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Abstract - A three-phase induction motor is commonly utilized in industrial and electric vehicles. Furthermore, electric drive 

systems without speed sensors are becoming more popular because of their small size, cheap cost, outstanding 

dependability, and sustainability combined with innovative algorithms and controls. As a result, speed estimate techniques 

are used in these sensorless drive systems instead of direct speed measuring equipment like tachometers or photoelectric 

encoders. Based on an artificial neural network, this research proposes a technique for estimating the speed of a three-phase 

asynchronous motor without a speed sensor. The engine's speed determines the neural network's weight, and the real-time 

error backpropagation algorithm updates the sample period. They are using experiments with the suggested estimate 

approach. The simulation and experiment findings demonstrate that when the speed response error is estimated using the 

actual speed using an artificial neural. 

Keywords - Induction Motor, Neural Network, Luenberger Observer, Kalman Filter Observer, Sliding mode Observer. 

 

1. Introduction  
Induction motors (IM) are becoming more popular in 

industrial settings. Implementation of oriented field control 

(FOC) for an induction motor. Induction motors are 

controlled similarly to individually stimulated DC motors. 

Consequently, the industry's fundamental and dynamic 

behavior strength has improved through the orthogonal 

breakdown of the three-phase current, vector control results 

in decoupled torque and flux control. The three-phase 

currents (ia, ib, ic) are split into two orthogonal DC 

components (isd, isq), with 'id' controlling the magnetic flux 

and 'iq' controlling the speed and torque. [1],[2],[3], and [4]. 

Speed sensors are required for any speed control method for 

an induction motor drive. On the other hand, sensors add to 

the system's cost and are unreliable. These drawbacks may 

be mitigated by using a sensorless technique. The sensorless 

control operates without the need for a speed sensor. 

Calculations utilizing observed voltages and currents may 

predict speed in such instances. On the other hand, 

sensorless power increases numerical calculations and 

system complexity [5], [6]. Different approaches available 

in the literature may be used to provide sensorless control 

on induction motor drives. The Observer-based method has 

been the most effective. Observer-based models are state 

estimators that use input and output data to identify the  

 

 

system's states over a specified period. The observers were 

created for sensorless induction motor drive control and to 

assess the speed of IM. The Luenberger observer and 

Kalman filter versions have been extensively studied for 

sensorless IM drives. Even though these approaches have 

been successfully implemented for sensorless operation 

[5],[6], and [7], they impose a high computing cost, and 

Kalman filter tuning is a surprisingly sophisticated and 

time-consuming task. Both observers require an accurate 

mathematical IM model [8],[9], and [10]. Another study, 

according to [27], this study analyzes three types of 

observers placed in a sensorless DFOC IM drive such as 

Luenberger observer (LO), sliding mode observer (SMO), 

and Kalman filter (KF). Each observer can give excellent 

performance at high speeds, and adding the load torque 

observation improves the dynamic performance of the speed 

estimate. The LO has the best steady-state performance and 

low-speed operating [12], [13], and [14]. The SMO has the 

comparable overall performance to LO. However, it is more 

parameter-resistant. Digital signal processing for KF is the 

most difficult to implement. Its low-speed performance is 

noticeably worse, particularly under load. KF, on the other 

hand, offers the best noise isolation. In terms of practical 

use, LO and SMO are more valuable than KF 

[15],[16],[17],[18] and [19]. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Artificial intelligence methods are now used to simulate 

human behavior and reasoning capacities and implant them 

into computer programs. In power electronics, AI roaches 

are becoming more popular. One such AI method is the 

artificial neural network (ANN), with several benefits 

[20],[21], and [22]. Self-learning and self-organizing 

capabilities are two of ANN's most prominent qualities. As 

a result, it may be used to create an observer based on ANN 

[23],[24],[25], and [26]. 

 

Furthermore, the system benefits from not requiring an 

accurate mathematical model and is mathematically less 

demanding. This study created an ANN-based observer for 

sensorless control of the IM. Furthermore, a flatness 

technique controller was used to regulate the speed. 

 

There are five parts to this study. First, the induction 

motor model is provided in section II after the introduction. 

Next, the backpropagation neural network observer is 

available in section III. Finally, the simulation results are 

presented in part IV, followed by conclusions in section V. 

 

2. The Dynamic Mode of an Induction Motor   
A general dynamic model of the engine three-phase 

synchronization includes the following submodules: 

• Electrical model for converting three phases to two 

axes coordinates of the stator voltage. 

• The torque model used to calculate electric torque is 

from. 

• Mechanical model for calculating rotor speed. 

