting glycosylation using experiments. 

Birgit Eisenhaber and Frank Eisenhaber authors have stated 

that "glycosylation prediction is still not satisfactory and 

sequence-based approach has low prediction rate because of 

the number of glycotransferases are not explored and even 

less studied" [14]. Manikandan Muthu, Sechul Chun et al. l.  

have highlighted available bioinformatics resources and gave 

the conclusion that there is a massive gap between available 

bioinformatics tools and real-time applications. However, 

many glycosylation prediction tools are developed, but not 

even 1% of the available tools are used for glycosylation in 

cancers [15]. Figure 1 shows the objective and research gap, 

which is considered and discussed in the article.  

It was stated by many authors in 2020 and 2021 

[16,17,18] that most of the prediction models have evaluated 

their performance at every N in protein sequence without the 

confirmation of N-X-S/T sequon. Also, additional features 

such as disordered regions and physicochemical properties 

can be used for accurate and better results. 

 

Previous methods used for the prediction are accurate at 

a certain level but still left out with some problems. The 

problems are: 

• Small protein sequence dataset available to train the 

model 

• Dataset available but not verified experimentally 

• Window size selection for the experiment 

• Incomplete information available on amino acids for 

feature encoding 

• No feature selection techniques were used or available 

Considering these problems and the research gap, three 

datasets were combined, namely UniprotKB, dbPTM, and 

nGlycositeAtlas, to get the updated and experimentally 

verified data. Window size 21 is selected to train the model. 

Also, the article explored statistical and physicochemical 

properties to get better results. 

2. Literature Review and Research Gap 
To conclude, a number of papers were reviewed to 

predict the model for n-linked protein glycosylation and 

identified the methods used in the prediction model, the 

dataset used and limitations for accurate prediction. Based on 

the review, protein glycosylation prediction can be done by 

two approaches 1) protein sequence-based approach and 2) 

Protein structure-based approach. The protein sequence-

based approach is also categorized in two ways: residue level 

and sequence level, which is represented below in Figure 2. 

The highlighted part in the figure depicted a suitable 

approach for the prediction of n-linked glycosylation. Further 

paragraphs describe why the selected approach is best and 

suitable for predicting true positive sites. Figure 2 highlights 

the approach used to identify the protein PTM site. For 

selecting the proper approach, various models and datasets 

have been reviewed. In the first approach, the input will be a 

protein sequence, and protein glycosylation is identified 

based on that protein sequence. For this approach, protein 

sequence databases are used to train the model. 

 
Fig. 1 Research Gap
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Fig. 2 Protein n-linked glycosylation prediction approach 

There are various datasets available which contain 

protein sequence information and are categorized as primary 

(Swiss-Prot – protein sequence), secondary (UniProt 

Knowledgebase – Protein sequence with functional 

information), complex (UniProt - Protein sequence with a 

wealth of additional genomic information) [53] and 

specialized (Specific to disease). Moreover, other PTM 

databases are available, including specific post-translational 

modification information, e.g. glycosylation, 

phosphorylation etc. Here some datasets have been 

highlighted which are ready to use and developed from 

existing databases such as PTMCode [20,53], dbPTM [21], 

ProteomeScout [22,23], and iPTMNet [24]. These datasets 

are available to train the model for specific types of 

modification. Author Dan Ofer, Nadav Brandes et al. l. have 

mentioned the Natural Language Processing (NLP) 

Classification, which describes the local and global 

classification of protein sequence [25].  

The residue level approach is based on the local 

classification where specific amino acids play an essential 

role; for example, Protein Post Translational Modification 

prediction targets specific amino acids. Global classification 

is based on the entire sequence, for example – Protein 

secondary structure prediction. In the second approach, 

prediction of protein, modification is carried out by the 

structure of the protein. Databases for protein structure 

include Protein Data Bank (PDB), AlphaFold DB [26] etc. 

are further used in computation methods such as machine 

learning and deep learning.  

Various computational approaches for n-linked 

glycosylation prediction, which is based on the protein 

sequence as well as protein structure, were considered. 

Some of the prediction approaches for n-linked 

glycosylation which uses sequence-based features are 

NetNGlyc [27], GPP [28], EnsembleGly [29], GlocoPP [30], 

GlycoEP [31], NGlycoGo [16], GlycoMine [32], SprintGly 

[33]. A few structure-based approach models have been 

developed: NGlycPred [54] and GlycoMinestruct [35]. 

Howbeit, Figure 2. describe the individual approach; some 

model uses the hybrid approach, such as N-GlycDE [17] and 

DeepNGlycPred [18].  

