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Abstract - Currently, real-time recording and bio-signal-based early diagnosis are feasible solutions thanks to increasing 

progress in monitoring device development technology, including self-monitoring devices, integrated electronic systems, the 

Internet of Things, and edge computing. The pandemic emergency of coronavirus disease 2019 (COVID-19) activated the remote 

monitoring era and highlighted the need for innovative digital approaches to managing cardiovascular disease. The scientific 

community and health organizations have considered this new era confirming that remote consultation and monitoring systems 

have become indispensable in cardiovascular healthcare circumstances to enhance patient healthcare and offer personalized 

treatment. The paper aims to introduce a real-time remote monitoring system for cardiovascular diseases and to describe the 

proposed system modules and the ECG signal processing algorithms. The described approach can monitor the patient’s cardiac 

activity, allowing the specialist to control the electronic instruments remotely without leaving their office. Therefore, this system 

aims at all cardiopathic patients with objective motor difficulties either because they are bedridden or geographically located 

in places distant from the health facility of interest. Furthermore, considering the real-time monitoring approach of this system, 

a future application scenario in a global pandemic context can be hypothesized. 

Keywords - Cardiovascular diseases, ECG signal processing, ECG monitoring system, Remote control, Sensors, Remote 

consultation. 

1. Introduction 
Noncommunicable diseases (NCDs), which include heart 

disease, stroke, cancer, chronic respiratory diseases, and 

diabetes, are considered the leading cause of mortality 

globally [1]. More specifically, in the last decade, the number 

of deaths caused by chronic and cardiovascular diseases 

(CVDs) has grown significantly in all countries. The World 

Health Organization (WHO) documents 17.9 million deaths 

yearly, confirming CVDs as the number one cause of death 

globally [2].  

 Among the 2030 Agenda for Sustainable Development 

objectives, ensuring a healthy life and promoting healthy well-

being for all ages stand out [36]. In this context, the need for 

developing health-monitoring systems (for hospitals, clinics, 

or home settings) that can detect and react to warning signals, 

thus providing efficient services to patients with 

cardiovascular diseases, is becoming increasingly important. 

In the contemporary healthcare scenario, continuous heart rate 

monitoring and real-time analysis of electrocardiogram (ECG) 

signals are the primary concerns. Indeed, scientific and 

experimental evidence has shown that these solutions could 

better diagnose, control, and prevent many CVDs [4-9], 

becoming a valuable tool to support clinical decisions. During 

the last few decades, ECG monitoring systems have been 

widely adopted in hospitals [10–13], homes [14–16], 

outpatient ambulatory settings [17–19], and in remote 

contexts [20] and have considerably evolved due to advances 

in sensor technology and communication infrastructure as 

well as to improvement in data processing and analytics 

algorithms. A recently published accurate and systematic 

review [21] proposed a comprehensive, expert-verified 

taxonomy of ECG monitoring systems, focusing on different 

and essential aspects: applicability, the technology used, 

architecture, lifecycle, classification, and challenges.  

The pandemic emergency of the coronavirus disease 2019 

(COVID-19) shed light on the need for remote monitoring 

systems [28] and other digital approaches to cardiovascular 

disease management across the world [22]. Indeed, during this 

health crisis, intending to reduce the infection from Covid-19 

and replace (or at least support) the traditional face-to-face 

interaction between patients and doctors, remote consultation 

and monitoring systems have become indispensable [22]. 
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Different typologies of stand-alone technologies can be 

adapted to easily collect data remotely from people with or at 

risk of cardiovascular disease [28]. The almost continuous 

streams of physiological variables (blood pressure, pulse rate 

and regularity, heart sounds, respiratory rate, 

electrocardiogram parameters, oxygen saturation, and sleep 

quality) and the adoption of traditional or machine learning 

algorithms can be handy tools to identify patients with, or at 

risk of, clinically important events.  
 