• Calculation model of stator current when taking into 

account resistance of a connecting wire 

2.1. Electric Model 

The process of converting three-phase power supply 

voltage to voltages in the d and q coordinate systems is 

taken in the matrix equation below: 

[
𝑉𝑑𝑠
𝑉𝑞𝑠
] = [

1 −1/2 −1/2

0 √3/2 −√3/2
] [

𝑉𝑎𝑠
𝑉𝑏𝑠
𝑉𝑐𝑠

]                   (1)

  

Where: Vas, Vbs and Vcs are three-phase stator voltages, 

while Vds and Vqs are biaxial voltage vector components. In a 

two-axis frame of reference, the equation th current has the 

following form: 

 

Where Rs and Rr are the stator and rotor resistance, 

respectively, Ls, Lr and Lm are the stators, rotors, and support 

inductances, respectively, having a cold. p is the number of 

poles and ωr is the speed of the rotor. In the electric model, 

the three-phase voltage [ Vas, Vbs, Vcs] is the input, and the 

current vector [ ids, iqs, idr, iqr ] is the output. Vector the rotor 

voltage is normally zero due to the rotor having squirrel 

cage form, that is, Vdr = Vqr = 0. 

[
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𝑑𝜏

                                                             (2) 

2.2. Torque Model 

In the two-axis stator reference frame, the 

electromagnetic torque M is calculated as follows: 

 

𝑀 =
𝑝𝐿𝑚

3
(𝑖𝑑𝑟𝑖𝑞𝑠 − 𝑖𝑞𝑟𝑖𝑑𝑠)    (3) 

2.3. Mechanical Model 

From the moment equilibrium equation and ignoring 

friction viscous friction), the rotor speed is calculated as 

follows: 

𝜔𝑟 = ∫
𝑀−𝑀𝑙

𝐽

𝜏

0
𝑑𝜏    (3) 

Where: J is the rotor moment of inertia, and ML is load 

torque. 

2.4. The Stator Current Model 

The stator current model is used to calculate the 

amplitude stator current according to the following 

equation: 

|𝑖𝑠| =
2

3
√𝑖𝑑𝑠

2 + 𝑖𝑞𝑠
2       (4) 

2.5. Power Supply Model 

The power supply to the motor is a sinusoidal three-

phase source like after: 
 

𝑉𝑎𝑠 = |𝑉| 𝑐𝑜𝑠(𝜔𝑡 + 𝜃) 
𝑉𝑏𝑠 = |𝑉| 𝑐𝑜𝑠(𝜔𝑡 − 2𝜋/3 + 𝜃) 

 
                        𝑉𝑐𝑠 = |𝑉| 𝑐𝑜𝑠(𝜔𝑡 + 2𝜋/3 + 𝜃)       (5) 

 

Where: |𝑉| is the terminal voltage amplitude, 𝜔 is the 

power supply frequency, and θ is the initial phase angle. 

Due to the voltage drop across the conductor, the terminal 

voltage is calculated as follows: 

 

               |𝑉| = 𝐸 − 𝑅𝑐|𝑖𝑠|        (6) 

 

Where: E is the supply voltage, and Rc is the wire 

resistance connect. 

 

3. Estimated an Induction Motor used 

Backpropagation- Neural Network 
Estimated motor speed using a neural network is part of 

the adaptive model reference system (model reference 

adaptive system/MRAS). Here, the neural network serves as 
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an adaptive model (adaptive model). Neural network 

consisting of weights constant weights and adjustable 

weights (adjustable weights). 

 

Correction weights are proportional to rotor speed and 

sampling time Ts. Figure.1 is the set MRAS-based engine 

speed estimation, including a neural network trained with 

the wrong algorithm backpropagation number.  

 

Reference model outputs (Reference Model) are the 

leakage flux components in the frame of reference static is 

calculated as follows: 

 

𝜓𝑑𝑟 =
𝐿𝑟

𝐿𝑚
[∫(𝑉𝑑𝑠 − 𝑅𝑠𝑖𝑑𝑠)𝑑𝑡 − 𝐿𝑠

′ 𝑖𝑑𝑠]  (7) 

 

𝜓𝑞𝑟 =
𝐿𝑟

𝐿𝑚
[∫(𝑉𝑞𝑠 − 𝑅𝑠𝑖𝑞𝑠)𝑑𝑡 − 𝐿𝑠

′ 𝑖𝑞𝑠]  (8) 

 

Where: 𝐿𝑠
′ = 𝜎𝐿𝑠with 𝜎 = 1 −

𝐿2𝑚

𝐿𝑟𝐿𝑠
is called the word 

coefficient leak. It is easy to see that Eqs. (8) and (9) do 

not contain rotor speed. On the other hand, the equations 

of the model adaptation have the following form: 
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Error 
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

 
Fig. 1 The speed estimator structure 
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m ds r r

dr dr qr
r

L i T dt
T

  
   