As per the literature review and previous model, it is 

observed that solved protein structures added in Protein Data 

Bank (PDB) are still inadequate and do not have a solved 

protein structure for the query sequence. For these reasons 

sequence-based approach was selected, which is further 

classified as residue level and sequence level. Except for 

NetNGlyc[26], N-GlycDE[17], and DeepNGlycPred [18], 

almost all the listed models in the afore-mentioned 

paragraphs evaluated their performance using residue N 

without confirming N-X-[S/T] motif to identify n-linked 

glycosylation [13] and thus, performance is overestimated 

and resulted in high accuracy. To achieve comparable 

performance, consensus sequence N-X-[S/T] must be 

considered for analysis. However, the consensus sequence 

does not necessarily confirm n-linked glycosylation because 

one-third to half of the consensus sequence is hidden deep 
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inside the protein, which is not accessible by the 

glycosylation enzyme [36,37]. Thus, performance evaluation 

based only on the consensus sequence might result in a false 

positive. In addition to sequence features few predicted 

structural features such as secondary structure (SS) to check 

the helix, strand and coil in a sequence, disordered residue, 

and Accessible Surface Area (ASA) to check the 

accessibility of N residue are used to increase the accuracy 

for the prediction model. GlycoMinestruct [35] and 

SprintGly [33] use structural features, but it is evaluating 

performance without confirming N-X-[S/T] sequence. 

Recently deep learning-based approach DeepNGlycPred [18] 

and SVM-based approach N-GlycDE [17] are the pivotal 

work in the computation biology for n-linked glycosylation 

prediction from the protein sequence, which is based on the 

N-X-[S/T] consensus sequence as well as use the predicted 

structural features. As shown in Figure 2, for the better 

performance of n-linked glycosite prediction, the best 

approach is sequence level in which the protein sequence is 

fed into the model for analysis and results as n-linked 

glycosylated.  

 

3. Materials and Methods 
In recent years, healthcare has been booming with 

artificial intelligence techniques such as deep learning and 

machine learning. For the prediction of n-linked 

glycosylation, techniques can be used to solve bioinformatics 

problems. There are various challenges in computational 

biology, such as heterogeneous data, realistic interpretation 

of information, selection of proper architecture, 

hyperparameter identification, non-glycosylation sites, 

heterogeneous and high dimensional features, accurate 

performance, especially on independent datasets etc. [38,39]. 

The most significant challenge is dataset selection as the 

number of data are deposited in the databases. Still, the 

challenge remains to extract the proper and experimented 

validated data. 

3.1. Protein Sequence Dataset 

As mentioned above, the section discussed "PTM 

identification approaches" that n-linked glycosylation 

prediction performance is based on peptide containing N-X-

[S/T] motif and experimentally validated data, so the 

selection of data is based on these criteria. Based on the 

existing model's review and online dataset available, it has 

been noted that dbPTM [20] and nGlycositeAtlas [40] 

datasets comprise updated and experimented validated data 

that confirm the positive sites with N-X-[S/T] peptide. 

Moreover, UniProtKB[41] include recently added and 

modified sequence information. For UniProtKB filter was 

applied to extract only n-linked glycosylation sites, which 

include 1) Reviewed and human data, 2) PTM as 

Glycosylation with Keyword n-linked. The n-linked 

glycosylation sites for human proteins have been extracted 

from these datasets and processed to remove the duplication. 

UniProtKB contains the entire protein sequence, dbPTM 

with 21 window sizes and nGlycositeAtlas with 41 window 

sizes were combined to get 11254 unique proteins and 33859 

unique glycosites. Data for further study was selected after 

removing the duplication, shown in Table 1. These number is 

sufficient to train the model with experimentally verified 

data. 

 

AAindex datasets are used with these sequence datasets 

to obtain the numeric vector representation of each amino 

acid's physicochemical and biochemical properties. AAindex 

is divided into three parts: AAindex1, AAindex2, and 

AAindex3 [42]. As glycosylation is related to peptide 

binding, the AAindex1 dataset is suitable for measuring such 

properties. 
 

3.2. Window Size  

The whole protein sequence cannot be processed at a 

time to train the model; each protein sequence is divided into 

sequences the program compares at a time. A window is a 

fixed-size fragment with no fixed position over a protein 

sequence. A window size W is a fixed length Protein 

sequence. In this sequence, the centre of this fragment is the 

target residue; further, the W is always an odd number 

generated through (W - 1)/2. It is divided by 2 because it 

contains the same number of residues on either end. After 

selecting data, it is necessary to select the optimal window 

size for data. There is no fixed size for the window. Window 

size varies from 11 to 27 for machine learning and deep 

learning. Some studies selected window size w through a try-

and-error approach. According to past studies, an accuracy 

drop with W > 10 and a wider window size may result in 

worse performance. [43, 55] In this study, Window size 21 is 

selected based on two criteria: 

 

3.2.1. Protein Structure 

The development of helical structure, coils and strands 

are affected by amino acids, which are 9, 3 and 6 positions 

away, respectively, in the sequence from the targeted residue. 

