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Abstract - Based on the shear lag effect, stress localization has been studied in beams such as box beams, T-beams, and U-

beams. A study of stress localization within a simple wide beam is presented using the energy principle. Conveniently, the close-

form solutions of the differential equations are derived. Solving the differential equations, simple equations for bending stresses 

and deflections are presented considering the stress localization due to the shear lag effect. The methodology is illustrated by a 

numerical example demonstrating its simplicity and accuracy. The theoretical results are validated with literature and finite 

element analysis (FEA). The theoretical results are closely in line with the literature and FEA. Stress localization has reduced 

the bending moment capacity of the example beam by 30% for uniform distribution of the load (UDL) and 21% for point loads 

(PL). Short wide beams such as pier heads are highly recommended to consider stress localization, as this reduces the bending 

capacity of the beam.   

Keywords - Shape function, Effective width, Stress localization, Warping, Wide beam.  

1. Introduction 
The wide cantilever beam is commonly used in 

engineering designs as cantilever walls, projecting floor slabs, 

projecting pier heads, and gear teeth. [1] Wide cantilever 

beams are also available as box-, U-, and I-beams. The thin 

cover plates as flanges in these structures are generally 

stiffened by an attached member called the web. Beams are 

used in ship hulls, floors, aircraft, bridges, and buildings. The 

stress distribution is not uniform across the width of this type 

of beam, like narrow beams. The assumption in elementary 

beam theory (EBT) is no longer valid for wide beams such as 

box beams because of the shear deformability of the flanges. 

[2] The effect is known as shear lag.  

 

By preventing lateral deformation, thin metallic strips 

provide more rigidity. At wide beams' extreme edges, there is 

still a trace of the anticlastic curvature that exists primarily in 

narrow rectangular beams. In the meantime, the beam's central 

part maintains its flatness in the transverse direction. [3] 

Ashwell demonstrated that the stiffness of rectangular beams 

of moderate width depends not only upon the depth-width 

ratio of the beam but also upon the curvature to which the 

beam bends. [4] Deflection and stress distribution are not 

equal along the width of a very-short wide beam. [5-6] The 

effective width concept was brought in to calculate the 

strength of such beams. An effective width is the width of a 

transform beam cross section that gives the correct value of  

 

 

maximum bending stress based on elementary beam theories. 

[7-9] 

 

Additionally, the effective width depends on the type of 

support and loading, as well as the aspect ratio. [10] Studies 

have been conducted on analysing wide cantilever beams 

under concentrated loads and considering the stress 

concentrations under the load. [10-13] It is possible to solve 

the problem by applying thin-plate theory, either assuming an 

infinite plate width or applying it to a beam up to four times 

the span. In their article, Wellauer and Seireg demonstrate an 

empirical method for analyzing finite-width beams under 

arbitrary transverse loads and demonstrate that the previous 

analysis' assumption of a beam's infinite width is equally 

applicable to a beam of width as small as four times its span. 

[14] The bending of thin rectangular plates with various 

boundary conditions has been studied in the past. However, 

finding solutions satisfying a plate's partial differential 

equation and other boundary conditions is difficult. [15] 

Superposition is one of the methods used for exact bending 

solutions for thin plates. [16-18] Khalili et al. used Fourier 

series expansion to determine the precise bending of the 

plates. [19] A thin cantilever plate was analysed with a variety 

of numerical methods. Holl first analysed a thin cantilever 

wide beam using the finite difference method for a point load 

at a free end. [10] 
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Similarly, Barton, Neal, Livesley, and Birchall used the 

same method to solve the same problem separately. [20-22] 

Nash applied the approximate method to analyse the cantilever 

plate under uniform pressure. [23] Shu, Shih, and Plass et al. 

utilized the generalized variational principle to calculate the 

deflection of the thin rectangular plate. [24-25] A square 

cantilever plate was also loaded uniformly using the Rayleigh-

Ritz and point matching techniques. [26]  

 

The stress concentration problem is studied regarding 

shear lag in wide beams such as box beams, I-T-, and U-

beams. The flange stress distribution corresponds to a 2D 

plane stress problem.[27-28] The cross-sections of wide 

beams such as box beams, U-T-, and I-beams used in 

engineering designs are not always flat. Shearing stresses 

cause it to warp. [3] It is well known that the warping restraints 

are located in support of the cantilever. Restraining the 

warping of the beam caused the stress concentration problem. 