The classification of existing context-aware ECG 

monitoring systems, proposed in [21], reported several 

categories of home-based, hospital-based, ambulatory-based, 

and remote-based ECG solutions. Each of these 

environments’ applications can be the object of interest and 

in-depth analysis since it can give information on solved 

problems and current challenges. However, home ECG 

monitoring systems represent the context of most significant 

interest since they are conceived for patients with lifelong and 

chronic diseases or older people who need permanent 

assistance and monitoring [21]. They aim to involve patients 

in their daily health monitoring with the advantage of being 

comfortably at home, thus reducing the economic burden on 

hospitals and health facilities. Several studies in this context 

described solutions based on telemonitoring [32 - 35] since it 

represents an approach that can be easily integrated into home 

settings. Indeed, using ECG telemonitoring systems, it is 

possible to efficiently monitor patients’ vital signs, identify 

cardiac abnormalities and irregular heart rhythms, and 

eventually treat them before they propagate to more severe 

issues.  
 

To allow for early detection of atrial fibrillation (AF), a 

not-very recent work [32] presented the extension of their 

previous home monitoring system based on mobile phones 

and Near Field Communication technology (NFC) to enable 

patients to record their ECG patterns autonomously. Although 

the system’s technical feasibility, usability, and patient 

compliance were evaluated in a clinical pilot trial, signal 

quality was limited by the used ECG recorder component and 

needed improvements for daily application.  
 

In a recent study, Venkatesan et al. [33] used a mobile 

cloud computing approach to combine ECG telemonitoring 

and coronary heart disease (CHD) risk assessment. The 

authors tried to overcome the well-known challenge of 

continuous monitoring concerning the complex computational 

requirement and significant data processing. 
  
Similarly, Wang et al. [34] presented a new hybrid mobile 

cloud-based electrocardiograph monitoring and analysis 

approach to enable more effective personalized medical 

monitoring. However, this study has limitations, especially 

concerning security, which must be addressed. Indeed, the 

high data exchange between the mobile and the cloud could 

expose users to higher security and privacy threats.  

Benini et al. [35] proposed a user-friendly single-lead 

ECG device designed to be used by Chronic Heart Failure 

(CHF) affected people with complete autonomy. The device 

required a few basic actions to be operated and sent 

transparently the acquired ECG signals to the designated 

service center through a wirelessly connected network 

gateway. 

Remaining in the home ECG monitoring context, a 

plethora of studies proposed systems that involved wearable 

continuous monitoring (see for details a review paper [37] 

focused on remote or long-term monitoring of cardiac 

functions [14, 16, 38, 61]). 

A wireless ECG monitoring system, designed using 

flexible and dry capacitive electrodes, was proposed by 

Majumder et al. 2018 [61] for long-term monitoring of 

cardiovascular health. Considering the experimental results 

from three different healthy subjects, this ECG system 

reported a performance comparable to existing ECG 

monitoring systems, which are reviewed, compared, and 

critically discussed.  

Particularly in a wearable health monitoring environment 

and under massive ECG data, traditional real-time diagnosis 

is a demanding task for healthcare staff because of the lack of 

expert resources for ECG diagnosis and excessive workload. 

For this reason, automatic identification of cardiac 

abnormalities using intelligent classification algorithms and 

sophisticated methods for self-diagnosing cardiovascular 

diseases are of great practical significance for economic and 

social development and people’s health [39]. Several 

approaches have emerged in the scientific literature on 

heartbeat recognition. A widely accepted classification 

subdivides heartbeat recognition methods into supervised and 

unsupervised learning [47, 46]. The first category includes 

recognition algorithms that are constructed based on data with 

labels and counts as examples of convolutional neural 

networks (CNN) [41], neural networks [42], support vector 

machines (SVM) [43, 44], k-nearest neighbors (k-NN) and so 

on [50].  

A recent study [39] proposed a sleep-monitoring model 

based on a single-channel electrocardiogram using a 

convolutional neural network (CNN). The proposed model 

could be used in portable devices to detect Obstructive Sleep 

Apnoea (OSA). However, as a limitation, the automated 

anomaly detection of ECG based on this CNN model and the 

discrimination ability of the method for normal (AEs) and 

abnormal epochs (NEs) need further improvements. 