= − − 
 
   (9) 

1
m qs r r

qr qr dr
r

L i T dt
T

  
   

= − + 
 
   (10) 

From Eqs. (10) and (11), it can build an artificial neural 

network consisting of weights as follows: 

𝑤1 = 1 − 𝑐, 𝑤2 = 𝜔𝑇. 𝑇𝑠, 𝑤3 = 𝑐𝐿𝑚. In there 𝑐 =
𝑇𝑠/𝑇𝑟with Ts is the time is taken form and 𝑇𝑟 = 𝐿𝑟/𝑅𝑟 the 

rotor's electromagnetic time constant. The weight w2 is 

proportional to the rotor speed and sampling cycle. For a 

particular application, the cycle sampling is unchanged. 

Therefore, the weight value w2 will be adjusted for the rotor 

speed. By method back difference method, the system the 

output equation of the adaptive model is from leakages at k 

sampling time is as follows: 

( ) ( ) ( ) ( )1 2 31 1 1ds
dr dr qr

k w k w k w i k  
  

= − − − + −  (11) 

( ) ( ) ( ) ( )1 2 31 1 1qs
qr qr dr

k w k w k w i k  
  

= − + − + −  (12) 

Eqs. (12) and (13) can be represented in the form of an 

artificial neural network with a graph like Fig.2. Finally, 

the rotor speed is estimated at the k sampling time is 

determined as follows: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

qr
qr dr

r r
s

dr
dr qr

k k k

k k
T

k k k






 
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 

 

 

 

  
− −  

  
= − +  

  − − −  
  

   (13) 

Here η is the learning rate. 
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Fig. 2 Neural network graph used to estimate the flux 

 

4. Results  
The simulations are carried out on an induction 

machine using the settings listed in Table 1. Fig. 9 depicts 

the construction of the test bench. 

4.1. Simulation Results 

4.1.1. Case 1: Consider the hypothetical case that the 

engine parameters' IM does not change 

The article selects a stator PI current controller with the 

coefficient Kp=20; Ti=0.0085; PI speed controller with 

factor Kp=200; Ti=0.002 [6]. The operating mode of the IM 

motor is in the basic speed range and is investigated through 

the simulation scenarios as follows: 
 

Table 1. Design specification of an induction motor 

Rated power  2.2kW 

Rated Torque  7.3Nm 

Rated phase current  4.7A 

Rated phase voltage  400V 

Rated frequency  50Hz 

Number of pole pairs p 1 

Stator resistance  1.99𝛺  

Rotor resistance   1.84𝛺 

Mutual inductance  0.37  

Rated speed  2880 rpm 

Torque of inertia J  

dmP

dmM

dmI

dmU

dmf

sR

rR

mL

dmn

2.Kg m
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At time t = 0s, magnetization occurs, and the rotor flux 

stabilizes after a while, followed by at t = 1s starting and 

increasing motor speed (150 rad/s) and at t= 3s proceeding 

to reverse the motor (-150 rad/s). 

 

The stator current /variable accuracy simulation results 

and decoupling at point operations, such as stability, speed 

up, and speed down, are shown in Figures 3 and 4. It does, 

however, include overshoots during the transition response. 

 

Time[s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

[A
]

0

0.5

1

1.5

2

2.5

3

isd

i*sd

 

 

Fig. 3 The current response 𝒊𝒔𝒅
∗ − 𝒊𝒔𝒅 
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Fig. 4 The current response  sd sqi i-
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Fig. 5 The speed response (reference w*; estimate w^; motor w) 
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Fig. 6 The flux response (calculator F; estimate F^) 

Figs.5 and 6 show the simulation results procedures, 

respectively. The gap between the actual speed and flux and 

the anticipated speed and flux shows that the online neural 

network speed and flux estimator can accurately estimate 

the speed and flux in speed ranges. In transient processes, 

estimate errors are relatively tiny and near zero in steady-

state activities. 

 

Fig. 5 and 6 show the simulation results procedures, 

respectively. The gap between the actual speed and flux and 

the anticipated speed and flux shows that the online neural 

speed and flux estimator can accurately estimate the speed 

and flux in high-speed ranges. In transient processes, 

estimate errors are relatively tiny and near zero in steady-

state activities. However, at transients (acceleration and 

deceleration) during the operation of the IM motor, the 

speed and flux responses appear slightly overshoot. 