As the flange is bound to the support of a cantilever beam and 

integrally stiffened by the web along its length in I-, T-, and 

U-beams, the warping is restrained in two ways. The 

restraining of free distortion resulted in unequal bending stress 

distribution. [29-32] As a result, stresses are most significant 

near the flange-web junction. [8] 

 

Moreover, this case was noted as a positive shear lag. [2, 

33-34] It is known as negative shear lag when actual stresses 

are lowest near the flange-web junction. [35-38] Various 

scholars analysed the shear lag effect describing the flange 

alone in the 2D model.[39-45] Numerous theories apply 

warping displacement functions to describe stress localisation 

as a shear lag effect. [42-45] Rovnak and Rovnakova reported 

that shear flow gradient and constraints on the flange warping 

caused the shear lag effect. [45] 

 

The energy method has proven versatile among the 

methods reported by various scholars to analyse box-type 

structures. [28, 46-49] Concerning the energy method, the 

stress-compatibility equilibriums are included in the least 

work, and strain-compatibility equilibriums are used in the 

potential energy method. [2, 27 33, 35, 42-47] The shape 

function of the warping displacement in a box beam's cover 

sheet assumes polynomial variations. [2, 33, 35, 52, 54] 

Indirectly, the shape function for the warping indicates the 

stress distribution along the width of the beam. [31, 35, 49-52] 

Shear lag can therefore be viewed as a stress localization 

problem, represented mathematically by the effective width of 

the section. 

 

An extensive literature review indicates that various novel 

methods are available for analysing wide cantilever beams 

with thin plates of infinite width, semi-infinite width, or other 

size cantilever beams as small as four times their spans. A few 

publications consider thin or moderately thick plate 

cantilevers with one or two span-to-width ratios. Using a thin 

cantilever plate, bending the cylindrical shape, and lifting two 

free corners produce more complex boundary conditions. The 

higher stress concentration, and thus more significant 

deformation under the load, poses another problem to the 

analysis of thin cantilever plates. [3, 16] In the beams of web-

flange arrangement, the part of the flanges at a distance from 

the web does not share fully in the resisting bending moment. 

Hence, the beam is weaker than the elementary bending theory 

suggests. [2, 29-31, 51] In these beams, the shear forces are 

transmitted to the flange adjoining the web during the bending. 

Thus, the stress distribution in the flange presents a 2D-stress 

problem. 

 

For the same reason, the middle portion of a wide 

cantilever beam may become rigid, but the other part across 

the width may become weaker during bending. Stress 

localization will then occur in the centre line of the beam at 

the support and can be analysed in terms of shear lag. The 

present study considers thick cantilever plates with a finite 

width as a wide cantilever beam. In this case, the beam 

restrains free warping at the fixed end. In the present analysis, 

the shear deformation in the wide cantilever beam is 

considered an addition to the elementary beam theory. Thus, 

the study introduced a higher-order beam theory for simple 

wide beams incorporating additional boundary conditions. 

 

2. Methodology 
2.1. Analytical Formulation  

A wide cantilever beam consisting of length l, width 2w, 

and thickness t is considered in the present study. The 

spanwise coordinate is x, the perpendicular coordinates are y 

and z, and z(x) is the neutral deflection axis of the beam (Fig. 

1). The following assumptions are incorporated 

  

1. Stress concentration under load is ignored.  

2. A uniform distribution of the load is assumed across the 

width. 

3. The anticlastic deformation at the edges of the wide 

cantilever beam is ignored. 

4. The corresponding spanwise displacement is  

 

𝑢(𝑥, 𝑦) = ±ℎ(
𝑑𝑧

𝑑𝑥
+

𝑦2

𝑤2
𝑈(𝑥))   (1) 

 
Where, U(x) is a shear lag correction factor. 