The second category does not need an input-

label/reference pair for training the algorithm and includes the 

K-mean clustering algorithm [49], principal component 

analysis (PCA), hidden Markov model (HMM), and so on 

[46]. With the advent of deep learning, many research groups 
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have begun to employ these algorithms to diagnose and 

analyze ECGs [56, 40, 60, 45]. An accurate example of this 

approach is reported in the study of Tseng et al. 2021 [62], 

which intended to present a suitable deep learning framework 

to improve the accuracy of ECG diagnoses with a mobile 

device. Furthermore, this work could be considered helpful to 

the cardiovascular disease (CVD) community to help monitor 

people’s health. The main contributions of this work are the 

sliding segmentation and the Large Kernel Network (LKNet) 

methods, which can enhance the accuracy of the ECG 

diagnosis process.  

Although current development in ECG monitoring 

systems is based on sophisticated technologies and accurate 

automatic diagnostic techniques, this has always been an open 

area of research [63]. Indeed, many challenges concerning 

device capabilities and reliability, ECG diagnostics 

overlapping patterns, security problems and privacy support, 

and other ECG signal-related issues throughout the system’s 

lifecycle are still under discussion [21]. 

Heart disease management software, remote and 

continuous diagnostics, digital cardiovascular disease 

prevention, and digital care tools are urgently needed. 

The solution to these challenges could be assembling 

small, inexpensive, convenient, and wearable sensors that can 

be connected to the Internet via data aggregators and then 

transmitting the information to the cloud for data processing 

and sending it back to the medical teams via alerts, warnings, 

or other notifications. 

The aims of the paper are: 

-to introduce a real-time remote monitoring system for 

cardiovascular diseases. 

-to describe the proposed system modules and the ECG 

signal processing algorithms in detail. 

-to hypothesize a future application scenario of this 

system in a global pandemic context. 

 

 

The present ECG solution is an extension of one of the 

integrative nodes of a more sophisticated and secure medical 

platform, SIMpLE [54], described in detail in our previous 

works [30, 31]. 

 

SIMpLE is a mobile cloud-based monitoring system for 

patients affected by neurodegenerative diseases, such as ALS 

patients and the elderly [30, 31]. The SIMpLE platform can 

provide healthcare facilities and users with a complete system 

for small home cardiological monitoring.  

The constitutive modules of the SIMpLE system are (i) 

data acquisition module (i.e., commercial sensors able to 

acquire physiological signals (EMG, ECG, and EEG)); (ii) 

SIMpLE mobile, a sort of hub which sends the acquired 

signals to the web-based system and (iii) the SIMpLE cloud-

based system. The SIMpLE cloud-based module, of which the 

present system represents an extension, includes patient 

summary management services, remote control, the 

visualization and analysis of acquired signals, the 

management of patient diagnostic imaging, and 

teleconsultation. 

The paper is organized as follows: Section 2 introduces 

ECG signal characteristics and acquisition procedure; Section 

3 describes the architecture of the proposed monitoring 

system; Sections 4 and 5 present the main results and the 

discussions, respectively, whereas Section 6 concludes the 

paper. 

 

2. ECG Signal Characteristics and Acquisition  
Electrocardiography (ECG) involves recording, 

analyzing, and interpreting electrical phenomena in the heart 

during its activity. The ECG can be registered with electrodes 

placed on the cardiac or skin surface of the limbs or chest. The 

ECG, in its most complete form, consists of a series of waves 

(deflections) of different duration, amplitude, and signs: three 

of them are positive (P, R, T, and possibly U), and two are 

negative (Q and S)(see Figure 1). The waves express the 

depolarization and repolarization of the cells that make up the 

heart tissue. 