 

3.2.2. Hydrophobicity 

To determine the hydrophobic regions, window size 19 

or 21 is optimal [43]. 

Table 1. Statistics of n-linked glycosylation dataset for human protein 

Dataset # of protein # of glycosites Link 

UniProtKB 3330 8995 https://www.uniprot.org/ 

dbPTM 222 481 https://awi.cuhk.edu.cn/dbPTM/index.php 

nGlycositeAtlas 9260 24382 http://nglycositeatlas.biomarkercenter.org/ 

Unique Data 11254 33859  

https://www.uniprot.org/
https://awi.cuhk.edu.cn/dbPTM/index.php
http://nglycositeatlas.biomarkercenter.org/
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Fig. 3 sample result of CD-HIT algorithm with threshold 0.9, 

representing the protein ID with n-link glycosylation location. 

 

3.3. Data Pre-Processing 

To improve the performance of protein sequence 

analysis and to reduce the sequence redundancy from the 

selected datasets, it is necessary to cluster the protein 

sequence and remove the duplicate or similar identity protein 

sequence according to the threshold. The most widely used 

tool CD-HIT (Cluster Database at High Identity with 

Database) [45], is fast and commonly used to reduce 

sequence redundancy using a greedy incremental clustering 

algorithm based on threshold similarity. If the two protein 

sequences have 85% similarity over 100-residue window 

size, they must have at least 55 identical tripeptides and 70 

dipeptides. The input file for the CD-HIT tool will be in fasta 

format only. NGlycoGO[16], NetNGlyc[27], N-GlycDE[17], 

and DeepNGlycPred [18] use CD-HIT to reduce the protein 

sequence with 30% similarity. Another technique is 

BLASTCust (Blast package for clustering the protein 

sequence) based on pairwise similarity and thresholds, score 

identity and alignment length. SPRINT-Gly [33] uses this 

technique with more than 30% similarity. To cluster the used 

protein sequence data CD-HIT algorithm was applied with a 

0.9 threshold in Fasta file format. In the .fasta file, 

ProteinID_Location (P28841_523) were used to identify the 

asparagine location with protein ID. A total of 25516 clusters 

were identified from 33859 glycosites. As a result, it was 

observed that similar protein sequences have nearby 

glycosylation locations. It is also noticed that there is a high 

possibility of modification at that specific location. The 

sample result is highlighted below in Figure 3, where two 

clusters, namely clusters 82 and 83, were shown. From these 

sample two clusters, it is noted that in sample cluster 82, 

P27909 protein ID has N residue at 183 locations, and 

similarly, other sequences in the same cluster have similar 

Asn locations. This result shows a high possibility of n-

glycosylation at that specific location of that specific protein 

sequence pattern. 

 

3.4. Protein Sequence Encoding Methods 

Amino acid encoding methods play a vital role in the 

success of machine learning and deep learning models. [46] 

20 letters amino acids represent protein sequence; it is 

necessary to process the amino acid sequence into binary 

representation for machine learning / deep learning to predict 

n-linked glycosylation. Most of the models use the encoding 

scheme which was developed in the pre-deep learning era, 

such as binary encoding (one-hot encoding), substitution 

matrices (Block Substitution Matrix (BLOSUM)), 

physicochemical character-based scheme (Principal 

component score Vector of Hydrophobic, Steric, and Electro 

properties (VHSE8)) [47]. Each encoding method for n-

linked glycosylation prediction has been discussed below: 

 

3.4.1. Binary Encoding 

This method represents the amino acid in the protein 

sequence by 0s and 1s. There are three ways to encode amino 

acids 20-bit, 6-bit and 5-bit. One-hot encoding is the most 

common binary encoding method, which is also known as 

orthogonal encoding. [47] Each 20 amino acid is represented 

in this encoding by a binary vector. First, all the 20 amino 

acids are sorted in alphabetical order such as [A, C, D, E, F, 

G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y] to make process 

simple. It can be represented ith amino acid type by 20 binary 

bits in which ith bit is set to 1, one-hot code for A is 

10000000000000000000 and so on. If any unknown amino 

acid is identified, then one more bit is needed to add in rare 

cases. To simplify this 20-dimension one-hot encoding to 6-

dimension conservative replacement through evolution is 

used, based on the Point Access Mutation (PAM) metrics 

[48]. In this technique, encoding is based on the six groups of 

amino acids: [H, R, K], [D, E, N, Q], [C], [S, T, P, A, G], 

[M, I, L, V], and [F, Y, W]. The third low-dimension binary 

encoding scheme is 5-bit encoding [49]. There are 32 (25) 

possible ways to represent amino acids from which all zeros, 

all ones and those with 1 or 4 ones (5 + 5=10) are removed 

and exactly 20 representations remain. Amongst these three, 

5-bit encoding representation is the excellent choice for 

model complexity, but this method is insufficient because 

only the presence of the N motif does not ratify n-linked 

glycosylation. 