  

The potential energy of the beam for a bending moment M 

generated by a load system is 

 

𝛱𝑙 = ∫𝑀
𝑑2𝑧

𝑑𝑥2
𝑑𝑥     (2) 

 

The strain energy of the beam is  

 

𝛱𝑠 =
1

2
∭{𝐸𝜀𝑥

2 + 𝐺𝛾2} 𝑑𝑥𝑑𝑦𝑑ℎ  (3) 
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The spanwise linear strain and shear strain is obtained 

from Equation 1 as:  

𝜀𝑥 = ±ℎ (𝑧″ +
𝑦2

𝑤2
𝑈′)  (4) 

 

𝛾 = ±
2ℎ

𝑤

𝑦

𝑤
𝑈  (5) 

 

Combining Equations 3, 4, and 5, the train energy of the beam 

is 

𝛱𝑠 =
1

2
∭𝐸ℎ

2 {
(𝑧″ +

𝑦2

𝑤2
𝑈′)

2

+

𝐺

𝐸
(
2

𝑤

𝑦

𝑤
𝑈)

2
}𝑑𝑥𝑑𝑦𝑑ℎ           (6) 

 

After integrating Equation 6 and arranging the terms, the strain 

energy is  

 

𝛱𝑠 =
1

2
∫𝐸𝐼 {(𝑧″)2 +

1

5
(𝑈′)2 +

2

3
𝑧″𝑈′ +

𝐺

𝐸

4

3𝑤2
𝑈2} 𝑑𝑥       (7) 

 

Where I = wt3/6 

After combining Equations 2 and 7, the sum of the potential 

energy ПT for the beam is 

 

𝛱𝑇 = ∫{
1

2
𝐸𝐼(𝑧″)2 +

𝑀𝑧″
}𝑑𝑥 + ∫

1

2
𝐸𝐼 {

1

5
(𝑈′)2 +

2

3
𝑧″𝑈′ +

𝐺

𝐸

4

3𝑤2
𝑈2
}𝑑𝑥

      (8) 

Considering the interval of integration as x1 and x2 and 

applying the minimum potential energy principle from 

Equation 8 

𝛿𝛱𝑇 = ∫

{
[𝐸𝐼(𝑧″)2 +𝑀𝑧″ +

1

3
𝐸𝐼𝑈′] 𝛿𝑧 ′ +

𝐸𝐼 [−
1

5
(𝑈′)2 −

1

3
𝑧‴ +

𝐺

𝐸

4

3𝑤2
𝑈] 𝛿𝑈

}𝑑𝑥 +

{𝐸𝐼 [
1

5
𝑈′ +

1

3
𝑧″] 𝛿𝑈}

𝑥1

𝑥2

 

          (9) 

 

From the variational method, making δПT = 0, the 

following relations can be established. 

 

𝑧″ +
𝑈′

3
+

𝑀

𝐸𝐼
= 0     (10) 

 

𝐸𝐼 [𝑈″ −
20

3

𝐺

𝐸

1

𝑤2
𝑈 +

5

3
𝑧‴] = 0  (11) 

 

{𝐸𝐼 [
1

5
𝑈′ +

1

3
𝑧″] 𝛿𝑈}

𝑥1

𝑥2
= 0   (12) 

 

From Equations 10 and 11 

 

𝑧″ −
𝑤2

15

𝐸

𝐺
𝑧𝑖𝑣 = −

𝑀

𝐸𝐼
+

3𝑤2

20

𝐸

𝐺

𝑀″

𝐸𝐼
  (13) 

 

On comparing Equation 13 with the Reissner [2], one of 

the Reissner parameters, n, become constant in this case, and 

the other parameter, k, is derived as:  

 

𝑘 =
1

𝑤
√15

𝐺

𝐸
   (14) 

 

Now, Equation 13 can be arranged as  

 

𝑧″ −
𝑧𝑖𝑣

𝑘2
= −

𝑀

𝐸𝐼
+

9

4𝑘2

𝑀″

𝐸𝐼
   (15) 