 

4.1.2. Case 2: Consider the hypothetical case that the 

engine parameters' IM does change  

When the IM motor works for a long time, the rotor 

resistance increases, resulting in a change in the rotor time 

constant and flux and decreased motor speed. For example, 

research work with the case of rotor resistance increased by 

50%. The results of the stator's current response rate are 

shown in the following figures: 
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Fig. 7 The speed response (estimate w^; motor w) when Rr is increased by 50% 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Time (s)

p
h
ir

d
 (

W
b

)

phird

phird^

 

Fig. 8 The flux response (estimate w^; motor w) when Rr is increased by 50% 

The results of Fig. 7 show that the estimated speed is 

close to the actual engine speed. For example, setting the 

resisting torque t = 0.4s and the time of deceleration t = 2s, 

the adjustment output is 20%. Besides, the simulation results 

of Fig. 8 show that the estimated and calculated flux are 

closely followed. The error only occurs in the 20% 

transition. Proving that the neural network observer works 

effectively. 

4.2. Experimental Results 

On the DSP 1104, all control, stator flux estimation, 

and speed estimate algorithms are conducted. The sample 

time is 200 µs to guarantee adequate time for algorithm 

processing, data collecting, and converting analog to digital 

converters (ADC) and digital to analog converters (DAC). 

Furthermore, for high, the speed standards are stepped from 

a standstill to 150 rad/s, and for low, from a standstill to –

150 rad/s. 
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Fig. 9 Photo of the experimental setup 

The experiments are carried out on an induction 

machine using the settings listed in Table 1.  

 

4.2.1. Case 1: Consider the hypothetical case that the 

engine parameters' IM does not change. 

Experimental results of stator current response are 

shown in Figs.10, 11. Through experimental results, it is 

found that the stator current response controls the flux, and 

the torque does not change during the setting process, with 

the difference between the actual and set stator current 

response being zero, but at the time of over speed 

(acceleration and reverse) occurs 20% over-adjustment. 

Still, after 0.5s, the actual stator current closely follows the 

set value. This result shows that the magnetic flux has been 

correctly estimated, and the PI current controller has 

realized the instability and torque control demultiplexing. 

However, the interleaving phenomenon still exists when the 

motor is running. Act at the moment of transition. 

Therefore, it is necessary to have a solution to design the 

current controller so that the responses are fast and accurate. 

 

 

Fig. 10 The current response 𝒊𝒔𝒅
∗ − 𝒊𝒔𝒅 

 

Fig. 11 The current response 𝒊𝒔𝒅 − 𝒊𝒔𝒒 
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Fig. 12. The speed response w, w* and w^. 

 

Fig. 13 The enlarged image responds to setting, measuring, and estimating speed 

when the motor starts up 

In addition, the set, measured, and estimated speed 

responses are shown in Fig.12, and an enlarged image of the 

speed responses (reference, measure, and estimate) is in            

Fig. 13. Through the results of Figs. 12 and 13, there are 

found that the estimated speed is close to the set value, 

measured at steady-state, but at the time of start-up and 

reverse, the estimated speed response appears to overshoot 

by about 6%, but quickly after 0.2s then meet the estimated 

speed as required. Therefore, prove that the speed monitor is 

well-designed and responsive to the requirements. 

 

4.2.2. Case 2: Consider the hypothetical case that the 

engine parameters' IM does change. 

In the field, when rotor resistance increases, the 

experimental results of stator current response control flux 

and torque are shown in Figs. 14.15. This result indicates 

that the stator current response has a higher pulse rate than 

the above field. In addition, the stator current response is 

highly overcorrected (40%). Finally, there is an inter-

channel phenomenon between the stator currents isd and isq, 

but the real signal generator adheres to the set value with 

almost zero error. These results show that the rotor flux 

estimator design responds well to the drive system with 

variable motor parameters. 

 

Similar to case 1, the reference, measured, and 

estimated rate responses are shown in Figs. 16 and 17. 

These rate responses have the same shape at steady-state but 

at the time of transition. Then the overcorrection is as large 

as 50%. After 0.5s, the establishment process occurs. The 

speed monitor still works well even when the engine 

parameter (Rr) changes. 
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Fig. 14 The Stator current response when Rr is increased by 50% 

 
Fig. 15 The enlarged image responds to a 50% increase in Rr set, measures and 

estimates speed 

 

 

 
Fig. 16 Reference, measure, and estimate rate response when Rr  
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Fig. 17 Enlarged image responds to set, measure and estimate speed as Rr increases 

by 50%- IM engine start 

 

5. Conclusion 
This study proposes an online neural network speed 

estimator for three-phase IM speed sensorless direct torque 

control using the FOC control approach. The modeling and 

experimental findings demonstrate that the speed and flux 

estimators can adequately predict the rate and flux in speed 

locations. Furthermore, the control system incorporated into 

the supplied speed estimator is stable and has rapid dynamic 

reactions and exact steady-state responses. These findings 

support the use of the recently proposed online neural 

network speed estimator. However, the estimate errors from 

experimental findings in speed areas are different from the 

simulation results in transitory settings, such as when the 

motor begins and reverses. 
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