3.4.2. Substitution Matrix 

It is an evolution-based encoding method that extracts 

evolutionary information of residue from sequence 

alignment, also known as multiple sequence alignment 

(MSA). This method is categorized based on the position of 

amino acids, which are 1) position independent – PAM 

(Point Accepted Mutation) matrices and BLOSUM matrices. 

PAM focuses on the evolutionary process of protein to 

identify the replacement probability of single amino acid 

with another amino acid. BLOSUM matrices are based on 

the conserved region of the non-redundant protein and 

determine the probabilities that amino acid pairs will 

interchange with each other. The score is log-odds that 

measure pairwise identity. 2) Position depends on which 

encode amino acid differently at different position regardless 

of the amino acid type are same. Position Specific Scoring 
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Matrix (PSSM) [50] is the most widely used encoding 

representing the log-likelihoods of the occurrence 

probabilities of all likely molecule types in each location in 

sequence. Also, PSSM achieves superlative performance on 

the large-scale dataset. [46] The score for residue i at 

position j (𝑆𝑐𝑜𝑟𝑒𝑖𝑗) will be calculated using the below 

formula where (𝑓′𝑖𝑗) is the relative frequency for the residue 

i at position j and (𝑞𝑖) is the expected relative frequency of 

residue i in a random position. 

 

𝑆𝑐𝑜𝑟𝑒𝑖𝑗 = 𝑙𝑜𝑔 (
𝑓′𝑖𝑗

𝑞𝑖
) 

 

Position-Specific Iterative Basic Local Alignment 

Search Tool (PSI-BLAST) is used to generate Multiple 

Sequence Alignment (MSA) for the specific protein 

sequence; after that equivalent, PSSM is calculated from the 

MSA, for the sequence length L, PSSM matrix is L * 20 

where each row representing log-likelihoods of 20 amino 

acids occur at specific position [52]. Hidden Markov Models 

(HMM) is another position-dependent encoding in which the 

HHbits alignment algorithm generates a probability profile 

that is more sensitive than the PSI-BLAST.  

 

3.4.3. Physicochemical Properties Encoding 

Physicochemical properties are also essential to capture 

the environment around the targeted glycosylation residue. 

Amongst all the physicochemical properties, hydrophobicity 

plays an essential role in shaping the self-assembly of protein.  

Matthew J. Betts and Robert B. Russell discussed Amino 

Acid properties classification. [50,51] Amino Acids are 

categorized according to their biochemical properties into five 

groups, which are mentioned in Table 2. Amino acid is 

classified as either hydrophobic or hydrophilic and is also 

called polar amino acid based on the amino acid side chain 

contact with a polar solvent like water. [CH Asp, Ser and Thr 

are examples of neutral polar amino acid which does not 

carry any charge.  Author Ghazaleh Taherzadeh et al. stated 

that physicochemical properties give the highest performance 

on human and mouse n-linked datasets, followed by 

evolutionary information [32]. 

Table 2. Amino acid classification of chemical properties 

Chemical 

Property 
Amino Acids 

Polar 

Hydrophilic 

Glycine (G), Serine (S), Threonine (T), 

Asparagine (N), Cysteine (C), Glutamine (Q) 

Acidic Aspartic acid (D), Glutamic acid (E) 

Basic Lysine (K), Arginine (R), Histidine (H) 

Hydrophobic 
Alanine (A), Valine (V), Leucine (L), 

Isoleucine (I), Proline (P), Methionine (M) 

Aromatic 
Phenylalanine (F), Tyrosine (Y), Tryptophan 

(W) 
 

Other physicochemical properties include the size of the 

amino acid, codon diversity of amino acid etc. VHSE8 is one 

of the best encoding methods for physicochemical properties 

based on the 18 Hydrophobic, 17 Steric and 15 electronic 

properties, so, in total, 50 physicochemical properties of 20 

amino acids. Amino Acid property can be represented by 

VHSE-scale as follow: VHSE1 and VHSE2 (Hydrophobic 

properties), VHSE3 and VHSE4 (Steric properties), VHSE5 

to VHSE8 (Electronic properties).[47] 

 

To improve the quality of the prediction model, the 

selection of encoding methods plays an important role. Three 

encoding methods were discussed in the paragraphs above, 

each with significance. As focused on the protein sequence 

data, which are n-linked glycosylated, PSSM is the most 

suitable encoding for multiple sequence alignment of the 

protein sequence. [47] Moreover, with the statistical feature 

PSSM, the physicochemical property VHSE8 gives the best 

result for predicting n-linked glycosylation for human protein 

sequences. Amongst all these encoding methods, it has been 

noted that with the occurrence of a consensus sequence for n-

linked glycosylation N-X-S/T, the accessibility of N residue 

in that consensus sequence is also equally important. 
 