 

From Equations 1 and 10, the equation of the bending stress  

 

𝜎𝑥 = ±𝐸ℎ [
𝑀

𝐸𝐼
+ (

1

3
−

𝑦2

𝑤2
)𝑈′]  (16) 

 

2.2. Closed-Form Solutions 

If the origin is at the cantilevers’ free end, the fixed end 

has co-ordinate x = l. The cantilever beam is analyzed for UDL 

and PL. The load intensity and its position are depicted in the 

figures presented subsequently. The close-form solutions for 

the bending stresses for the individual load cases can be 

derived by closely following Reissner [2], Singh et al. [55], 

and Kumar and Singh [59]. The equations for the bending 

stress distribution in the cantilever beam for UDL and PL is 

shown in Equation 17 and 18, respectively.  

 

 
Fig. 1 Simple wide cantilever beam (geometry and coordinate system) 
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𝜎(𝑥, 𝑦) = ±
𝑞𝑙2

2

ℎ

𝐼

[
 
 
 
 (
𝑥

𝑙
)
2

+ (
1

3
−
𝑦2

𝑤2
)
15

2

1

(𝑘𝑙)2

(
𝑐𝑜𝑠ℎ𝑘 (𝑙 − 𝑥) + 𝑘𝑙 𝑠𝑖𝑛ℎ𝑘 𝑥

𝑐𝑜𝑠ℎ𝑘 𝑙
− 1)

]
 
 
 
 

 

     (17) 

 

𝜎(𝑥, 𝑦) = ±𝑃𝑙
ℎ

𝐼
[
𝑥

𝑙
+ (

1

3
−

𝑦2

𝑤2
)
15

4

1

𝑘𝑙

𝑠𝑖𝑛ℎ𝑘𝑥

𝑐𝑜𝑠ℎ𝑘𝑙
]            (18) 

 

𝑧(𝑥) =
𝑞𝑙4

8𝐸𝐼

[
 
 
 
 
 
 
1

3
(
𝑥

𝑙
)
4

−
4

3
(
𝑥

𝑙
) + 1 +

10

(𝑘𝑙)2

{
 
 

 
 
1

2
(1 − (

𝑥

𝑙
)
2

) +

𝑐𝑜𝑠ℎ𝑘𝑥−𝑐𝑜𝑠ℎ𝑘𝑙

(𝑘𝑙)2
−

𝑠𝑖𝑛ℎ𝑘𝑥−𝑠𝑖𝑛ℎ𝑘𝑙

(𝑘𝑙)2 𝑐𝑜𝑠ℎ𝑘𝑙
(𝑠𝑖𝑛ℎ𝑘 𝑙 − 𝑘𝑙)}

 
 

 
 

]
 
 
 
 
 
 

  

              (19) 

𝑧(𝑥) =
𝑃𝑙3

3𝐸𝐼

[
 
 
 
 
1

2
(
𝑥

𝑙
)
3

−
3

2
(
𝑥

𝑙
) + 1 +

15

4(𝑘𝑙)2
{
−
𝑥

𝑙
+ 1

𝑠𝑖𝑛ℎ𝑘𝑥

𝑘𝑙 𝑐𝑜𝑠ℎ𝑘𝑙
−

𝑡𝑎𝑛ℎ𝑘𝑙

𝑘𝑙

}
]
 
 
 
 

                     (20) 

 

 Additionally, the deflection of the beam can be obtained 

by integrating Equation 10 twice after eliminating U' and 

putting the values of M in it. The integral constants are 

determined by applying the boundary conditions: at x = l, z(x), 

and z'(x) equals zero. Thus, the deflection equation of the 

beam for UDL and PL are derived as shown in Equations 19 

and 20, respectively. 

 

3. Results and Discussion 
3.1. Validation of the Methodology  

The beam's cross-section is obtained by transforming the 

box beam cross-section to validate the methodology (Fig. 2). 