 
Fig. 1 ECG signal (Adapted from [29])  
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Table 1. ECG signal components  

ECG components Duration [ms] Amplitude [mV] 

P 60-100 0, 2- 0,4 

PQ 120-200 - 

QRS 60-110 1 – 2 

ST 80-120   

T 160-200 <1  

QT 280-370  

 
Fig. 2 ECG electrodes positioning. 

The deflection sign indicates approaching (positive 

deflection) or moving away (negative deflection) of the 

excitation wave concerning the recording electrode. Table 1 

reports the detailed features of ECG waves. 

To record an ECG, it is necessary to position electrodes 

on the surface body to obtain derivations arranged in such a 

way as to analyze well the variations of the heart dipole vector. 

They are indicated as Einthoven’s peripheral or bipolar leads, 

unipolar leads, and Wilson’s precordial or thoracic derivations 

(Table 2). Bipolar leads are identified with the notations: RA 

for the right arm, LA for the left arm, LL for the left leg, and 

RL for the right leg, taken as a reference, connected to the 

ground (Figure 2). 

Positioning the electrodes on the left and right wrists and 

the left ankle produces an equilateral triangle: the triangle of 

Einthoven, which has the heart at its center. The bipolar leads 

then record the cardiac electrical activity as these results from 

its projection on the side of the triangle. The three derivations 

obtain by taking the potential difference between the two 

electrodes, as indicated in Table 2: VI = VLA-VRA; VII = 

VLL-VRA; VIII = VLL-VLA. 

Unipolar leads explore the frontal plane along the 

bisectors of the corners of Einthoven’s triangle. Specifically, 

connecting the extremes of each derivation with two equal 

resistances and using the junction between them as a 

reference, respect at the electrode placed on the opposite 

vertex of the triangle, recording is obtained along with three 

other directions, corresponding precisely to the bisectors of 

the triangle itself. This, considering the junction of the two 

resistances, such as the reference electrode and the electrodes 

on the right and left arm and left leg as exploring electrodes, 

the three unipolar leads of the limbs are obtained. They are 

called aVF, aVR, and aVL (Table 2). 

Wilson’s precordial or thoracic derivations are used to 

identify and locate, in an exact way, the lesions that could 

escape with the use of other leads and to analyze the vector of 

cardiac depolarization on a plane other than the frontal one. 

Precordial derivations are defined in Table 2. 

V1 and V2 record the events of the right ventricle, while 

V4, V5, and V6 are those of the left ventricle; V3 is called 

transitional. Thus, the twelve derivations allow a complete 

analysis of the heart’s activity locally and generally. 

Table 2. The standard placement of leads   

Name of Lead Electrode Placement] 

Einthoven’s peripheral or bipolar leads. Reference (-) Electrode  Reference (+) Electrode 

I RA  LA 

II RA  LL 

III LA  LL 

Unipolar leads   

aVF RA and LA LL 

aVR LA and LL RA 

aVL RA and LL LA 

Wilson’s precordial or thoracic derivations   

V1  4th ICS, right of sternum 

V2  4th ICS, left of sternum 

V3  halfway between V2 and V4 

V4  5th left ICS, mid-clavicular line 

V5  5th left ICS, anterior axillary line 

V6  5th left ICS, middle axillary line. 
1 RA: right arm; LA: left arm; LL: left leg; RL: right leg; ICS: intercostal space. 
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Fig. 3 ECG system monitoring architecture 

3. System Description  
The architecture of the ECG system, illustrated in Figure 

3, consists of the following main block components: 

• ECG Data acquisition unit acquires ECG signals in a non-

invasive way. The module amplifies, preprocesses, and 

digitally converts ECG signals. Then, it transmits ECG 

data to the following unit through Bluetooth technology. 

• ECG Data transmission unit manages ECG data 

transmission to the remote system through the Internet 

network. 

• ECG Data processing unit processes and extracts 

significant ECG features to support the clinical decision. 