4. Conclusion 
In conclusion, protein glycosylation is essential to the 

regulation of biological processes, and accurate prediction of 

n-linked glycosylation is mandatory to understand this 

biological process. The study was focused on biological and 

computation perspectives to identify the n-linked 

glycosylation for the human protein. As experimental 

techniques for identification are costly and time-consuming, 

there is the urge to develop models which can overcome 

these limitations. The research gap is highlighted and 

identified in the sequence-based prediction approach, which 

is more suitable in terms of accuracy as the query protein 

may not have a solved structure because the solved structures 

deposited are limited in the PDB database. Few models have 

been reviewed and concluded with the consensus sequence 

N-X-S/T not only the presence of Asn(N) residue but also 

accessibility of Asn(N) residue in protein sequence important 

in order to predict true positive sites. In addition, large and 

non-redundant databases have been created for n-linked 

glycosylation, which contains unique 11254 proteins and 

33859 glysosites data from UniProtKB, nGlycositeAtlas, 

dbPTM. These data are updated and experimented with, and 

validated as well, which can improve the performance of a 

model to a great extent. Window size 21 was taken for 

protein sequence, which is optimal for n-linked glycosites 

prediction and the final dataset contains details - Protein ID, 

Location of N and Protein sequence with Window size 21. 

The CD-HIT algorithm was applied to remove the 

redundancy, through which 25516 clusters were found with a 

threshold value of 0.9. Upon analyzing the clusters, it was 

identified that more than 90% of similar protein sequences 

are near the glycosylation location for N residue. Also, the 
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listed and discussed various encoding methods for protein 

sequence have concluded that for n-linked glycosylation 

prediction, PSSM is the best technique for multiple sequence 

alignment as it focuses on the set of probability scores for 

each amino acid at each position of the alignment. With this 

PSSM, Physicochemical properties such as hydrophobicity 

are also important to improve the performance; this property 

can be calculated using the VHSE8 method, which is not 

used in the mentioned existing model. Amongst all the 

existing models, DeepNGlycPred and N-GlycDE evaluate 

performance by confirming N-X-S/T consensus sequence 

and accessibility of N residue using predicted structural 

features and PSSM encoding for multiple sequence 

alignment. To enhance the accuracy of the given model, 

physical-chemical properties such as hydrophobicity can be 

used.

  

References 
[1] Kelley W. Moremen, Michael Tiemeyer, and Alison V. Nairn, "Vertebrate Protein Glycosylation: Diversity, Synthesis and Function," 

Nature Reviews Molecular Cell Biology, vol. 13, no. 7, pp. 448–462, 2012. Crossref, https://doi.org/10.1038/nrm3383 

[2] Ząbczyńska M, and Pochec E., “The Role of Protein Glycosylation in Immune System,” Postepy Biochem, vol. 61, no. 2, pp. 129-137, 

2015.  

[3] Varki A et al., editors.Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2009. 

[4] John F. Rakus, and Lara K. Mahal, "New Technologies for Glycomic Analysis: Toward A Systematic Understanding of the Glycome," 

Annual Review of Analytical Chemistry (Palo Alto Calif), pp. 367-92, 2011. Crossref,  

https://doi.org/10.1146/annurev-anchem-061010-113951 

[5] Celso A Reis, Rudolf Tauber, and Véronique Blanchard, "Glycosylation is a Key in SARS-CoV-2 Infection," Journal of Molecular 

Medicine, vol. 99, no. 8, pp. 1023–1031, 2021. Crossref, https://doi.org/10.1007/s00109-021-02092-0 

[6] Gerald W Hart, and Ronald J Copeland, "Glycomics Hits the Big Time," Cell, vol. 143, no. 5, pp. 672-676, 2010. Crossref, 

https://doi.org/10.1016/j.cell.2010.11.008 

[7] Karin Julenius et al., "Prediction, Conservation Analysis, and Structural Characterization of Mammalian Mucin-Type O-Glycosylation 

Sites," Glycobiology, vol. 15, no. 2, pp. 153-164, 2005. Crossref, https://doi.org/10.1093/glycob/cwh151 

[8] Radjiv Goulabchand et al., "Impact of Autoantibody Glycosylation in Autoimmune Diseases," Autoimmunity Reviews, vol. 13, no.7, 

pp. 742–750, 2014. Crossref, https://doi.org/10.1016/j.autrev.2014.02.005 

[9] Manish Suyal, and Parul Goyal, "A Review on Analysis of K-Nearest Neighbor Classification Machine Learning Algorithms Based on 