The present study considers length of the box beam l = 125 

mm, width 2w = 50 mm, web and flange thickness tw = tf = 5 

mm, and depth = 50 mm. The box beam cross-section has I = 

307500 mm2. Furthermore, the box beam cross-section is 

transformed into a simple wide beam of solid cross-section 

having the same cross-sectional width, i.e., 2w = 50 mm, and 

the principal moment of inertia (I). The transform thickness is 

calculated as t = 41.94551 mm ≈ 41.95 mm. The transformed 

simple wide cantilever beam of a solid cross section is utilized 

as an example in the present paper. The other geometrical 

property, and material properties for both beam is as: aspect 

ratio l/w = 5, E = 200 GPa, µ (Poisson’s ratio) = 0.3, G = 

1000/13 GPa, and G/E = 5/13.  

A 3D-finite-element model of the wide beam was 

developed with ANSYS 15 software. Applying u(x) = u(z) = 

0 produced the boundary condition of the cantilever at the 

support. The model was analyzed using a 20-noded 

(SOLID186) element. 

 
Fig. 2 Beam cross-sections 

The mess convergence study minimizes errors and 

computer run time [61]. The model was discretized by 

dividing it into 13, 5, and 5 divisions in the x-direction, y-

direction, and z-direction resulting in a total of 325 elements 

(Fig. 3). 

 

The deflection profiles for the wide cantilever beam 

derived from Equations 19 and 20 are closely matched with 

those from FEA, box beam, and elementary beam theory 

(EBT) (Fig. 4). It is evident from Fig. 4 that the shear lag effect 

increased the deflection of the wide cantilever beam compared 

to the Euler-Bernoulli beam. As a result of the additional shear 

deformation caused by the shear lag in the beam, the 

maximum deflection for UDL and PL is increased by 

approximately 2.9 and 2.6 %, respectively, compared with the 

Euler-Bernoulli beam. In this way, the shear lag observed to 

be added to the deflection of the wide cantilever beam is 

similar to that of the cantilever box beam. However, the 

maximum deflection of the wide beam is considerably less 

than the box beam. It is observed that the added deformation 

is lower for wide cantilever beams than for box beams because 

they have a higher stiffness. 

 

 
Fig. 3 FE model for the wide beam 
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Fig. 4 Deflection profile for wide beam: (a) UDL) and (b) PL 

Additionally, Fig. 5 demonstrated the robustness of the 

methodology as the stresses in the center line at the top fiber 

of the beam throughout the length are compared with those 

obtained by FEA. The results of the FEA are in excellent 

agreement with the theoretical development, except for some 

deviations near the fixed end caused by FEA singularities. [61] 

 

 
Fig. 5 Comparing the stresses in the center line at the top fiber of the 

beam along the length: (a) UDL and (b) PL 

 

3.2. Applications 

The wide cantilever beam considered in this study 

produces localized stress in the central line at its fixed end. 

The additional deformation caused by the shear lag effect 

increases the stresses in the center line of the beam at the 

support. Accordingly, the center region of the wide cantilever 

beam is stiffer than the rest of the beam. Thus, calculating the 

stress by EBT will lead to some severe errors in a wide beam. 

The transmission of the shear is reversed to those of the box 

cantilever beam [2], and therefore the shear deformation 

results from the stress concentration in the center of the beam 

at the support. To measure the stress localization, the effective 

width ratio (be) can be calculated using the formulae shown in 

Equation 21 [49]. 

𝑏𝑒 =
1

𝑤
[

1

𝜎𝑚𝑎𝑥
∫ 𝜎𝑑𝑦
𝑤

0
]   (21) 

The effective width ratio for the uniformly distributed and 

point loads is calculated in the present study as follows.   

𝑏𝑒(𝑈𝐷𝐿) =
1

1+
5

2

1

(𝑘𝑙)2
(𝑘𝑙 𝑡𝑎𝑛ℎ𝑘𝑙−1)

  (22) 

𝑏𝑒(𝑃𝐿) =
1

1+
5

4

𝑡𝑎𝑛ℎ𝑘𝑙

𝑘𝑙

    (23) 

For a wide beam of length equal to width, i.e., l/w = 2, be 

is 0.708 for UDL and 0.794 for PL. However, be of the box 

beam consisting of the same material property, the moment of 

area and aspect ratio (Fig. 2) were calculated and found to be 

0.519 and 0.612 for UDL and PL, respectively. be of the 

cantilever box beam was lower than the wide cantilever beam. 