 

3.1. Data Acquisition Unit  

The ECG acquisition unit must be suitably designed for 

remote and real-time physiological monitoring to acquire user 

signals through wearable and non-invasive sensors and 

transmit them to a processing unit. Therefore, the Sensing 

Health with Intelligence, Modularity, Mobility and 

Experimental Reusability (SHIMMER) ECG unit [23, 51-52] 

has been chosen since it presents a configurable digital front-

end optimized for measuring physiological signals for ECG. It 

provides sensors to record the pathway of electrical impulses 

through the heart muscle on resting, ambulatory subjects or 

during exercise. The Shimmer3 [51] is a wearable sensor 

platform with Bluetooth class 2 connectivity for data 

collection. It allows flexible wireless support and enables the 

user to control data acquisition in real-time for better 

interpretation, suitable for several application contexts. 

SHIMMER platform used an incorporated MSP430 

microcontroller for processing. At the same time, for 

communication, the ChipCon CC2420 radio with Revering 

Network RN-42 has a communication range of up to 10 m, 

while the default baud rate (transmission rate) is up to 115 K 

bauds [52]. Figure 4 shows the internal block diagram of the 

ECG data acquisition unit. Biological signals are collected 

from the skin via five externally connected wires to the ECG 

Unit and attached to the ECG snap-on electrodes [24]. They 

feature a patented pre-gelled non-irritating adhesive side, 

specially developed to prevent allergic reactions, and are made 

of latex-free foam material suitable for every skin type. 

Specifically, it is possible to acquire the following leads: 

• Bipolar leads:  

- Lead I (LA-RA) is output on the ExG1 Ch2 channel of the 

ECG unit. 

- Lead II (LL-RA) is output on the ExG1 channel Ch1 of the 

ECG unit. 

- Lead III (LL-LA) is obtained by subtracting Lead I from 

Lead II. 

• Unipolar leads: 

- Vx-WCT is the ECG signal measured from the Wilson 

center terminal voltage (WCT) at the Vx position. 

Therefore, any unipolar Vx lead (i.e., V1, V2, V3, V4, V5, 

and V6) can be measured on the ExG2 Ch2 channel by 

placing the electrode at the Vx input (see Figure 4).  

 
Fig. 4 Shimmer3 internal block diagram 
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Wilson’s Central Terminal (WCT) represents the mean 

potential of the body and serves as a reference point against 

which the voltage difference for the unipolar leads is acquired. 

First, it is derived by averaging the voltage measured on the 

RA, LA, and LL electrodes. Then, the inverted WCT voltage 

is sent to the body via the RL electrode to create a negative 

feedback loop and achieve common-mode interference 

rejection. Each Shimmer3 ECG unit has two Texas 

Instruments ADS1292R chips; each has eleven bytes for 

configuration register settings. A data rate of at least 500 SPS 

to acquire ECG signals was selected. Moreover, for the ECG, 

a gain value of 4 is recommended. 

3.2. Data Transmission Unit (hub) 

The data acquired through the Shimmer sensors are sent 

over the network thanks to a hub device. The Raspberry PI4 

device was selected for its economic and technical 

characteristics and immediate availability. The choice fell on 

this hardware not only for its cost but also for its ease of use.  

Furthermore, the operating system can be installed on an 

external SD card; therefore, even a possible system 

replacement could be immediate and straightforward. The 

Ubuntu server 20.04.1 operating system has been installed 

inside the Raspberry Pi4 device (Figure 5).  

 
Fig. 5 Raspberry PI 4 

The data is sent to the server through RESTful Web API 

calls. The data received is persistent to system crashes and the 

lack of Internet connection thanks to a local SQL database. 

The Raspberry Pi4 has been configured as a wi-fi access point 

and connects to the Internet via the ethernet cable. So, for 

example, it is possible to communicate with a tablet and then 

configure the system, check the parameters, and check the 

Bluetooth or the Internet connection through an application 

created specifically for these functions [30, 31]. 