Supervised Learning," International Journal of Engineering Trends and Technology, vol. 70, no. 7, pp. 43-48, 2022. Crossref,  

https://doi.org/10.14445/22315381/IJETT-V70I7P205 

[10] Kai-Yao Huang et al., "dbPTM in 2019: Exploring Disease Association and Cross-Talk of Post-Translational Modifications," Nucleic 

Acids Research, vol. 47, no. D1, pp. D298-D308, 2019. Crossref,  https://doi.org/10.1093/nar/gky1074 

[11] Kazuaki Ohtsubo, and Jamey D Marth, "Glycosylation in Cellular Mechanisms of Health and Disease," Cell, vol. 126, no. 5, pp. 855-

867, 2006. Crossref, https://doi.org/10.1016/j.cell.2006.08.019 

[12] Nikolaj Blom et al., "Prediction of Post-Translational Glycosylation and Phosphorylation of Proteins from the Amino Acid Sequence," 

Proteomics, vol. 4, no. 6, pp. 1633-1649, 2004. Crossref, https://doi.org/10.1002/pmic.200300771 

[13] Y Gavel, and G von Heijne, "Sequence Differences Between Glycosylated and Non-Glycosylated Asn-X-Thr/Ser Acceptor Sites: 

Implications for Protein Engineering," Protein Engineering, vol. 3, no. 5, pp. 433-442, 1990. Crossref,  

https://doi.org/10.1093/protein/3.5.433 

[14] Birgit Eisenhaber, and Frank Eisenhaber, "Prediction of Post-Translational Modification of Proteins from their Amino Acid Sequence,"  

Methods in Molecular Biology (Clifton, N.J.), vol. 609, pp. 365-384, 2010. Crossref, https://doi.org/10.1007/978-1-60327-241-4_21 

[15] Manikandan Muthu et al., "Insights into Bioinformatic Applications for Glycosylation: Instigating an Awakening towards Applying 

Glycoinformatic Resources for Cancer Diagnosis and Therapy," International Journal of Molecular Sciences, vol. 21, no. 24, p. 9336, 

2020. Crossref, https://doi.org/10.3390/ijms21249336 

[16] Ching-Hsuan Chien et al., "N-GlycoGo: Predicting Protein N-Glycosylation Sites on Imbalanced Data Sets by Using Heterogeneous 

and Comprehensive Strategy," IEEE Access, vol. 8, pp. 165944-165950, 2020. Crossref,  

https://doi.org/10.1109/ACCESS.2020.3022629 

[17] Thejkiran Pitti et al., "N-Glyde: A Two-Stage N-Linked Glycosylation Site Prediction Incorporating Gapped Dipeptides and Pattern-

Based Encoding," Scientific Reports, vol. 9, no. 1, p. 15975, 2019. Crossref, https://doi.org/10.1038/s41598-019-52341-z 

[18] Subash C. Pakhrin et al., "DeepNGlyPred: A Deep Neural Network-Based Approach for Human N-Linked Glycosylation Site 

Prediction," Molecules,  vol. 26, no. 23, pp. 7314, 2021. Crossref, https://doi.org/10.3390/molecules26237314 

[19] Tian Jipeng, Suma P, and Dr. T.C.Manjunath, "AI, ML and the Eye Disease Detection," SSRG International Journal of Computer 

Science and Engineering, vol. 7,  no. 4, pp. 1-3, 2020. Crossref, https://doi.org/10.14445/23488387/IJCSE-V7I4P101 

[20] Pablo Minguez et al., "PTMcode: A Database of Known and Predicted Functional Associations Between Post-Translational 

Modifications in Proteins," Nucleic Acids Research, vol. 41, pp. 306-311, 2013. Crossref, https://doi.org/10.1093/nar/gks1230 



Mubina Malik & Jaimin N Undavia  / IJETT, 70(12), 118-126, 2022 

 

125 

[21] Zhongyan Li et al., "dbptm in 2022: An Updated Database for Exploring Regulatory Networks And Functional Associations of Protein 

Post-Translational Modifications,” Nucleic Acids Research, vol. 50, no. D1, pp. 471–479, 2022. Crossref,  

https://doi.org/10.1093/nar/gkab1017 

[22] Bingjie Xue et al., "KinPred: A Unified and Sustainable Approach for Harnessing Proteome-Level Human Kinase-Substrate 

Predictions," PLoS Computational Biology, vol. 17, no. 2, 2021. Crossref, https://doi.org/10.1371/journal.pcbi.1008681 

[23] Alex S Holehouse, and Kristen M Naegle, "Reproducible Analysis of Post-Translational Modifications in Proteomes--Application to 