The higher shear deformation in the flange of the box beam 

resulted in higher stress concentration at the web-flange 

junction and thus produced higher deflection and lowered 

effective width.  

 

Even though the wide cantilever beam was found to be 

more rigid than the box beam and to have a higher be, the stress 

localization in the center line at the fixed end reduced the 

effective with significantly. Accordingly, the example beam's 

bending moment capacity is reduced by around 30% and 21% 

in the case of UDL and PL, respectively. Pier heads are 

typically designed for point loading. The column head should 

be designed for 1.26 times the design bending moment in the 

present case. The following sections explain how the other 

parameter affects the effective width ratio of the wide 

cantilever beam. 

 

3.3. Parametric Analysis 

Lowering the aspect ratio (l/w) severely influenced the be. 

The aspect ratio is higher for narrow beams and lowers for 

wide beams. The other parameter that may influence the be is 

the material properties (G/E ratio). The influence of these two 

parameters on be is presented in the subsequent paragraph. 

 

3.3.1. Effect Of Aspect Ratio  

Fig. 6, which displays the variation of be corresponding to 

aspect ratios, illustrates the importance of this 

parameter. Effective width ratios reach their highest values for 

narrow beams, i.e., for high aspect ratios. According to 

Moffatt and Dowling [49], stress localization is more 

pronounced for low aspect ratios. The effective width 

calculated for the PL is higher than the effective width 

calculated for the UDL. The rate variation in the effective 

width ratio for lower aspect ratios is higher for PL than for 



Kaushal Kumar & Gyani Jail Singh / IJETT, 70(10), 363-370, 2022 

 

368 

UDL (Figure 6). Pier's heads are generally designed for a 

point load. If the aspect ratio is much lower, equal to 1 or 1/2, 

the effective ratio may be highly reduced in this case. 

 

3.3.2. Effect of G/E Ratio 

Fig. 7 shows the variation in the be concerning the 

variation in the G/E ratio in a wide cantilever beam for aspect 

ratio five. When the G/E ratio is higher, the be is more 

significant. For the G/E ratios of 0.18 and 0.65 and the aspect 

ratio of five, the be is 0.789, 0.868, and 0.870, 0.926 for UDL 

and PL, respectively.  

 

As a result, the be increases as the G/E ratio increases. 

Additionally, the G/E ratio is much lower in the nonlinear 

deformation range, and the effective width ratio may be 

significantly reduced in these cases. 

 
Fig. 6 Variation of be corresponding to l/w for: (a) UDL and (b) PL 

 
Fig. 7 Variation of be corresponding to G/E ratio for (a) UDL and (b) 

PL 

 

 

4. Conclusion 
The current study presents a simplified procedure to 

analyze the wide cantilever beam under shear loadings. The 

simple assumptions derive the simplified closed-form solution 

of the bending stresses and deflections. The methodology is 

illustrated by a numerical example demonstrating its 

simplicity and accuracy. The theoretical results are closely in 

line with the literature and FEA. As a result, the following 

conclusions are drawn. 
 

It was observed that the stress was localized in the center 

line of the wide cantilever beam at the support. The wide 

cantilever beam was more rigid in its center line than any other 

part of the beam. Therefore, the stress localization in the beam 

significantly reduced its effective width. 
 

The aspect ratio is a critical factor affecting the effective 

width. Lower aspect ratios result in increased stress 

concentration. For uniformly distributed and point loads, the 

effective width for aspect ratio two was 0.708 and 0.794, 

respectively. 
 

This paper attempts to investigate stress localization by 

analyzing the wide cantilever beam. When considering the 

stress concentration due to the shear lag effect, the reduced 

effective width ratio or bending moment capacity of the wide 

beam, such as pier heads, must be considered in the design. 

 

Appendix 1: Symbols  
The symbols used are 
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