3.3. ECG Data Processing and Monitoring Unit 

The software control panel for acquiring and processing 

ECG signals was created using the National Instruments 

LabVIEW programming language (Laboratory Virtual 

Instrument Engineering Workbench-National Instruments, 

Inc, Austin, TX, USA). The Shimmer LabVIEW Instrument 

Driver Library [25] of LabVIEW VIs allows users to easily 

interact with the LabVIEW development environment 

offering several signal processing and analysis tools and 

providing the ability to solve and execute complex algorithms 

in real-time [59]. In addition to the acquisition of ECG signals, 

the control panel (described and illustrated in more detail in 

Section 4) also provides data processing through the 

implementation of high pass, low pass, and notch filters and 

several signal processing operations to define a complex 

scenario of derived functional parameters. Figure 6 illustrates 

the steps of ECG signal processing and analysis, described in 

detail in the following subsections. 

3.3.1. ECG Pre-processing  

Preprocessing is a crucial step because it aims to improve 

the signal-to-noise ratio of the ECG-acquired signals and 

enhance the analysis’s accuracy. Specifically, the ECG signals 

can be corrupted by noise, such as baseline wander and 

powerline interference, electrode contact noise, electrode 

motion artifacts, and muscle contractions. Frequency filtering 

such as band-pass filters (with cut-off frequencies 0.05 – 150 

Hz, Butterworth topology) and notch filters (50/60 Hz) have 

been implemented to attenuate low and high-frequency noise 

external to the ECG band (e.g., electromyographic artifacts 

due to muscle contractions) and power line interference, 

respectively. 

 
Fig. 6 ECG data processing steps 
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Fig. 7 Control panel (ECG module) showing normal electrocardiogram wave. 

 
Fig. 8 Control panel for real-time ECG screening and functional parameters monitoring. 

3.3.2. Features Extraction 

For ECG analysis, time-domain measurements are 

commonly used. However, for the scientific purpose of this 

study, different methods were implemented to analyze ECG 

signals. Indeed, time-domain, frequency-time domain, and 

nonlinear heart rate variability analysis are performed and 

illustrated (Fig. 7 and Fig. 8) [57, 59]. 

Time-Domain Analysis 

From filtered ECG signals, several time-domain 

measurements are extracted. Below is a detailed description of 

each of them. Heart rate, expressed in beats per minute (BPM), 

has been calculated starting from the electrocardiogram using 

the R waves, which are part of the QRS complex of the ECG 

signal. Specifically, the RR interval extraction process 

involves a peak detection step by thresholding. Moreover, this 

parameter’s mean value (Heart Rate Mean) and standard 

deviation (Heart Rate Std) are evaluated. Features extractor 

involves not only the detection of R peak but also the finding 

of other signal features, such as P, Q, S, and T amplitudes and 

durations. After R peak detection, all waves were extracted by 

searching the local maxima in specific time intervals. The PR 

interval is the period, measured in seconds, from the beginning 

of the P wave (the onset of atrial depolarization) until the front 

of the QRS complex (the start of ventricular depolarization). 

This parameter’s mean value (PR Interval Mean) and standard 

deviation (PR Interval Std) are indicated. The QT interval is 

the time, measured in seconds, from the beginning of the QRS 

complex, representing ventricular depolarization, to the end of 

the T wave, resulting from ventricular repolarization. This 

parameter’s mean value (QT Interval Mean) and standard 

deviation (QT Interval Std) are indicated. The ST Level is the 

amplitude, measured in mV, of the ST segment, between the 

end of the S wave and the beginning of the T wave. This 

parameter’s mean value (St Level Mean) and standard 

deviation (ST Level Std) are indicated. Another valuable 

analysis for physicians is the histogram plot of RR intervals. 

TINN (Triangular interpolation of RR histogram), measured 
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in ms, is the baseline width of the RR interval histogram. RR 

triangular index is the total number of all RR intervals divided 

by the height of the histogram of all RR intervals. 