Human Mutations," PLoS One, vol. 10, no. 12, 2015. Crossref, https://doi.org/10.1371/journal.pone.0144692 

[24] Sachin Gavali et al., "RESTful API for iPTMnet: A Resource for Protein Post-Translational Modification Network Discovery," 

Database: The journal of Biological Databases and Curatio, vol. 2020, 2020. Crossref, https://doi.org/10.1093/database/baz157 

[25] Dan Ofer, Nadav Brandes, and Michal Linial., "The Language of Proteins: NLP, Machine Learning & Protein Sequences," 

Computational and Structural Biotechnology Journal, vol. 19, pp. 1750-1758, 2021. Crossref, 

https://doi.org/10.1016/j.csbj.2021.03.022 

[26] Mihaly Varadi et al., "AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space 

with High-Accuracy Models," Nucleic Acids Research, vol. 50, no. D1, pp. 439–444, 2022. Crossref, 

https://doi.org/10.1093/nar/gkab1061 

[27] Gupta R, and Brunak S., "Prediction of Glycosylation Across the Human Proteome and the Correlation to Protein Function," Pacific 

Symposium on Biocomputing, Pacific Symposium on Biocomputing, pp. 310-322, 2002.  

[28] Stephen E Hamby, and Jonathan D Hirst, "Prediction of Glycosylation Sites Using Random Forests," BMC Bioinformatics, vol. 9, p. 

500, 2008. Crossref, https://doi.org/10.1186/1471-2105-9-500 

[29] Cornelia Caragea et al., "Glycosylation Site Prediction Using Ensembles of Support Vector Machine Classifiers," BMC Bioinformatics, 

vol. 8, pp. 438, 2007. Crossref, https://doi.org/10.1186/1471-2105-8-438 

[30] Chauhan JS et al., "GlycoPP: A Web Server for Prediction of N- and O-Glycosites in Prokaryotic Protein Sequences," PLoS One, vol. 

7, no. 7, 2012.  

[31] Jagat Singh Chauhan, Alka Rao, and Gajendra P. S. Raghava, "In Silico Platform for the Prediction of N-, O- and C-Glycosites in 

Eukaryotic Protein Sequences," Plos One, vol. 8, 2013. Crossref, https://doi.org/10.1371/journal.pone.0067008 

[32] Fuyi Li et al., "Glycomine: A Machine Learning-Based Approach for Predicting N-, C- and O-Linked Glycosylation in the Human 

Proteome," Bioinformatics, vol. 31, no. 9, pp. 1411–1419, 2015. Crossref, https://doi.org/10.1093/bioinformatics/btu852 

[33] Ghazaleh Taherzadeh et al., "SPRINT-Gly: Predicting N- and O-Linked Glycosylation Sites of Human and Mouse Proteins by Using 

Sequence and Predicted Structural Properties," Bioinformatics, vol. 35, no. 20, pp. 4140-4146, 2019. Crossref,  

https://doi.org/10.1093/bioinformatics/btz215 

[34] Kolapo Adetomiwa, "Adoption And Utilization of Artificial Intelligence (Ai) In Poultry Production: Evidence From Smart Agricultural 

Practices in Nigeria," SSRG International Journal of Agriculture & Environmental Science, vol. 7, no. 3, pp. 46-54, 2020. Crossref, 

https://doi.org/10.14445/23942568/IJAES-V7I3P106 

[35] Fuyi Li et al., "GlycoMine(struct): A New Bioinformatics Tool for Highly Accurate Mapping of the Human N-Linked and O-Linked 

Glycoproteomes by Incorporating Structural Features," Scientific Reports, vol. 6, 2016. Crossref, https://doi.org/10.1038/srep34595 

[36] Benjamin Luke Schulz, "Beyond the Sequon: Sites of N-Glycosylation," Glycosylation, Petrescu, S., Ed., InTech: Rijeka, Croatia, pp. 

21–40, 2012. Crossref, https://doi.org/10.5772/50260  

[37] Mihai Nita-Lazar et al., "The N-X-S/T Consensus Sequence is Required But not Sufficient for Bacterial N-Linked Protein 

Glycosylation," Glycobiology, vol. 15, no. 4, pp. 361–367, 2005. Crossref, https://doi.org/10.1093/glycob/cwi019 

[38] Mubina Malik, and Jaimin N Undavia, “Trials, Skills, and Future Standpoints of AI-Based Research in Bioinformatics," International 

Journal of Recent Technology and Engineering, vol. 9, no. 1,  pp. 968–972, 2020. Crossref, 

https://doi.org/10.35940/ijrte.A1920.059120 

[39] Alhasan Alkuhlani et al., "Intelligent Techniques Analysis for Glycosylation Site Prediction,” Current Bioinformatics, vol. 16, no. 6, 

pp. 774-788, 2021. Crossref, https://doi.org/10.2174/1574893615666210108094847 

[40] Shisheng Sun et al., “N-GlycositeAtlas: A Database Resource for Mass Spectrometry-Based Human N-Linked Glycoprotein and 

Glycosylation Site Mapping," Clinical Proteomics, vol. 16, no. 35, pp. 1-11, 2019. Crossref, https://doi.org/10.1186/s12014-019-9254-

0 

[41] The UniProt Consortium, "UniProt: The Universal Protein Knowledgebase in 2021," Nucleic Acids Research,  vol. 49, no. D1, pp. 