Time-Frequency Domain Analysis 

The frequency-domain analysis method works well for 

RR interval signals that do not vary much over time. However, 

for such HRV analyses, RR interval signals differ significantly 

over time. So, the time-frequency methods to analyze 

stationarity and time-frequency behavior were chosen. Short-

Time Fourier Transform (STFT) was implemented to show 

the time-frequency plots and perform qualitative analysis. 

Nonlinear Analysis 

Analysis based on the Poincaré plots was also adopted, 

considering that the RR interval signals are nonlinear because 

they result from complex hemodynamics, electro-

physiological, humoral variables, and autonomic and central 

nervous regulations [58]. Poincaré plot is the most used 

approach among the nonlinear methods to calculate heart rate 

variability [26]. The graph plots the RR intervals (the distance 

between each heartbeat), with the RR interval just prior, 

showing how well each RR interval predicts the next. More in 

detail, this scatter plot represents a map of points (𝑅𝑅𝑖vs 

𝑅𝑅𝑖+1) in Cartesian coordinates, and each of them is 

represented on the x-axis by the previous normal RR interval 

(𝑅𝑅𝑖) and on the y-axis by the following RR interval 

(𝑅𝑅𝑖+1) [26]. The plot is fitted with an ellipse with a semi-

major axis as a bisector of plot axes. SD1 (transverse semi-

axis of the ellipse) is the short-term variability and reflects 

beat-to-beat variation. It is expressed in ms. SD2 (longitudinal 

semi-axis of the ellipse) is the long-term variability and 

reflects the overall fluctuation. It is said in ms. 

3.4. System Key Features 

Compared to the current wearable device that records the 

heart’s rhythm, the proposed system can be used for real-time 

ECG monitoring and to acquire EMG bio-signals. Moreover, 

the system does more than just record and transmits the 

received signals to the cloud application, such as available 

Holter monitors. Thanks to the Raspberry hub, it carries out a 

preprocessing of the movement, efficiently managing the 

transmission of the received data. The signal analysis can be 

performed in real-time, not only after the acquisitions. Thus, 

immediate feedback can be provided to the patient on their 

health condition. Considered the overall SIMpLE platform, 

this system allows remote monitoring acquiring; the system 

helps monitor vital physiological user parameters and bio-

signals in real-time to ensure high-security conditions. The 

platform allows medical staff to monitor the patient’s health 

conditions remotely and intervene in the setting of the 

electronic system. Thus, using the design provided, it is 

possible to carry out the first intervention screening with a 

remote teleconsultation method and process bio-signals, such 

as ECG and EMG signals.  

4. Results  
This proof-of-concept study aims to introduce a real-time 

remote monitoring system for cardiovascular diseases and to 

describe the proposed system modules and the ECG signal 

processing algorithms. The performance of the proposed 

monitoring system in terms of ECG signals data acquisition 

procedure through the commercial Shimmer sensors and for 

identification of fundamental heart anomalies was assessed 

and confirmed in the literature [52]. In addition, the ECG 

signal processing pipeline was tested considering data from 

the PhysioNet service (http://www.physionet.org) from the 

MIT-BIH Arrhythmia database. Fig. 7 and 8 reported 

illustrations of the control panel (ECG module) showing 

regular electrocardiogram waves and a sub-section related to 

real-time ECG screening and functional parameters 

monitoring. As preliminary results from time-domain, 

frequency-time domain, and nonlinear heart rate variability 

analysis, a quantitative analysis of operating parameters, 

visualized on the control panel (Fig. 8), is performed. Fig. 9 

presents the bio-signals viewer developed for the SIMpLE 

project on which a regular ECG pattern (data from the MIT-

BIH Arrhythmia database) is illustrated [30-31, 54].

 
Fig. 9 ECG remote visualization. 
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5. Discussions 
The advancement in sensor-based systems development 

technology enabled real-time and continuous ambulatory 

monitoring of vital human signs during daily life, minimizing 

discomfort and interference with routine human activities and 

supporting bio-signal-based early diagnosis. During the 

pandemic emergency of the coronavirus disease 2019 

(COVID-19), to avoid (or at least reduce) the infection from 

Covid-19 and to replace (or at least support) the traditional 

face-to-face interaction between patients and doctors, remote 

consultation and monitoring systems have become 

indispensable to cardiovascular disease management across 

the world [22].  

Furthermore, the exponential growth in cardiac 

monitoring needs has far exceeded the capabilities of 

healthcare facilities and many hospital telemetry units. For 

this reason, innovative approaches are increasingly required 

and essential to continuously assess cardiac activity and 

electrocardiographic intervals [59]. The paper aims to 

introduce a real-time remote monitoring system for 

cardiovascular diseases, describe the proposed system 

modules and the ECG signal processing algorithms, and 

hypothesize a future application scenario in a global pandemic 

context. Although it is a proof-of-concept study, what makes 

this contribution innovative is the conception of the described 

ECG solution as an integrative node of a more sophisticated 

and secure medical platform, named SIMpLE, described in 

detail in our previous works [30, 31]. Simple is a mobile 

cloud-based system to improve the monitoring of disease 

complications in patients affected by neurodegenerative 

diseases, such as ALS patients and the elderly [30, 31].  

The SIMpLE platform can provide healthcare facilities 

and users with a complete system for small home cardiological 

monitoring. Another innovative feature of the integrated ECG 

system is the implementation of security mechanisms to 

protect sensing data and user privacy. Data leakage and 

privacy are significant issues and still represent the principal 

limits for adopting mobile and cloud technologies in the 

medical field. The SIMpLE system is hardened and secured 

according to cybersecurity best practices: firewall, anti-DDoS, 

and SELinux [30].  

Despite the potential of the proposed method in terms of 

cardiac health monitoring, it needs further improvements in 

several aspects. First, to test the system and confirm its 

robustness, the extension of the validation procedure to real 

ECG acquisitions on control and pathological subjects is 

required. Secondly, it is necessary to integrate the current 

system with an automatic detection algorithm that can 

accurately identify cardiac abnormalities, extract specific 

features, perform correct predictions, and alarm the patient or 

the physician [54, 55]. Since the most critical applications of 

cardiac telemetry in current practice are arrhythmia and other 

abnormalities detected in hospitalized patients and a living 

environment, applying specific and sophisticated algorithms 

can be the optimal way to extend ECG monitoring systems’ 

horizons. Indeed, machine learning and artificial intelligence 

techniques could transform healthcare services by improving 

diagnostics and predictive modeling. The preliminary 

experimental results confirmed that the system could offer an 

efficient solution for remote and real-time monitoring of 

multiple patients. The system’s key features such as 

sophisticated signal processing algorithms for faster 

processing, low power consumption, low cost, and less 

complexity, as well as the integration of multiple services 

(patient summary management services, remote control, 

visualization, and the analysis of acquired signals, 

management of diagnostic imaging conducted on the patient, 

and teleconsultation), once validated, could provide 

significant improvements in a cardiological monitoring 

context. 

6. Conclusion 
Our scientific research group’s interest has focused for 

years on developing innovative biomedical technological 

solutions, providing healthcare facilities (hospitals, clinics, 

rehabilitation centers, orthopedic clinics) and end users with a 

complete system for remote home rehabilitation and 

cardiological monitoring. This paper aims to introduce a real-

time remote monitoring system for cardiovascular diseases, 

describe the proposed system modules and the ECG signal 

processing in detail, and illustrate the preliminary results on 

example data. The described system can monitor the patient’s 

cardiac activity, allowing the specialist to control the 

electronic instruments remotely without leaving their office. 

The system is thought out for all cardiopathic patients with 

objective motor difficulties either because they are bedridden 

or geographically located in places distant from the health 

facility of interest. Considering the real-time monitoring 

approach of this system, which allows patients to enjoy real-

life activities, including physical exercise and running, and 

energy-efficient devices and communication technologies, a 

future application scenario of this system in a global pandemic 

context can be hypothesized. 
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