D480–D489, 2021. Crossref, https://doi.org/10.1093/nar/gkaa1100 

[42] Shuichi Kawashima, and Minoru Kanehisa, “Aaindex: Amino Acid Index Database," Nucleic Acids Research, vol. 27, no. 1, pp. 368-

369, 1999. Crossref, https://doi.org/10.1093/nar/27.1.368 

[43] Ke Chen, Lukasz Kurgan, and Jishou Ruan, "Optimization of the Sliding Window Size for Protein Structure Prediction," 2006 IEEE 

Symposium on Computational Intelligence and Bioinformatics and Computational Biology, pp. 1-7, 2006. Crossref, 

https://doi.org/10.1109/CIBCB.2006.330959 



Mubina Malik & Jaimin N Undavia  / IJETT, 70(12), 118-126, 2022 

 

126 

[44] Vedant Bhatt, and Mohammad Makki, "Artificial Intelligence for Curing Skin Disorders," SSRG International Journal of Computer 

Science and Engineering, vol. 5,  no. 10, pp. 7-9, 2018. Crossref, https://doi.org/10.14445/23488387/IJCSE-V5I10P103 

[45] Limin Fu et al., "CD-HIT: Accelerated for Clustering the Next-Generation Sequencing Data," Bioinformatics, vol. 28, no. 23, pp. 

3150-3152, 2012. Crossref, https://doi.org/10.1093/bioinformatics/bts565 

[46] Xiaoyang Jing et al., “Amino Acid Encoding Methods for Protein Sequences: A Comprehensive Review and Assessment,” IEEE/ACM 

Transactions on Computational Biology and Bioinformatics, vol. 17, no. 6, pp. 1918–1931, 2020. Crossref, 

https://doi.org/10.1109/TCBB.2019.2911677 

[47] Hesham ElAbd et al., "Amino Acid Encoding for Deep Learning Applications," BMC Bioinformatics, vol. 21, no. 235, pp. 1-14, 2020. 

Crossref, https://doi.org/10.1186/s12859-020-03546-x 

[48] J. T. L. Wang et al., "New Techniques for Extracting Features from Protein Sequences,” IBM Systems Journal, vol. 40, no. 2, pp.  426–

441, 2001. Crossref, https://doi.org/10.1147/sj.402.0426 

[49] Gilbert White, and William Seffens, "Using a Neural Network to Back Translate Amino Acid Sequences," Electronic Journal of 

Biotechnoloy, vol. 1, no. 3, pp. 17–18, 1998. 

[50] Michael Beckstette et al., “Fast Index Based Algorithms and Software for Matching Position-Specific Scoring Matrices,” BMC 

Bioinformatics, vol. 7, no. 389, 2006. Crossref, https://doi.org/10.1186/1471-2105-7-389 

[51] Matthew J. Betts, and Robert B. Russell, "Amino Acid Properties and Consequences of Substitutions," Bioinformatics for Geneticists, 

vol. 317, no. 289, 2003. Crossref, https://doi.org/10.1002/0470867302.ch14 

[52] Stephen F. Altschul et al., "Gapped BLAST And PSI-BLAST: A New Generation of Protein Database Search Programs," Nucleic 

Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. Crossref, https://doi.org/10.1093/nar/25.17.3389 

[53] Pablo Minguez et al., "PTMcode v2: A Resource for Functional Associations of Post-Translational Modifications within and Between 

Proteins," Nucleic Acids Research, vol. 43, pp. 494-502, 2015. Crossref, https://doi.org/10.1093/nar/gku1081 

[54] Gwo-Yu Chuang et al., "Computational Prediction of N-Linked Glycosylation Incorporating Structural Properties and Patterns," 

Bioinformatics, vol. 28, no, 17, pp. 2249–2255, 2012. Crossref, https://doi.org/10.1093/bioinformatics/bts426 

[55] Ying Xu et al., "Phoscontext2vec: A Distributed Representation of Residue-Level Sequence Contexts and its Application to General 

and Kinase-Specific Phosphorylation Site Prediction," Scientific Reports, vol. 8, p. 8240, 2018. Crossref, 

https://doi.org/10.1038/s41598-018-26392-7 

 


